1
|
Zou Z, Alibiglou H, Mate DM, Davari MD, Jakob F, Schwaneberg U. Directed sortase A evolution for efficient site-specific bioconjugations in organic co-solvents. Chem Commun (Camb) 2018; 54:11467-11470. [PMID: 30255876 DOI: 10.1039/c8cc06017g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Directed sortase A evolution yielded the variants R159G and D165Q/D186G/K196V with increased resistance (2.2-fold) and catalytic efficiency (6.3-fold) in 45% (v/v) dimethylsulfoxide. Interestingly, D165Q/D186G/K196V also showed an up to 4.7-fold increased activity for the conjugation of hydrophobic peptides/amines in co-solvents. MD simulations revealed that conformational mobilities are important for the gained resistance.
Collapse
Affiliation(s)
- Zhi Zou
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraβe 50, 52056 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
2
|
Lee E, Min K, Chang YT, Kwon Y. Efficient and wash-free labeling of membrane proteins using engineered Npu DnaE split-inteins. Protein Sci 2018; 27:1568-1574. [PMID: 30151847 DOI: 10.1002/pro.3455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 01/01/2023]
Abstract
An efficient and wash-free method to conjugate a fluorescent tag to a target membrane protein is developed, using engineered Npu DnaE split-inteins. This approach allowed fast labeling while avoiding the strenuous synthesis of a long polypeptide. Two different modes of labeling, namely specific binding and covalent conjugation, are observed. The covalent labeling was monitored within 5 min, without background staining.
Collapse
Affiliation(s)
- Euiyeon Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Kyoungmi Min
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, South Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Youngeun Kwon
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, South Korea
| |
Collapse
|
3
|
Wasserberg D, Cabanas-Danés J, Prangsma J, O’Mahony S, Cazade PA, Tromp E, Blum C, Thompson D, Huskens J, Subramaniam V, Jonkheijm P. Controlling Protein Surface Orientation by Strategic Placement of Oligo-Histidine Tags. ACS NANO 2017; 11:9068-9083. [PMID: 28850777 PMCID: PMC5618149 DOI: 10.1021/acsnano.7b03717] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/29/2017] [Indexed: 05/24/2023]
Abstract
We report oriented immobilization of proteins using the standard hexahistidine (His6)-Ni2+:NTA (nitrilotriacetic acid) methodology, which we systematically tuned to give control of surface coverage. Fluorescence microscopy and surface plasmon resonance measurements of self-assembled monolayers (SAMs) of red fluorescent proteins (TagRFP) showed that binding strength increased by 1 order of magnitude for each additional His6-tag on the TagRFP proteins. All TagRFP variants with His6-tags located on only one side of the barrel-shaped protein yielded a 1.5 times higher surface coverage compared to variants with His6-tags on opposite sides of the so-called β-barrel. Time-resolved fluorescence anisotropy measurements supported by polarized infrared spectroscopy verified that the orientation (and thus coverage and functionality) of proteins on surfaces can be controlled by strategic placement of a His6-tag on the protein. Molecular dynamics simulations show how the differently tagged proteins reside at the surface in "end-on" and "side-on" orientations with each His6-tag contributing to binding. Also, not every dihistidine subunit in a given His6-tag forms a full coordination bond with the Ni2+:NTA SAMs, which varied with the position of the His6-tag on the protein. At equal valency but different tag positions on the protein, differences in binding were caused by probing for Ni2+:NTA moieties and by additional electrostatic interactions between different fractions of the β-barrel structure and charged NTA moieties. Potential of mean force calculations indicate there is no specific single-protein interaction mode that provides a clear preferential surface orientation, suggesting that the experimentally measured preference for the end-on orientation is a supra-protein, not a single-protein, effect.
Collapse
Affiliation(s)
- Dorothee Wasserberg
- Bioinspired
Molecular Engineering Laboratory, MIRA Biomedical Technology
and Technical Medicine Institute, Molecular nanoFabrication Group, MESA+ Institute
for Nanotechnology, and Nanobiophysics Group, MESA+ Institute for Nanotechnology,
and MIRA Biomedical Technology and Technical Medicine Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jordi Cabanas-Danés
- Bioinspired
Molecular Engineering Laboratory, MIRA Biomedical Technology
and Technical Medicine Institute, Molecular nanoFabrication Group, MESA+ Institute
for Nanotechnology, and Nanobiophysics Group, MESA+ Institute for Nanotechnology,
and MIRA Biomedical Technology and Technical Medicine Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jord Prangsma
- Bioinspired
Molecular Engineering Laboratory, MIRA Biomedical Technology
and Technical Medicine Institute, Molecular nanoFabrication Group, MESA+ Institute
for Nanotechnology, and Nanobiophysics Group, MESA+ Institute for Nanotechnology,
and MIRA Biomedical Technology and Technical Medicine Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Shane O’Mahony
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Pierre-Andre Cazade
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Eldrich Tromp
- Bioinspired
Molecular Engineering Laboratory, MIRA Biomedical Technology
and Technical Medicine Institute, Molecular nanoFabrication Group, MESA+ Institute
for Nanotechnology, and Nanobiophysics Group, MESA+ Institute for Nanotechnology,
and MIRA Biomedical Technology and Technical Medicine Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Christian Blum
- Bioinspired
Molecular Engineering Laboratory, MIRA Biomedical Technology
and Technical Medicine Institute, Molecular nanoFabrication Group, MESA+ Institute
for Nanotechnology, and Nanobiophysics Group, MESA+ Institute for Nanotechnology,
and MIRA Biomedical Technology and Technical Medicine Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Jurriaan Huskens
- Bioinspired
Molecular Engineering Laboratory, MIRA Biomedical Technology
and Technical Medicine Institute, Molecular nanoFabrication Group, MESA+ Institute
for Nanotechnology, and Nanobiophysics Group, MESA+ Institute for Nanotechnology,
and MIRA Biomedical Technology and Technical Medicine Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Vinod Subramaniam
- Bioinspired
Molecular Engineering Laboratory, MIRA Biomedical Technology
and Technical Medicine Institute, Molecular nanoFabrication Group, MESA+ Institute
for Nanotechnology, and Nanobiophysics Group, MESA+ Institute for Nanotechnology,
and MIRA Biomedical Technology and Technical Medicine Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Free
University of Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Pascal Jonkheijm
- Bioinspired
Molecular Engineering Laboratory, MIRA Biomedical Technology
and Technical Medicine Institute, Molecular nanoFabrication Group, MESA+ Institute
for Nanotechnology, and Nanobiophysics Group, MESA+ Institute for Nanotechnology,
and MIRA Biomedical Technology and Technical Medicine Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
4
|
Altissimo M, Kiskinova M, Mincigrucci R, Vaccari L, Guarnaccia C, Masciovecchio C. Perspective: A toolbox for protein structure determination in physiological environment through oriented, 2D ordered, site specific immobilization. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044017. [PMID: 28428974 PMCID: PMC5392127 DOI: 10.1063/1.4981224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/05/2017] [Indexed: 05/19/2023]
Abstract
Revealing the structure of complex biological macromolecules, such as proteins, is an essential step for understanding the chemical mechanisms that determine the diversity of their functions. Synchrotron based X-ray crystallography and cryo-electron microscopy have made major contributions in determining thousands of protein structures even from micro-sized crystals. They suffer from some limitations that have not been overcome, such as radiation damage, the natural inability to crystallize a number of proteins, and experimental conditions for structure determination that are incompatible with the physiological environment. Today, the ultra-short and ultra-bright pulses of X-ray free-electron lasers have made attainable the dream to determine protein structures before radiation damage starts to destroy the samples. However, the signal-to-noise ratio remains a great challenge to obtain usable diffraction patterns from a single protein molecule. With the perspective to overcome these challenges, we describe here a new methodology that has the potential to overcome the signal-to-noise-ratio and protein crystallization limits. Using a multidisciplinary approach, we propose to create ordered, two dimensional protein arrays with defined orientation attached on a self-assembled-monolayer. We develop a literature-based flexible toolbox capable of assembling different kinds of proteins on a functionalized surface and consider using a graphene cover layer that will allow performing experiments with proteins in physiological conditions.
Collapse
Affiliation(s)
- M Altissimo
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| | - M Kiskinova
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| | - R Mincigrucci
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| | - L Vaccari
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| | - C Guarnaccia
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - C Masciovecchio
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| |
Collapse
|
5
|
Zwarycz AS, Fossat M, Akanyeti O, Lin Z, Rosenman DJ, Garcia AE, Royer CA, Mills KV, Wang C. V67L Mutation Fills an Internal Cavity To Stabilize RecA Mtu Intein. Biochemistry 2017; 56:2715-2722. [PMID: 28488863 DOI: 10.1021/acs.biochem.6b01264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inteins mediate protein splicing, which has found extensive applications in protein science and biotechnology. In the Mycobacterium tuberculosis RecA mini-mini intein (ΔΔIhh), a single valine to leucine substitution at position 67 (V67L) dramatically increases intein stability and activity. However, crystal structures show that the V67L mutation causes minimal structural rearrangements, with a root-mean-square deviation of 0.2 Å between ΔΔIhh-V67 and ΔΔIhh-L67. Thus, the structural mechanisms for V67L stabilization and activation remain poorly understood. In this study, we used intrinsic tryptophan fluorescence, high-pressure nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations to probe the structural basis of V67L stabilization of the intein fold. Guanidine hydrochloride denaturation monitored by fluorescence yielded free energy changes (ΔGf°) of -4.4 and -6.9 kcal mol-1 for ΔΔIhh-V67 and ΔΔIhh-L67, respectively. High-pressure NMR showed that ΔΔIhh-L67 is more resistant to pressure-induced unfolding than ΔΔIhh-V67 is. The change in the volume of folding (ΔVf) was significantly larger for V67 (71 ± 2 mL mol-1) than for L67 (58 ± 3 mL mol-1) inteins. The measured difference in ΔVf (13 ± 3 mL mol-1) roughly corresponds to the volume of the additional methylene group for Leu, supporting the notion that the V67L mutation fills a nearby cavity to enhance intein stability. In addition, we performed MD simulations to show that V67L decreases side chain dynamics and conformational entropy at the active site. It is plausible that changes in cavities in V67L can also mediate allosteric effects to change active site dynamics and enhance intein activity.
Collapse
Affiliation(s)
- Allison S Zwarycz
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Martin Fossat
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Otar Akanyeti
- Department of Computer Science, Aberystwyth University , Ceredigion SY23 3FL, Wales, U.K
| | - Zhongqian Lin
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - David J Rosenman
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Angel E Garcia
- Center of Nonlinear Studies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross , Worcester, Massachusetts 01610, United States
| | - Chunyu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
6
|
Zhang X, Duan Y, Zeng X. Improved Performance of Recombinant Protein A Immobilized on Agarose Beads by Site-Specific Conjugation. ACS OMEGA 2017; 2:1731-1737. [PMID: 30023643 PMCID: PMC6044777 DOI: 10.1021/acsomega.7b00362] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/17/2017] [Indexed: 05/21/2023]
Abstract
Protein A affinity adsorbent with high antibody-binding capacity plays a prominent part in the purification of biopharmaceuticals to decrease the manufacturing costs. We describe a site-specific covalent conjugation strategy for protein A to immobilize on agarose beads. Recombinant protein A, which has one cysteine introduced at the C terminus through genetic engineering technology, was immobilized site-specifically on maleimide-functionalized agarose beads by the thiol-maleimide reaction. As a comparison, the recombinant protein A was randomly immobilized on the aldehyde-functionalized agarose beads via free amino groups on the protein surface. The site-specific conjugation of recombinant protein A on the agarose beads was validated through the assay of free SH groups on the adsorbents using the Ellman's reagent. Adsorbents containing various amounts of protein A were used to adsorb antibody from human plasma. Analysis of immunoturbidimetry showed that the adsorbed fractions contained the 90.1% IgG, 4.2% IgA, and 5.7% IgM. The maximal antibodies-binding capacities with static adsorption and dynamic adsorption were approximately 64 and 50 mg, respectively, per swollen gram for site-specifically conjugated adsorbent and 31 and 26 mg for randomly conjugated adsorbent. Remarkably, the high antibody-binding capacity for site-specifically conjugated adsorbent outperformed the existing commercial protein A Sepharose (approximately 30 mg/g). The orientation of a protein is crucial for its activity after immobilization, and these results demonstrate that the site-specifically conjugated protein molecule is in a functionally active form to interact with the antibody with weak steric hindrance. The proposed approach may be an attractive strategy to synthesize affinity adsorbents with high-binding capacity.
Collapse
Affiliation(s)
- Xufeng Zhang
- College of Chemistry and
Chemical Engineering, Yunnan Normal University, Kunming 650092, PR China
| | - Ya Duan
- College of Chemistry and
Chemical Engineering, Yunnan Normal University, Kunming 650092, PR China
| | - Xi Zeng
- College of Chemistry and
Chemical Engineering, Yunnan Normal University, Kunming 650092, PR China
| |
Collapse
|
7
|
Bachmann AL, Mootz HD. N-terminal chemical protein labeling using the naturally split GOS-TerL intein. J Pept Sci 2017; 23:624-630. [PMID: 28332258 DOI: 10.1002/psc.2996] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 11/07/2022]
Abstract
Chemoselective and regioselective chemical protein labeling is of great importance, yet no current technique is sufficiently general and simple to perform. Protein trans-splicing by split inteins can be used to ligate short tags with chemical labels to either the N or the C terminus of a protein. The CysTag approach exploits split intein fragments without a cysteine fused with such a short tag containing a single cysteine that is easily amenable to selective modification using classical cysteine bioconjugation. Labeling of the protein of interest is achieved through transfer of the pre-labeled tag by protein trans-splicing. This protocol keeps other cysteines unmodified. While split inteins for C-terminal CysTag labeling were previously reported, no high-yielding and naturally split intein for N-terminal labeling has been available. In this work, the recently discovered GOS-TerL intein was explored as the only known naturally split intein that both lacks a cysteine in its N-terminal fragment and is active under ambient conditions. Thioredoxin as a model protein and a camelid nanobody were labeled with a synthetic fluorophore by transferring the pre-labeling CysTag in the protein trans-splicing reaction with yields of about 50 to 90%. The short N-terminal intein fragment was also chemically synthesized with a tag to enable protein labeling by semi-synthetic protein trans-splicing. Our results expand the scope of the CysTag labeling strategy, which achieves selective chemical modification without the requirement for sophisticated biorthogonal functional groups and rather builds on the plethora of commercially available reagents directed at the thiol side chain of cysteine. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anne-Lena Bachmann
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Str. 2, 48149, Münster, Germany
| | - Henning D Mootz
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Str. 2, 48149, Münster, Germany
| |
Collapse
|
8
|
Samsudin N, Hashim YZHY, Arifin MA, Mel M, Salleh HM, Sopyan I, Jimat DN. Optimization of ultraviolet ozone treatment process for improvement of polycaprolactone (PCL) microcarrier performance. Cytotechnology 2017; 69:601-616. [PMID: 28337561 DOI: 10.1007/s10616-017-0071-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/24/2017] [Indexed: 02/01/2023] Open
Abstract
Growing cells on microcarriers may have overcome the limitation of conventional cell culture system. However, the surface functionality of certain polymeric microcarriers for effective cell attachment and growth remains a challenge. Polycaprolactone (PCL), a biodegradable polymer has received considerable attention due to its good mechanical properties and degradation rate. The drawback is the non-polar hydrocarbon moiety which makes it not readily suitable for cell attachment. This report concerns the modification of PCL microcarrier surface (introduction of functional oxygen groups) using ultraviolet irradiation and ozone (UV/O3) system and investigation of the effects of ozone concentration, the amount of PCL and exposure time; where the optimum conditions were found to be at 60,110.52 ppm, 5.5 g PCL and 60 min, respectively. The optimum concentration of carboxyl group (COOH) absorbed on the surface was 1495.92 nmol/g and the amount of gelatin immobilized was 320 ± 0.9 µg/g on UV/O3 treated microcarriers as compared to the untreated (26.83 ± 3 µg/g) microcarriers. The absorption of functional oxygen groups on the surface and the immobilized gelatin was confirmed with the attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) and the enhancement of hydrophilicity of the surface was confirmed using water contact angle measurement which decreased (86.93°-49.34°) after UV/O3 treatment and subsequently after immobilization of gelatin. The attachment and growth kinetics for HaCaT skin keratinocyte cells showed that adhesion occurred much more rapidly for oxidized surfaces and gelatin immobilized surface as compared to untreated PCL.
Collapse
Affiliation(s)
- Nurhusna Samsudin
- Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728, Kuala Lumpur, Malaysia
| | - Yumi Zuhanis Has-Yun Hashim
- Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728, Kuala Lumpur, Malaysia. .,International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Level 3, KICT Building, P.O. Box 10, 50728, Kuala Lumpur, Malaysia.
| | - Mohd Azmir Arifin
- Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728, Kuala Lumpur, Malaysia.,Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Maizirwan Mel
- Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728, Kuala Lumpur, Malaysia
| | - Hamzah Mohd Salleh
- Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728, Kuala Lumpur, Malaysia. .,International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Level 3, KICT Building, P.O. Box 10, 50728, Kuala Lumpur, Malaysia.
| | - Iis Sopyan
- Department of Manufacturing and Material Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728, Kuala Lumpur, Malaysia
| | - Dzun Noraini Jimat
- Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Li Y, Aboye T, Breindel L, Shekhtman A, Camarero JA. Efficient recombinant expression of SFTI-1 in bacterial cells using intein-mediated protein trans-splicing. Biopolymers 2017; 106:818-824. [PMID: 27178003 DOI: 10.1002/bip.22875] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/07/2016] [Accepted: 05/04/2016] [Indexed: 01/22/2023]
Abstract
We report for the first time the recombinant expression of bioactive wild-type sunflower trypsin inhibitor 1 (SFTI-1) inside E. coli cells by making use of intracellular protein trans-splicing in combination with a high efficient split-intein. SFTI-1 is a small backbone-cyclized polypeptide with a single disulfide bridge and potent trypsin inhibitory activity. Recombinantly produced SFTI-1 was fully characterized by NMR and was observed to actively inhibit trypsin. The in-cell expression of SFTI-1 was very efficient reaching intracellular concentration ≈ 40 µM. This study clearly demonstrates the possibility of generating genetically encoded SFTI-based peptide libraries in live E. coli cells, and is a critical first step for developing in-cell screening and directed evolution technologies using the cyclic peptide SFTI-1 as a molecular scaffold. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 818-824, 2016.
Collapse
Affiliation(s)
- Yilong Li
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089-9121
| | - Teshome Aboye
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089-9121
| | - Leonard Breindel
- Department of Chemistry, State University of New York, Albany, NY, 12222
| | | | - Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089-9121.,Department of Chemistry, University of Southern California, Los Angeles, CA, 90089-9121
| |
Collapse
|
10
|
Qafari SM, Ahmadian G, Mohammadi M. One-step purification and oriented attachment of protein A on silica and graphene oxide nanoparticles using sortase-mediated immobilization. RSC Adv 2017. [DOI: 10.1039/c7ra12128h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One-step purification and oriented immobilization of protein A on functionalized carriers.
Collapse
Affiliation(s)
- Seyed Mehdi Qafari
- Systems Biotechnology Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | - Gholamreza Ahmadian
- Systems Biotechnology Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | - Mehdi Mohammadi
- Bioprocess Engineering Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| |
Collapse
|
11
|
|
12
|
Abstract
Methods to visualize, track, measure, and perturb or activate proteins in living cells are central to biomedical efforts to characterize and understand the spatial and temporal underpinnings of life inside cells. Although fluorescent proteins have proven to be extremely useful for in vivo studies of protein function, their utility is inherently limited because their spectral and structural characteristics are interdependent. These limitations have spurred the creation of alternative approaches for the chemical labeling of proteins. We describe in this protocol the use of fluorescence resonance emission transfer (FRET)-quenched DnaE split-inteins for the site-specific labeling and concomitant fluorescence activation of proteins in living cells. We have successfully employed this approach for the site-specific in-cell labeling of the DNA binding domain (DBD) of the transcription factor YY1 using several human cell lines. Moreover, we have shown that this approach can be also used for modifying proteins in order to control their cellular localization and potentially alter their biological activity.
Collapse
Affiliation(s)
- Radhika Borra
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089-9121, USA
| | - Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089-9121, USA.
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089-9121, USA.
| |
Collapse
|
13
|
Borra R, Camarero JA. Recombinant expression of backbone-cyclized polypeptides. Biopolymers 2016; 100:502-9. [PMID: 23893781 DOI: 10.1002/bip.22306] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/13/2013] [Accepted: 05/28/2013] [Indexed: 01/08/2023]
Abstract
Here we review the different biochemical approaches available for the expression of backbone-cyclized polypeptides, including peptides and proteins. These methods allow for the production of circular polypeptides either in vitro or in vivo using standard recombinant DNA expression techniques. Polypeptide circularization provides a valuable tool to study the effects of topology on protein stability and folding kinetics. Furthermore, having biosynthetic access to backbone-cyclized polypeptides makes the production of genetically encoded libraries of cyclic polypeptides possible. The production of such libraries, which was previously restricted to the domain of synthetic chemistry, now offers biologists access to highly diverse and stable molecular libraries that can be screened using high-throughput methods for the rapid selection of novel cyclic polypeptide sequences with new biological activities.
Collapse
Affiliation(s)
- Radhika Borra
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90033
| | | |
Collapse
|
14
|
Jung D, Sato K, Min K, Shigenaga A, Jung J, Otaka A, Kwon Y. Photo-triggered fluorescent labelling of recombinant proteins in live cells. Chem Commun (Camb) 2016; 51:9670-3. [PMID: 25977944 DOI: 10.1039/c5cc01067e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A method to photo-chemically trigger fluorescent labelling of proteins in live cells is developed. The approach is based on photo-caged split-intein mediated conditional protein trans-splicing reaction and enabled background-free fluorescent labelling of target proteins with the necessary spatiotemporal control.
Collapse
Affiliation(s)
- Deokho Jung
- Department of Biomedical Engineering, Dongguk University-Seoul, Pildong 3-ga, Seoul, Korea.
| | | | | | | | | | | | | |
Collapse
|
15
|
Wegner SV, Schenk FC, Spatz JP. Cobalt(III)-Mediated Permanent and Stable Immobilization of Histidine-Tagged Proteins on NTA-Functionalized Surfaces. Chemistry 2016; 22:3156-62. [PMID: 26809102 DOI: 10.1002/chem.201504465] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 01/16/2023]
Abstract
We present the cobalt(III)-mediated interaction between polyhistidine (His)-tagged proteins and nitrilotriacetic acid (NTA)-modified surfaces as a general approach for a permanent, oriented, and specific protein immobilization. In this approach, we first form the well-established Co(2+) -mediated interaction between NTA and His-tagged proteins and subsequently oxidize the Co(2+) center in the complex to Co(3+) . Unlike conventionally used Ni(2+) - or Co(2+) -mediated immobilization, the resulting Co(3+) -mediated immobilization is resistant toward strong ligands, such as imidazole and ethylenediaminetetraacetic acid (EDTA), and washing off over time because of the high thermodynamic and kinetic stability of the Co(3+) complex. This immobilization method is compatible with a wide variety of surface coatings, including silane self-assembled monolayers (SAMs) on glass, thiol SAMs on gold surfaces, and supported lipid bilayers. Furthermore, once the cobalt center has been oxidized, it becomes inert toward reducing agents, specific and unspecific interactions, so that it can be used to orthogonally functionalize surfaces with multiple proteins. Overall, the large number of available His-tagged proteins and materials with NTA groups make the Co(3+) -mediated interaction an attractive and widely applicable platform for protein immobilization.
Collapse
Affiliation(s)
- Seraphine V Wegner
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569, Stuttgart, Germany. .,Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany. .,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Franziska C Schenk
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569, Stuttgart, Germany.,Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Joachim P Spatz
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569, Stuttgart, Germany.,Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| |
Collapse
|
16
|
Abstract
On a past volume of this monograph we have reviewed general aspects of the varied technologies available to generate peptide arrays. Hallmarks in the development of the technology and a main sketch of preparative steps and applications in binding assays were used to walk the reader through details of peptide arrays. In this occasion, we resume from that work and bring in some considerations on quantitative evaluation of measurements as well as on selected reports applying the technology.
Collapse
Affiliation(s)
| | - Rudolf Volkmer
- Institute of Medical Immunology, Charité-Universitätsmedizin zu Berlin, Hessische Str. 3-4, Berlin, 10115, Germany
| |
Collapse
|
17
|
Braner M, Kollmannsperger A, Wieneke R, Tampé R. 'Traceless' tracing of proteins - high-affinity trans-splicing directed by a minimal interaction pair. Chem Sci 2015; 7:2646-2652. [PMID: 28660037 PMCID: PMC5477019 DOI: 10.1039/c5sc02936h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 12/18/2015] [Indexed: 12/26/2022] Open
Abstract
Using a minimal lock-and-key element the affinity between the intein fragments for N-terminal protein trans-splicing was significantly increased, allowing for site-specific, ‘traceless’ covalent protein labeling in living mammalian cells at nanomolar probe concentrations.
Protein trans-splicing mediated by split inteins is a powerful technique for site-specific protein modification. Despite recent developments there is still an urgent need for ultra-small high-affinity intein tags for in vitro and in vivo approaches. To date, only very few in-cell applications of protein trans-splicing have been reported, all limited to C-terminal protein modifications. Here, we developed a strategy for covalent N-terminal intein-mediated protein labeling at (sub) nanomolar probe concentrations. Combined with a minimal synthetic lock-and-key element, the affinity between the intein fragments was increased more than 50-fold to 10 nM. Site-specific and efficient ‘traceless’ protein modification by high-affinity trans-splicing is demonstrated at nanomolar concentrations in living mammalian cells.
Collapse
Affiliation(s)
- M Braner
- Institute of Biochemistry, Biocenter, and Cluster of Excellence - Macromolecular Complexes , Goethe-University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/M. , Germany .
| | - A Kollmannsperger
- Institute of Biochemistry, Biocenter, and Cluster of Excellence - Macromolecular Complexes , Goethe-University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/M. , Germany .
| | - R Wieneke
- Institute of Biochemistry, Biocenter, and Cluster of Excellence - Macromolecular Complexes , Goethe-University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/M. , Germany .
| | - R Tampé
- Institute of Biochemistry, Biocenter, and Cluster of Excellence - Macromolecular Complexes , Goethe-University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/M. , Germany .
| |
Collapse
|
18
|
Postsynthetic Domain Assembly with NpuDnaE and SspDnaB Split Inteins. Appl Biochem Biotechnol 2015; 177:1137-51. [DOI: 10.1007/s12010-015-1802-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
|
19
|
Dai X, Xun Q, Liu XQ, Meng Q. Cysteine-free non-canonical C-intein for versatile protein C-terminal labeling through trans-splicing. Appl Microbiol Biotechnol 2015; 99:8151-61. [DOI: 10.1007/s00253-015-6796-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 11/21/2022]
|
20
|
Li Y. Split-inteins and their bioapplications. Biotechnol Lett 2015; 37:2121-37. [DOI: 10.1007/s10529-015-1905-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023]
|
21
|
Cronin M, Coolbaugh MJ, Nellis D, Zhu J, Wood DW, Nussinov R, Ma B. Dynamics differentiate between active and inactive inteins. Eur J Med Chem 2015; 91:51-62. [PMID: 25087201 PMCID: PMC4308580 DOI: 10.1016/j.ejmech.2014.07.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 11/29/2022]
Abstract
The balance between stability and dynamics for active enzymes can be somewhat quantified by studies of intein splicing and cleaving reactions. Inteins catalyze the ligation of flanking host exteins while excising themselves. The potential for applications led to engineering of a mini-intein splicing domain, where the homing endonuclease domain of the Mycobacterium tuberculosis RecA (Mtu recA) intein was removed. The remaining domains were linked by several short peptides, but splicing activity in all was substantially lower than the full-length intein. Native splicing activity was restored in some cases by a V67L mutation. Using computations and experiments, we examine the impact of this mutation on the stability and conformational dynamics of the mini-intein splicing domain. Molecular dynamics simulations were used to delineate the factors that determine the active state, including the V67L mini-intein mutant, and peptide linker. We found that (1) the V67L mutation lowers the global fluctuations in all modeled mini-inteins, stabilizing the mini-intein constructs; (2) the connecting linker length affects intein dynamics; and (3) the flexibilities of the linker and intein core are higher in the active structure. We have observed that the interaction of the linker region and a turn region around residues 35-41 provides the pathway for the allostery interaction. Our experiments reveal that intein catalysis is characterized by non-linear Arrhenius plot, confirming the significant contribution of protein conformational dynamics to intein function. We conclude that while the V67L mutation stabilizes the global structure, cooperative dynamics of all intein regions appear more important for intein function than high stability. Our studies suggest that effectively quenching the conformational dynamics of an intein through engineered allosteric interactions could deactivate intein splicing or cleaving.
Collapse
Affiliation(s)
- Melissa Cronin
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Michael J Coolbaugh
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH 43210, USA
| | - David Nellis
- Biopharmaceutical Development Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jianwei Zhu
- School of Pharmacy, Shanghai Jiao Tong University, 800 DongChuan Road, Shanghai 200240, China
| | - David W Wood
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
22
|
Miraula M, Enculescu C, Schenk G, Mitić N. Inteins—A Focus on the Biotechnological Applications of Splicing-Promoting Proteins. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajmb.2015.52005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Vashist SK, Lam E, Hrapovic S, Male KB, Luong JHT. Immobilization of Antibodies and Enzymes on 3-Aminopropyltriethoxysilane-Functionalized Bioanalytical Platforms for Biosensors and Diagnostics. Chem Rev 2014; 114:11083-130. [DOI: 10.1021/cr5000943] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sandeep Kumar Vashist
- HSG-IMIT - Institut für Mikro- und Informationstechnik, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Edmond Lam
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | | | - Keith B. Male
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | - John H. T. Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Department of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| |
Collapse
|
24
|
Fluorescent protein-based FRET sensor for intracellular monitoring of redox status in bacteria at single cell level. Anal Bioanal Chem 2014; 406:7195-204. [DOI: 10.1007/s00216-014-8165-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 08/12/2014] [Accepted: 09/04/2014] [Indexed: 01/25/2023]
|
25
|
Wang HC, Yu CC, Liang CF, Huang LD, Hwu JR, Lin CC. Site-Selective Protein Immobilization through 2-Cyanobenzothiazole-Cysteine Condensation. Chembiochem 2014; 15:829-35. [DOI: 10.1002/cbic.201300800] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Indexed: 11/10/2022]
|
26
|
Sun C. Preparation of solid surfaces for native chemical ligation in the quartz crystal microbalance. SURF INTERFACE ANAL 2013. [DOI: 10.1002/sia.5327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chengjun Sun
- College of Materials and Textile Engineering; Jiaxing University; Jiaxing Zhejiang 314001 China
| |
Collapse
|
27
|
Jung D, Min K, Jung J, Jang W, Kwon Y. Chemical biology-based approaches on fluorescent labeling of proteins in live cells. MOLECULAR BIOSYSTEMS 2013; 9:862-72. [PMID: 23318293 DOI: 10.1039/c2mb25422k] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recently, significant advances have been made in live cell imaging owing to the rapid development of selective labeling of proteins in vivo. Green fluorescent protein (GFP) was the first example of fluorescent reporters genetically introduced to protein of interest (POI). While GFP and various types of engineered fluorescent proteins (FPs) have been actively used for live cell imaging for many years, the size and the limited windows of fluorescent spectra of GFP and its variants set limits on possible applications. In order to complement FP-based labeling methods, alternative approaches that allow incorporation of synthetic fluorescent probes to target POIs were developed. Synthetic fluorescent probes are smaller than fluorescent proteins, often have improved photochemical properties, and offer a larger variety of colors. These synthetic probes can be introduced to POIs selectively by numerous approaches that can be largely categorized into chemical recognition-based labeling, which utilizes metal-chelating peptide tags and fluorophore-carrying metal complexes, and biological recognition-based labeling, such as (1) specific non-covalent binding between an enzyme tag and its fluorophore-carrying substrate, (2) self-modification of protein tags using substrate variants conjugated to fluorophores, (3) enzymatic reaction to generate a covalent binding between a small molecule substrate and a peptide tag, and (4) split-intein-based C-terminal labeling of target proteins. The chemical recognition-based labeling reaction often suffers from compromised selectivity of metal-ligand interaction in the cytosolic environment, consequently producing high background signals. Use of protein-substrate interactions or enzyme-mediated reactions generally shows improved specificity but each method has its limitations. Some examples are the presence of large linker protein, restriction on the choice of introducible probes due to the substrate specificity of enzymes, and competitive reaction mediated by an endogenous analogue of the introduced protein tag. These limitations have been addressed, in part, by the split-intein-based labeling approach, which introduces fluorescent probes with a minimal size (~4 amino acids) peptide tag. In this review, the advantages and the limitations of each labeling method are discussed.
Collapse
Affiliation(s)
- Deokho Jung
- Department of Biomedical Engineering, Dongguk University, Seoul, Korea
| | | | | | | | | |
Collapse
|
28
|
Min K, Jung D, Jeon Y, Jeoung E, Kwon Y. Site-specific and effective immobilization of proteins by Npu DnaE split-intein mediated protein trans-splicing reaction. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7312-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Volkmann G, Mootz HD. Recent progress in intein research: from mechanism to directed evolution and applications. Cell Mol Life Sci 2013; 70:1185-206. [PMID: 22926412 PMCID: PMC11113529 DOI: 10.1007/s00018-012-1120-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 07/23/2012] [Accepted: 08/06/2012] [Indexed: 10/27/2022]
Abstract
Inteins catalyze a post-translational modification known as protein splicing, where the intein removes itself from a precursor protein and concomitantly ligates the flanking protein sequences with a peptide bond. Over the past two decades, inteins have risen from a peculiarity to a rich source of applications in biotechnology, biomedicine, and protein chemistry. In this review, we focus on developments of intein-related research spanning the last 5 years, including the three different splicing mechanisms and their molecular underpinnings, the directed evolution of inteins towards improved splicing in exogenous protein contexts, as well as novel applications of inteins for cell biology and protein engineering, which were made possible by a clearer understanding of the protein splicing mechanism.
Collapse
Affiliation(s)
- Gerrit Volkmann
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Henning D. Mootz
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| |
Collapse
|
30
|
Jagadish K, Borra R, Lacey V, Majumder S, Shekhtman A, Wang L, Camarero JA. Expression of fluorescent cyclotides using protein trans-splicing for easy monitoring of cyclotide-protein interactions. Angew Chem Int Ed Engl 2013; 52:3126-31. [PMID: 23322720 PMCID: PMC3767473 DOI: 10.1002/anie.201209219] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Krishnappa Jagadish
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Radikha Borra
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Vanessa Lacey
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Subhabrata Majumder
- Department of Chemistry, State University of New York, Albany, NY 12222, USA
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York, Albany, NY 12222, USA
| | - Lei Wang
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
31
|
Wasserberg D, Nicosia C, Tromp EE, Subramaniam V, Huskens J, Jonkheijm P. Oriented Protein Immobilization using Covalent and Noncovalent Chemistry on a Thiol-Reactive Self-Reporting Surface. J Am Chem Soc 2013; 135:3104-11. [DOI: 10.1021/ja3102133] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dorothee Wasserberg
- Molecular Nanofabrication Group,
MESA+ Institute for Nanotechnology, Department of Science
and Technology, University of Twente, 7500
AE, Enschede, Netherlands
- Nanobiophysics Group, MESA+ Institute for Nanotechnology
and MIRA Institute for Biomedical
Technology and Technical Medicine, Department of Science and Technology, University of Twente, 7500 AE, Enschede, Netherlands
| | - Carlo Nicosia
- Molecular Nanofabrication Group,
MESA+ Institute for Nanotechnology, Department of Science
and Technology, University of Twente, 7500
AE, Enschede, Netherlands
| | - Eldrich E. Tromp
- Molecular Nanofabrication Group,
MESA+ Institute for Nanotechnology, Department of Science
and Technology, University of Twente, 7500
AE, Enschede, Netherlands
- Nanobiophysics Group, MESA+ Institute for Nanotechnology
and MIRA Institute for Biomedical
Technology and Technical Medicine, Department of Science and Technology, University of Twente, 7500 AE, Enschede, Netherlands
| | - Vinod Subramaniam
- Nanobiophysics Group, MESA+ Institute for Nanotechnology
and MIRA Institute for Biomedical
Technology and Technical Medicine, Department of Science and Technology, University of Twente, 7500 AE, Enschede, Netherlands
| | - Jurriaan Huskens
- Molecular Nanofabrication Group,
MESA+ Institute for Nanotechnology, Department of Science
and Technology, University of Twente, 7500
AE, Enschede, Netherlands
| | - Pascal Jonkheijm
- Molecular Nanofabrication Group,
MESA+ Institute for Nanotechnology, Department of Science
and Technology, University of Twente, 7500
AE, Enschede, Netherlands
| |
Collapse
|
32
|
Abe H, Wakabayashi R, Yonemura H, Yamada S, Goto M, Kamiya N. Split Spy0128 as a Potent Scaffold for Protein Cross-Linking and Immobilization. Bioconjug Chem 2013; 24:242-50. [DOI: 10.1021/bc300606b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hiroki Abe
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Rie Wakabayashi
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Hiroaki Yonemura
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Sunao Yamada
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Masahiro Goto
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Noriho Kamiya
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| |
Collapse
|
33
|
Jagadish K, Borra R, Lacey V, Majumder S, Shekhtman A, Wang L, Camarero JA. Expression of Fluorescent Cyclotides using Protein Trans-Splicing for Easy Monitoring of Cyclotide-Protein Interactions. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Yang L, Gomez-Casado A, Young JF, Nguyen HD, Cabanas-Danés J, Huskens J, Brunsveld L, Jonkheijm P. Reversible and oriented immobilization of ferrocene-modified proteins. J Am Chem Soc 2012; 134:19199-206. [PMID: 23126430 DOI: 10.1021/ja308450n] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Adopting supramolecular chemistry for immobilization of proteins is an attractive strategy that entails reversibility and responsiveness to stimuli. The reversible and oriented immobilization and micropatterning of ferrocene-tagged yellow fluorescent proteins (Fc-YFPs) onto β-cyclodextrin (βCD) molecular printboards was characterized using surface plasmon resonance (SPR) spectroscopy and fluorescence microscopy in combination with electrochemistry. The proteins were assembled on the surface through the specific supramolecular host-guest interaction between βCD and ferrocene. Application of a dynamic covalent disulfide lock between two YFP proteins resulted in a switch from monovalent to divalent ferrocene interactions with the βCD surface, yielding a more stable protein immobilization. The SPR titration data for the protein immobilization were fitted to a 1:1 Langmuir-type model, yielding K(LM) = 2.5 × 10(5) M(-1) and K(i,s) = 1.2 × 10(3) M(-1), which compares favorably to the intrinsic binding constant presented in the literature for the monovalent interaction of ferrocene with βCD self-assembled monolayers. In addition, the SPR binding experiments were qualitatively simulated, confirming the binding of Fc-YFP in both divalent and monovalent fashion to the βCD monolayers. The Fc-YFPs could be patterned on βCD surfaces in uniform monolayers, as revealed using fluorescence microscopy and atomic force microscopy measurements. Both fluorescence microscopy imaging and SPR measurements were carried out with the in situ capability to perform cyclic voltammetry and chronoamperometry. These studies emphasize the repetitive desorption and adsorption of the ferrocene-tagged proteins from the βCD surface upon electrochemical oxidation and reduction, respectively.
Collapse
Affiliation(s)
- Lanti Yang
- Molecular Nanofabrication Group, Department of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu W, Wang L, Jiang R. Specific Enzyme Immobilization Approaches and Their Application with Nanomaterials. Top Catal 2012. [DOI: 10.1007/s11244-012-9893-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Borra R, Dong D, Elnagar AY, Woldemariam GA, Camarero JA. In-cell fluorescence activation and labeling of proteins mediated by FRET-quenched split inteins. J Am Chem Soc 2012; 134:6344-53. [PMID: 22404648 DOI: 10.1021/ja300209u] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Methods to visualize, track, and modify proteins in living cells are central for understanding the spatial and temporal underpinnings of life inside cells. Although fluorescent proteins have proven to be extremely useful for in vivo studies of protein function, their utility is inherently limited because their spectral and structural characteristics are interdependent. These limitations have spurred the creation of alternative approaches for the chemical labeling of proteins. We report in this work the use of fluorescence resonance emission transfer (FRET)-quenched DnaE split inteins for the site-specific labeling and concomitant fluorescence activation of proteins in living cells. We have successfully employed this approach for the site-specific in-cell labeling of the DNA binding domain (DBD) of the transcription factor YY1 using several human cell lines. Moreover, we have shown that this approach can be also used for modifying proteins to control their cellular localization and potentially alter their biological activity.
Collapse
Affiliation(s)
- Radhika Borra
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
37
|
Yu CC, Kuo YY, Liang CF, Chien WT, Wu HT, Chang TC, Jan FD, Lin CC. Site-Specific Immobilization of Enzymes on Magnetic Nanoparticles and Their Use in Organic Synthesis. Bioconjug Chem 2012; 23:714-24. [DOI: 10.1021/bc200396r] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ching-Ching Yu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd. Hsinchu, 30013,
Taiwan
| | - Yu-Ying Kuo
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd. Hsinchu, 30013,
Taiwan
| | - Chien-Fu Liang
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd. Hsinchu, 30013,
Taiwan
| | - Wei-Ting Chien
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd. Hsinchu, 30013,
Taiwan
| | - Huan-Ting Wu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd. Hsinchu, 30013,
Taiwan
| | - Tsung-Che Chang
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd. Hsinchu, 30013,
Taiwan
| | - Fan-Dan Jan
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd. Hsinchu, 30013,
Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd. Hsinchu, 30013,
Taiwan
| |
Collapse
|
38
|
Yi L, Chen YX, Lin PC, Schröder H, Niemeyer CM, Wu YW, Goody RS, Triola G, Waldmann H. Direct immobilization of oxyamine-modified proteins from cell lysates. Chem Commun (Camb) 2012; 48:10829-31. [DOI: 10.1039/c2cc35237k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Veselov AA, Abraham BG, Lemmetyinen H, Karp MT, Tkachenko NV. Photochemical properties and sensor applications of modified yellow fluorescent protein (YFP) covalently attached to the surfaces of etched optical fibers (EOFs). Anal Bioanal Chem 2011; 402:1149-58. [PMID: 22116380 DOI: 10.1007/s00216-011-5564-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/07/2011] [Indexed: 01/14/2023]
Abstract
Fluorescent proteins have the inherent ability to act as sensing components which function both in vitro and inside living cells. We describe here a novel study on a covalent site-specific bonding of fluorescent proteins to form self-assembled monolayers (SAMs) on the surface of etched optical fibers (EOFs). Deposition of fluorescent proteins on EOFs gives the opportunity to increase the interaction of guided light with deposited molecules relative to plane glass surfaces. The EOF modification is carried out by surface activation using 3-aminopropylthrimethoxysilane (APTMS) and bifunctional crosslinker sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (sulfo-SMCC) which exposes sulfhydryl-reactive maleimide groups followed by covalent site-specific coupling of modified yellow fluorescent protein (YFP). Steady-state and fluorescence lifetime measurements confirm the formation of SAM. The sensor applications of YPF SAMs on EOF are demonstrated by the gradual increase of emission intensity upon addition of Ca(2+) ions in the concentration range from a few tens of micromolars up to a few tens of millimolars. The studies on the effect of pH, divalent cations, denaturing agents, and proteases reveal the stability of YFP on EOFs at normal physiological conditions. However, treatments with 0.5% SDS at pH 8.5 and protease trypsin are found to denaturate or cleave the YFP from fiber surfaces.
Collapse
Affiliation(s)
- Alexey A Veselov
- Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland.
| | | | | | | | | |
Collapse
|
40
|
Du Z, Liu J, Albracht CD, Hsu A, Chen W, Marieni MD, Colelli KM, Williams JE, Reitter JN, Mills KV, Wang C. Structural and mutational studies of a hyperthermophilic intein from DNA polymerase II of Pyrococcus abyssi. J Biol Chem 2011; 286:38638-38648. [PMID: 21914805 PMCID: PMC3207444 DOI: 10.1074/jbc.m111.290569] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/09/2011] [Indexed: 11/06/2022] Open
Abstract
Protein splicing is a precise self-catalyzed process in which an intein excises itself from a precursor with the concomitant ligation of the flanking polypeptides (exteins). Protein splicing proceeds through a four-step reaction but the catalytic mechanism is not fully understood at the atomic level. We report the solution NMR structures of the hyperthermophilic Pyrococcus abyssi PolII intein, which has a noncanonical C-terminal glutamine instead of an asparagine. The NMR structures were determined to a backbone root mean square deviation of 0.46 Å and a heavy atom root mean square deviation of 0.93 Å. The Pab PolII intein has a common HINT (hedgehog intein) fold but contains an extra β-hairpin that is unique in the structures of thermophilic inteins. The NMR structures also show that the Pab PolII intein has a long and disordered loop in place of an endonuclease domain. The N-terminal Cys-1 amide is hydrogen bonded to the Thr-90 hydroxyl in the conserved block-B TXXH motif and the Cys-1 thiol forms a hydrogen bond with the block F Ser-166. Mutating Thr-90 to Ala dramatically slows N-terminal cleavage, supporting its pivotal role in promoting the N-S acyl shift. Mutagenesis also showed that Thr-90 and His-93 are synergistic in catalyzing the N-S acyl shift. The block F Ser-166 plays an important role in coordinating the steps of protein splicing. NMR spin relaxation indicates that the Pab PolII intein is significantly more rigid than mesophilic inteins, which may contribute to the higher optimal temperature for protein splicing.
Collapse
Affiliation(s)
- Zhenming Du
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Jiajing Liu
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Clayton D Albracht
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Alice Hsu
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Wen Chen
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Michelle D Marieni
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610
| | - Kathryn M Colelli
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610
| | - Jennie E Williams
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610
| | - Julie N Reitter
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610.
| | - Chunyu Wang
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180.
| |
Collapse
|
41
|
Shah NH, Vila-Perelló M, Muir TW. Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew Chem Int Ed Engl 2011; 50:6511-5. [PMID: 21656885 DOI: 10.1002/anie.201102909] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Indexed: 01/28/2023]
Affiliation(s)
- Neel H Shah
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
42
|
Shah NH, Vila-Perelló M, Muir TW. Kinetic Control of One-Pot Trans-Splicing Reactions by Using a Wild-Type and Designed Split Intein. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102909] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
43
|
Aranko AS, Volkmann G. Protein trans-splicing as a protein ligation tool to study protein structure and function. Biomol Concepts 2011; 2:183-98. [DOI: 10.1515/bmc.2011.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 03/10/2011] [Indexed: 01/21/2023] Open
Abstract
AbstractProtein trans-splicing (PTS) exerted by split inteins is a protein ligation reaction which enables overcoming the barriers of conventional heterologous protein production. We provide an overview of the current state-of-the-art in split intein engineering, as well as the achievements of PTS technology in the realm of protein structure-function analyses, including incorporation of natural and artificial protein modifications, controllable protein reconstitution, segmental isotope labeling and protein cyclization. We further discuss factors crucial for the successful implementation of PTS in these protein engineering approaches, and speculate on necessary future endeavours to make PTS a universally applicable protein ligation tool.
Collapse
Affiliation(s)
- A. Sesilja Aranko
- 1Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland
| | | |
Collapse
|
44
|
Chen J, Serizawa T, Komiyama M. Recognition of Photoresponsive Polymer Targets by Protein Fused withcis-Form Azobenzene-binding Peptide. CHEM LETT 2011. [DOI: 10.1246/cl.2011.482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Lu W, Sun Z, Tang Y, Chen J, Tang F, Zhang J, Liu JN. Split intein facilitated tag affinity purification for recombinant proteins with controllable tag removal by inducible auto-cleavage. J Chromatogr A 2011; 1218:2553-60. [PMID: 21397239 DOI: 10.1016/j.chroma.2011.02.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/20/2011] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
Abstract
Purification tags are robust tools that can be used to purify a variety of target proteins. However, tag removal remains an expensive and significant issue that must be resolved. Based on the affinity and the trans-splicing activity between the two domains of Ssp DnaB split-intein, a novel approach for tag affinity purification of recombinant proteins with controllable tag removal by inducible auto-cleavage has been developed. This system provides a new affinity method and avoids premature splicing of the intein fused proteins expressed in host cells. The affinity matrix can be reused. In addition, this method is compatible with his-tag affinity purification technique. Our methods provide the insights for establishing a novel recombinant protein preparation system.
Collapse
Affiliation(s)
- Wei Lu
- Institute of Molecular & Experimental Therapeutics, East China Normal University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Yang P, Marinakos SM, Chilkoti A. Spatially addressable chemoselective C-terminal ligation of an intein fusion protein from a complex mixture to a hydrazine-terminated surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1463-71. [PMID: 21142101 PMCID: PMC3189817 DOI: 10.1021/la104186n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein immobilization on surfaces is useful in many areas of research, including biological characterization, antibody purification, and clinical diagnostics. A critical limitation in the development of protein microarrays and heterogeneous protein-based assays is the enormous amount of work and associated costs in the purification of proteins prior to their immobilization onto a surface. Methods to address this problem would simplify the development of interfacial diagnostics that use a protein as the recognition element. Herein, we describe an approach for the facile, site-specific immobilization of proteins on a surface without any preprocessing or sample purification steps that ligates an intein fusion protein at its C-terminus by reaction with a hydrazine group presented by a surface. Furthermore, we demonstrate that this methodology can directly immobilize a protein directly from cell lysate onto a protein-resistant surface. This methodology is also compatible with soft lithography and inkjet printing so that one or more proteins can be patterned on a surface without the need for purification.
Collapse
|
47
|
Samanta D, Sarkar A. Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications. Chem Soc Rev 2011; 40:2567-92. [DOI: 10.1039/c0cs00056f] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Berrade L, Garcia AE, Camarero JA. Protein microarrays: novel developments and applications. Pharm Res 2010; 28:1480-99. [PMID: 21116694 PMCID: PMC3137928 DOI: 10.1007/s11095-010-0325-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 11/08/2010] [Indexed: 02/05/2023]
Abstract
Protein microarray technology possesses some of the greatest potential for providing direct information on protein function and potential drug targets. For example, functional protein microarrays are ideal tools suited for the mapping of biological pathways. They can be used to study most major types of interactions and enzymatic activities that take place in biochemical pathways and have been used for the analysis of simultaneous multiple biomolecular interactions involving protein-protein, protein-lipid, protein-DNA and protein-small molecule interactions. Because of this unique ability to analyze many kinds of molecular interactions en masse, the requirement of very small sample amount and the potential to be miniaturized and automated, protein microarrays are extremely well suited for protein profiling, drug discovery, drug target identification and clinical prognosis and diagnosis. The aim of this review is to summarize the most recent developments in the production, applications and analysis of protein microarrays.
Collapse
Affiliation(s)
- Luis Berrade
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, PSC 616, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
49
|
Chu NK, Olschewski D, Seidel R, Winklhofer KF, Tatzelt J, Engelhard M, Becker CFW. Protein immobilization on liposomes and lipid-coated nanoparticles by protein trans-splicing. J Pept Sci 2010; 16:582-8. [DOI: 10.1002/psc.1227] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
|