1
|
Zada SL, Baruch BB, Simhaev L, Engel H, Fridman M. Chemical Modifications Reduce Auditory Cell Damage Induced by Aminoglycoside Antibiotics. J Am Chem Soc 2020; 142:3077-3087. [PMID: 31958945 DOI: 10.1021/jacs.9b12420] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although aminoglycoside antibiotics are effective against Gram-negative infections, these drugs often cause irreversible hearing damage. Binding to the decoding site of the eukaryotic ribosomes appears to result in ototoxicity, but there is evidence that other effects are involved. Here, we show how chemical modifications of apramycin and geneticin, considered among the least and most toxic aminoglycosides, respectively, reduce auditory cell damage. Using molecular dynamics simulations, we studied how modified aminoglycosides influence the essential freedom of movement of the decoding site of the ribosome, the region targeted by aminoglycosides. By determining the ratio of a protein translated in mitochondria to that of a protein translated in the cytoplasm, we showed that aminoglycosides can paradoxically elevate rather than reduce protein levels. We showed that certain aminoglycosides induce rapid plasma membrane permeabilization and that this nonribosomal effect can also be reduced through chemical modifications. The results presented suggest a new paradigm for the development of safer aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Sivan Louzoun Zada
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , Israel , 6997801
| | - Bar Ben Baruch
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , Israel , 6997801
| | - Luba Simhaev
- Blavatnik Center for Drug Discovery , Tel Aviv University , Tel Aviv , 6997801 , Israel
| | - Hamutal Engel
- Blavatnik Center for Drug Discovery , Tel Aviv University , Tel Aviv , 6997801 , Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , Israel , 6997801
| |
Collapse
|
2
|
Structural Bases for the Fitness Cost of the Antibiotic-Resistance and Lethal Mutations at Position 1408 of 16S rRNA. Molecules 2019; 25:molecules25010159. [PMID: 31906077 PMCID: PMC6983231 DOI: 10.3390/molecules25010159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/29/2019] [Accepted: 12/29/2019] [Indexed: 02/04/2023] Open
Abstract
To understand a structural basis for the fitness cost of the A1408G antibiotic-resistance mutation in the ribosomal A-site RNA, we have determined crystal structures of its A1408C and A1408U lethal mutants, and made comparison with previously solved structures of the wild type and the antibiotic-resistant mutant. The A-site RNA containing an asymmetric internal loop functions as a molecular switch to discriminate a single cognate tRNA from several near-cognate tRNAs by its conformational ON/OFF switching. Overall structures of the “off” states of the A1408C/U lethal mutants are very similar to those of the wild type and the A1408G antibiotic-resistant mutant. However, significant differences are found in local base stacking interactions including the functionally important A1492 and A1493 residues. In the wild type and the A1408G antibiotic-resistant mutant “off” states, both adenines are exposed to the solvent region. On the other hand, one of the corresponding adenines of the lethal A1408C/U mutants stay deeply inside their A-site helices by forming a purine-pyrimidine AoC or A-U base pair and is sandwiched between the upper and lower bases. Therefore, the ON/OFF switching might unfavorably occur in the lethal mutants compared to the wild type and the A1408G antibiotic-resistant mutant. It is probable that bacteria manage to acquire antibiotic resistance without losing the function of the A-site molecular switch by mutating the position 1408 only from A to G, but not to pyrimidine base C or U.
Collapse
|
3
|
Quirke JCK, Rajasekaran P, Sarpe VA, Sonousi A, Osinnii I, Gysin M, Haldimann K, Fang QJ, Shcherbakov D, Hobbie SN, Sha SH, Schacht J, Vasella A, Böttger EC, Crich D. Apralogs: Apramycin 5- O-Glycosides and Ethers with Improved Antibacterial Activity and Ribosomal Selectivity and Reduced Susceptibility to the Aminoacyltranserferase (3)-IV Resistance Determinant. J Am Chem Soc 2019; 142:530-544. [PMID: 31790244 DOI: 10.1021/jacs.9b11601] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Apramycin is a structurally unique member of the 2-deoxystreptamine class of aminoglycoside antibiotics characterized by a monosubstituted 2-deoxystreptamine ring that carries an unusual bicyclic eight-carbon dialdose moiety. Because of its unusual structure, apramycin is not susceptible to the most prevalent mechanisms of aminoglycoside resistance including the aminoglycoside-modifying enzymes and the ribosomal methyltransferases whose widespread presence severely compromises all aminoglycosides in current clinical practice. These attributes coupled with minimal ototoxocity in animal models combine to make apramycin an excellent starting point for the development of next-generation aminoglycoside antibiotics for the treatment of multidrug-resistant bacterial infections, particularly the ESKAPE pathogens. With this in mind, we describe the design, synthesis, and evaluation of three series of apramycin derivatives, all functionalized at the 5-position, with the goals of increasing the antibacterial potency without sacrificing selectivity between bacterial and eukaryotic ribosomes and of overcoming the rare aminoglycoside acetyltransferase (3)-IV class of aminoglycoside-modifying enzymes that constitutes the only documented mechanism of antimicrobial resistance to apramycin. We show that several apramycin-5-O-β-d-ribofuranosides, 5-O-β-d-eryrthofuranosides, and even simple 5-O-aminoalkyl ethers are effective in this respect through the use of cell-free translation assays with wild-type bacterial and humanized bacterial ribosomes and of extensive antibacterial assays with wild-type and resistant Gram negative bacteria carrying either single or multiple resistance determinants. Ex vivo studies with mouse cochlear explants confirm the low levels of ototoxicity predicted on the basis of selectivity at the target level, while the mouse thigh infection model was used to demonstrate the superiority of an apramycin-5-O-glycoside in reducing the bacterial burden in vivo.
Collapse
Affiliation(s)
- Jonathan C K Quirke
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States.,Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States.,Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States.,Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Parasuraman Rajasekaran
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States.,Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States.,Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Vikram A Sarpe
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States.,Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States.,Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Amr Sonousi
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Ivan Osinnii
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Marina Gysin
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Klara Haldimann
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Qiao-Jun Fang
- Department of Pathology and Laboratory Medicine , Medical University of South Carolina , Walton Research Building, Room 403-E, 39 Sabin Street , Charleston , South Carolina 29425 , United States
| | - Dimitri Shcherbakov
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Sven N Hobbie
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine , Medical University of South Carolina , Walton Research Building, Room 403-E, 39 Sabin Street , Charleston , South Carolina 29425 , United States
| | - Jochen Schacht
- Kresge Hearing Research Institute, Department of Otolaryngology , University of Michigan , 1150 West Medical Center Drive , Ann Arbor , Michigan 48109 , United States
| | - Andrea Vasella
- Organic Chemistry Laboratory , ETH Zürich , Vladimir-Prelog-Weg 1-5/10 , 8093 Zürich , Switzerland
| | - Erik C Böttger
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States.,Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States.,Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States.,Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
4
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
5
|
Thamban Chandrika N, Garneau-Tsodikova S. Comprehensive review of chemical strategies for the preparation of new aminoglycosides and their biological activities. Chem Soc Rev 2018; 47:1189-1249. [PMID: 29296992 PMCID: PMC5818290 DOI: 10.1039/c7cs00407a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A systematic analysis of all synthetic and chemoenzymatic methodologies for the preparation of aminoglycosides for a variety of applications (therapeutic and agricultural) reported in the scientific literature up to 2017 is presented. This comprehensive analysis of derivatization/generation of novel aminoglycosides and their conjugates is divided based on the types of modifications used to make the new derivatives. Both the chemical strategies utilized and the biological results observed are covered. Structure-activity relationships based on different synthetic modifications along with their implications for activity and ability to avoid resistance against different microorganisms are also presented.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | |
Collapse
|
6
|
Kanazawa H, Baba F, Koganei M, Kondo J. A structural basis for the antibiotic resistance conferred by an N1-methylation of A1408 in 16S rRNA. Nucleic Acids Res 2017; 45:12529-12535. [PMID: 29036479 PMCID: PMC5716097 DOI: 10.1093/nar/gkx882] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/23/2017] [Indexed: 12/18/2022] Open
Abstract
The aminoglycoside resistance conferred by an N1-methylation of A1408 in 16S rRNA by a novel plasmid-mediated methyltransferase NpmA can be a future health threat. In the present study, we have determined crystal structures of the bacterial ribosomal decoding A site with an A1408m1A antibiotic-resistance mutation both in the presence and absence of aminoglycosides. G418 and paromomycin both possessing a 6′-OH group specifically bind to the mutant A site and disturb its function as a molecular switch in the decoding process. On the other hand, binding of gentamicin with a 6′-NH3+ group to the mutant A site could not be observed in the present crystal structure. These observations agree with the minimum inhibitory concentration of aminoglycosides against Escherichia coli. In addition, one of our crystal structures suggests a possible conformational change of A1408 during the N1-methylation reaction by NpmA. The structural information obtained explains how bacteria acquire resistance against aminoglycosides along with a minimum of fitness cost by the N1-methylation of A1408 and provides novel information for designing the next-generation aminoglycoside.
Collapse
Affiliation(s)
- Hiroki Kanazawa
- Graduate School of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Fumika Baba
- Graduate School of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Mai Koganei
- Graduate School of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Jiro Kondo
- Graduate School of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan.,Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| |
Collapse
|
7
|
Meanwell NA. Drug-target interactions that involve the replacement or displacement of magnesium ions. Bioorg Med Chem Lett 2017; 27:5355-5372. [DOI: 10.1016/j.bmcl.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 01/11/2023]
|
8
|
Kondo J. Crystallographic Studies of the Ribosomal A-Site Molecular Switches by Using Model RNA Oligomers. Methods Mol Biol 2016; 1320:315-327. [PMID: 26227052 DOI: 10.1007/978-1-4939-2763-0_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An RNA molecular switch in the aminoacyl-tRNA decoding site (A site) of the ribosome plays a key role in the decoding process of the protein biosynthesis. The switch discriminates a single cognate-tRNA from near-cognate tRNAs by changing its conformation from "off" to "on" states and recognizing the first two base pairs of codon-anticodon mini-helix to check whether these base pairs are of the canonical Watson-Crick type or not. Aminoglycoside antibiotics specifically target the "on" state of the bacterial A-site molecular switch and disturb the fidelity of the decoding process, resulting to cell death. If it occurs in human who was given aminoglycosides, it can lead to undesirable side effects. In order to understand the molecular bases of the decoding and the antibacterial and toxic side effects of aminoglycosides, it is necessary to determine the three-dimensional structures of the A-site molecular switches both in the presence and absence of aminoglycosides. This chapter focuses on methods in crystallographic studies of the A-site switches by using model RNA oligomers. The methods can be utilized in crystallographic studies of any DNA/RNA oligomers.
Collapse
Affiliation(s)
- Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554, Tokyo, Japan,
| |
Collapse
|
9
|
Shalev M, Rozenberg H, Smolkin B, Nasereddin A, Kopelyanskiy D, Belakhov V, Schrepfer T, Schacht J, Jaffe CL, Adir N, Baasov T. Structural basis for selective targeting of leishmanial ribosomes: aminoglycoside derivatives as promising therapeutics. Nucleic Acids Res 2015; 43:8601-13. [PMID: 26264664 PMCID: PMC4787808 DOI: 10.1093/nar/gkv821] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/01/2015] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis comprises an array of diseases caused by pathogenic species of Leishmania, resulting in a spectrum of mild to life-threatening pathologies. Currently available therapies for leishmaniasis include a limited selection of drugs. This coupled with the rather fast emergence of parasite resistance, presents a dire public health concern. Paromomycin (PAR), a broad-spectrum aminoglycoside antibiotic, has been shown in recent years to be highly efficient in treating visceral leishmaniasis (VL)—the life-threatening form of the disease. While much focus has been given to exploration of PAR activities in bacteria, its mechanism of action in Leishmania has received relatively little scrutiny and has yet to be fully deciphered. In the present study we present an X-ray structure of PAR bound to rRNA model mimicking its leishmanial binding target, the ribosomal A-site. We also evaluate PAR inhibitory actions on leishmanial growth and ribosome function, as well as effects on auditory sensory cells, by comparing several structurally related natural and synthetic aminoglycoside derivatives. The results provide insights into the structural elements important for aminoglycoside inhibitory activities and selectivity for leishmanial cytosolic ribosomes, highlighting a novel synthetic derivative, compound 3, as a prospective therapeutic candidate for the treatment of VL.
Collapse
Affiliation(s)
- Moran Shalev
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel Department of Structural Biology, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Haim Rozenberg
- Department of Structural Biology, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Boris Smolkin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Abedelmajeed Nasereddin
- Department of Microbiology and Molecular Genetics, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Dmitry Kopelyanskiy
- Department of Microbiology and Molecular Genetics, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Valery Belakhov
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Thomas Schrepfer
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jochen Schacht
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Charles L Jaffe
- Department of Microbiology and Molecular Genetics, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Timor Baasov
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Synthesis and antibacterial activity of 4″ or 6″-alkanoylamino derivatives of arbekacin. J Antibiot (Tokyo) 2015; 68:741-7. [PMID: 25990952 DOI: 10.1038/ja.2015.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/14/2015] [Accepted: 04/20/2015] [Indexed: 11/09/2022]
Abstract
Arbekacin, an aminoglycoside antibiotic, is an important drug because it shows a potent efficacy against methicillin-resistant Staphylococcus aureus. However, resistance to arbekacin, which is caused mainly by the bifunctional aminoglycoside-modifying enzyme, has been observed, becoming a serious problem in medical practice. To create new arbekacin derivatives active against resistant bacteria, we modified the C-4″ and 6″ positions of its 3-aminosugar portion. Regioselective amination of the 6″-position gave 6″-amino-6″-deoxyarbekacin (1), and it was converted to a variety of 6″-N-alkanoyl derivatives (6a-z). Furthermore, regioselective modifications of the 4″-hydroxyl group were performed to give 4″-deoxy-4″-epiaminoarbekacin (2) and its 4″-N-alkanoyl derivatives (12 and 13). Their antibacterial activity against S. aureus, including arbekacin-resistant bacteria, was evaluated. It was observed that 6″-amino-6″-N-[(S)-4-amino-2-hydroxybutyryl]-6″-deoxyarbekacin (6o) showed excellent antibacterial activity, even better than arbekacin.
Collapse
|
11
|
Panecka J, Šponer J, Trylska J. Conformational dynamics of bacterial and human cytoplasmic models of the ribosomal A-site. Biochimie 2015; 112:96-110. [PMID: 25748164 DOI: 10.1016/j.biochi.2015.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/23/2015] [Indexed: 01/12/2023]
Abstract
The aminoacyl-tRNA binding site (A-site) is located in helix 44 of small ribosomal subunit. The mobile adenines 1492 and 1493 (Escherichia coli numbering), forming the A-site bulge, act as a functional switch that ensures mRNA decoding accuracy. Structural data on the oligonucleotide models mimicking the ribosomal A-site with sequences corresponding to bacterial and human cytoplasmic sites confirm that this RNA motif forms also without the ribosome context. We performed all-atom molecular dynamics simulations of these crystallographic A-site models to compare their conformational properties. We found that the human A-site bulge is more internally flexible than the bacterial one and has different base pairing preferences, which result in the overall different shapes of these bulges and cation density distributions. Also, in the human A-site model we observed repetitive destacking of A1492, while A1493 was more stably paired than in the bacterial variant. Based on the dynamics of the A-sites we suggest why aminoglycoside antibiotics, which target the bacterial A-site, have lower binding affinities and anti-translational activities toward the human variant.
Collapse
Affiliation(s)
- Joanna Panecka
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland; Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Jiří Šponer
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic; Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic.
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
12
|
Urzhumtseva L, Urzhumtsev A. EFRESOL: effective resolution of a diffraction data set. J Appl Crystallogr 2015. [DOI: 10.1107/s1600576715001648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The resolution of a diffraction data set conveys the details that one expects to distinguish in the Fourier maps calculated with these data. For example, individual atoms in a macromolecular chain cannot be resolved in the maps calculated with 2 Å resolution data sets, while they can be resolved in accurate maps calculated with 1 Å resolution data. However, if a data set is incomplete its high-resolution cutoff becomes less straightforward to interpret. For instance, a Fourier map calculated using a 1 Å resolution data set with many high-resolution reflections missing may rather resemble a map corresponding to 2 Å resolution data. The authors have proposed a method that redefines the traditional notion of data resolution, making it more formal and general. This manuscript presents the corresponding tool, the programEFRESOL. For a data set of an arbitrary completeness, the program calculates its mean, highest and lowest effective resolutions. These values are established through the minimum distance between two point scatterers when their images are still resolved as separate peaks in the Fourier maps calculated with the given data set. Additionally, the program calculates the optical resolution, which is defined as the minimum distance for typical atoms of the structure when they are resolved in a hypothetical synthesis obtained with the given amplitudes and the exact phases if they are known. Both effective and optical resolutions show the `resolving power' of the diffraction data set.
Collapse
|
13
|
Mandhapati AR, Shcherbakov D, Duscha S, Vasella A, Böttger EC, Crich D. Importance of the 6'-hydroxy group and its configuration for apramycin activity. ChemMedChem 2014; 9:2074-83. [PMID: 25045149 DOI: 10.1002/cmdc.201402146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Indexed: 01/08/2023]
Abstract
A series of apramycin derivatives was prepared and investigated for antibacterial activity and the ability to inhibit protein synthesis in cell-free translation assays. The effect of various modifications at the 6'- and N7'-positions on antiribosomal activity is discussed in terms of their influence on drug binding to specific residues in the decoding A-site. These studies contribute to the development of a structure-activity relationship for the antibacterial activity of the apramycin class of aminoglycosides and to the future design and development of more active and less toxic antibiotics.
Collapse
Affiliation(s)
- Appi Reddy Mandhapati
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202 (USA)
| | | | | | | | | | | |
Collapse
|
14
|
Joly JP, Mata G, Eldin P, Briant L, Fontaine-Vive F, Duca M, Benhida R. Artificial Nucleobase-Amino Acid Conjugates: A New Class of TAR RNA Binding Agents. Chemistry 2014; 20:2071-9. [DOI: 10.1002/chem.201303664] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Indexed: 12/23/2022]
|
15
|
Shalev M, Baasov T. When Proteins Start to Make Sense: Fine-tuning Aminoglycosides for PTC Suppression Therapy. MEDCHEMCOMM 2014; 5:1092-1105. [PMID: 25147726 DOI: 10.1039/c4md00081a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aminoglycosides (AGs) are highly potent antibacterial agents, which are known to exert their deleterious effects on bacterial cells by interfering with the translation process, leading to aberrant protein synthesis that usually results in cell death. Nearly 45 years ago, AGs were shown to induce read-through activity in prokaryotic systems by selectively encoding tRNA molecules at premature termination codon (PTC) positions; resulting in the generation of full length functional proteins. However, only in the last 20 years this ability has been demonstrated in eukaryotic systems, highlighting their potential as therapeutic agents to treat PTC induced genetic disorders. Despite the great potential, AGs use in these manners is quite restricted due to relatively high toxicity values observed upon their administration. Over the last few years several synthetic derivatives were developed to overcome some of the enhanced toxicity issues, while in parallel showed significantly improved PTC suppression activity in various in-vitro, ex-vivo and in-vivo models of a variety of different diseases models underling by PTC mutations. Although these derivatives hold great promise to serve as therapeutic candidates they also demonstrate the necessity to further understand the molecular mechanisms of which AGs confer their biological activity in eukaryotic cells for further rational drug design. Recent achievements in structural research shed light on AGs mechanism of action and opened a new avenue in the development of new and improved therapeutic derivatives. The following manuscript highlights these accomplishments and summarizes their contributions to the state of art rational drug design.
Collapse
Affiliation(s)
- Moran Shalev
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Timor Baasov
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
16
|
Yu H, Liu X, Huang J, Zhang Y, Hu R, Pu J. Comparison of read-through effects of aminoglycosides and PTC124 on rescuing nonsense mutations of HERG gene associated with long QT syndrome. Int J Mol Med 2013; 33:729-35. [PMID: 24366185 DOI: 10.3892/ijmm.2013.1601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/10/2013] [Indexed: 11/06/2022] Open
Abstract
Aminoglycosides promote the readthrough of premature stop codons introduced by nonsense mutations to produce full-length proteins in genetic disease models. The read-through effects of different aminoglycosides and PTC124 on HERG gene have yet to be adequately elucidated. The wild-type (WT) or mutant genes were transiently transfected in HEK293 cells. The read-through effect was examined by adding drugs into culture medium for 24 h. Western blot analysis and patch clamping were performed to evaluate the expression and function of the genes. The mRNA levels were determined using qPCR. The results showed that G418 and PTC124 significantly increased the protein expression of R1014X mutant in a dose-dependent manner and produced a full-length protein. The maximal protein levels after G418, gentamicin or PTC124 treatment were 39.1±2.4, 18.6±0.3 or 10.3±1.0%, respectively, of the WT level. Tobramycin did not exhibit a read-through effect. The mRNA levels, however, did not differ between WT and mutant gene. The tail current densities of R1014X channels at 40 mV were 22.57±2.26 pA/pF for G418, 16.21±1.49 pA/pF for gentamicin and 9.62±0.73 pA/pF for PTC124. The leftward shift of the activation curve was corrected only by G418 and gentamicin. The read-through effects of W927X, R863X and E698X revealed that as the mutation site approached the N-terminal, the rescue efficiency was decreased. The above results suggest that aminoglycosides and PTC124 induced different effects on rescue nonsense mutations of the HERG gene. The mutation site was a significant factor in determining the pharmacological rescue efficiency.
Collapse
Affiliation(s)
- Haiyun Yu
- State Key Laboratory of Cardiovascular Disease, Physiology and Pathophysiology Laboratory, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Xiaoyan Liu
- State Key Laboratory of Cardiovascular Disease, Physiology and Pathophysiology Laboratory, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Jian Huang
- State Key Laboratory of Cardiovascular Disease, Physiology and Pathophysiology Laboratory, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Yinhui Zhang
- State Key Laboratory of Cardiovascular Disease, Physiology and Pathophysiology Laboratory, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Roumu Hu
- State Key Laboratory of Cardiovascular Disease, Physiology and Pathophysiology Laboratory, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Jielin Pu
- State Key Laboratory of Cardiovascular Disease, Physiology and Pathophysiology Laboratory, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| |
Collapse
|
17
|
Kondo J, Westhof E. Aminoglycoside Antibiotics: Structural Decoding of Inhibitors Targeting the Ribosomal Decoding A Site. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
18
|
Identification of the molecular attributes required for aminoglycoside activity against Leishmania. Proc Natl Acad Sci U S A 2013; 110:13333-8. [PMID: 23898171 DOI: 10.1073/pnas.1307365110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Leishmaniasis, a parasitic disease caused by protozoa of the genus Leishmania, affects millions of people worldwide. Aminoglycosides are mostly known as highly potent, broad-spectrum antibiotics that exert their antibacterial activity by selectively targeting the decoding A site of the bacterial ribosome, leading to aberrant protein synthesis. Recently, some aminoglycosides have been clinically approved and are currently used worldwide for the treatment of leishmaniasis; however the molecular details by which aminoglycosides induce their deleterious effect on Leishmaina is still rather obscure. Based on high conservation of the decoding site among all kingdoms, it is assumed that the putative binding site of these agents in Leishmania is the ribosomal A site. However, although recent X-ray crystal structures of the bacterial ribosome in complex with aminoglycosides shed light on the mechanism of aminoglycosides action as antibiotics, no such data are presently available regarding their binding site in Leishmania. We present crystal structures of two different aminoglycoside molecules bound to a model of the Leishmania ribosomal A site: Geneticin (G418), a potent aminoglycoside for the treatment of leishmaniasis at a 2.65-Å resolution, and Apramycin, shown to be a strong binder to the leishmanial ribosome lacking an antileishmanial activity at 1.4-Å resolution. The structural data, coupled with in vitro inhibition measurements on two strains of Leishmania, provide insight as to the source of the difference in inhibitory activity of different Aminoglycosides. The combined structural and physiological data sets the ground for rational design of new, and more specific, aminoglycoside derivatives as potential therapeutic agents against leishmaniasis.
Collapse
|
19
|
Sheng J, Gan J, Huang Z. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. Med Res Rev 2013; 33:1119-73. [PMID: 23633219 DOI: 10.1002/med.21278] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleic acids are the molecular targets of many clinical anticancer drugs. However, compared with proteins, nucleic acids have traditionally attracted much less attention as drug targets in structure-based drug design, partially because limited structural information of nucleic acids complexed with potential drugs is available. Over the past several years, enormous progresses in nucleic acid crystallization, heavy-atom derivatization, phasing, and structural biology have been made. Many complicated nucleic acid structures have been determined, providing new insights into the molecular functions and interactions of nucleic acids, especially DNAs complexed with small molecule ligands. Thus, opportunities have been created to further discover nucleic acid-targeting drugs for disease treatments. This review focuses on the structure studies of DNAs complexed with small molecule ligands for discovering lead compounds, drug candidates, and/or therapeutics.
Collapse
Affiliation(s)
- Jia Sheng
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
20
|
Schitter G, Wrodnigg TM. Update on carbohydrate-containing antibacterial agents. Expert Opin Drug Discov 2013; 4:315-56. [PMID: 23489128 DOI: 10.1517/17460440902778725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Since the first known use of antibiotics > 2,500 years ago, a research field with immense importance for the welfare of mankind has been developed. After a decrease in interest in this topic by the end of the 20th century the occurrence of (poly-)resistant strains of bacteria induced a revival of antibiotics research. Health systems have been seeking viable and reliable solutions to this dangerous and expansive threat. OBJECTIVE This review will focus on carbohydrate-containing antibiotics and will give an outline of recently published novel isolated, semisynthetic as well as synthetic structures, their mechanism of action, if known, and the strategies for the design of compounds with potential by improved antibacterial properties. METHODS The literature between 2000 and 2008 was screened with main focus on recent examples of novel structures and strategies for the lead finding of exclusively antibacterial agents. RESULTS/CONCLUSION With the explanation of the role of the carbohydrate moieties in the respective antibacterial agents together with better synthetic strategies in carbohydrate chemistry as well as improvements in assay development for high throughput screening methods, carbohydrate-containing antibiotics can be used for the finding of potential drug leads that contribute to the fight against infections and diseases caused by (resistant) bacterial pathogens.
Collapse
Affiliation(s)
- Georg Schitter
- Technical University Graz, Institute of Organic Chemistry, Univ.-Doz. TMW, Dip.-Ing. GS, Glycogroup, A-8010 Graz, Austria +43 316 873 8744 ; +43 316 873 8740 ;
| | | |
Collapse
|
21
|
Kondo J, Koganei M, Maianti JP, Ly VL, Hanessian S. Crystal structures of a bioactive 6'-hydroxy variant of sisomicin bound to the bacterial and protozoal ribosomal decoding sites. ChemMedChem 2013; 8:733-9. [PMID: 23436717 DOI: 10.1002/cmdc.201200579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Indexed: 11/06/2022]
Abstract
Parasitic infections recognized as neglected tropical diseases are a source of concern for several regions of the world. Aminoglycosides are potent antimicrobial agents that have been extensively studied by biochemical and structural studies in prokaryotes. However, the molecular mechanism of their potential antiprotozoal activity is less well understood. In the present study, we have examined the in vitro inhibitory activities of some aminoglycosides with a 6'-hydroxy group on ring I and highlight that one of them, 6'-hydroxysisomicin, exhibits promising activity against a broad range of protozoan parasites. Furthermore, we have conducted X-ray analyses of 6'-hydroxysisomicin bound to the target ribosomal RNA A-sites in order to understand the mechanisms of both its antibacterial and antiprotozoal activities at the molecular level. The unsaturated ring I of 6'-hydroxysisomicin can directly stack on G1491, which is highly conserved in bacterial and protozoal species, through π-π interaction and fits closer to the guanidine base than the typically saturated and hydroxylated ring I of other structurally related aminoglycosides. Consequently, the compound adopts a lower energy conformation within the bacterial and protozoal A-sites and makes pseudo pairs to either A or G at position 1408. The A-site-selective binding mode strongly suggests that 6'-hydroxysisomicin is a potential lead for the design of next-generation aminoglycosides targeting a wide variety of infectious diseases.
Collapse
Affiliation(s)
- Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan.
| | | | | | | | | |
Collapse
|
22
|
Kondo J, Koganei M, Kasahara T. Crystal structure and specific binding mode of sisomicin to the bacterial ribosomal decoding site. ACS Med Chem Lett 2012; 3:741-4. [PMID: 24900542 PMCID: PMC4025859 DOI: 10.1021/ml300145y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/29/2012] [Indexed: 11/29/2022] Open
Abstract
Sisomicin with an unsaturated sugar ring I displays better antibacterial activity than other structurally related aminoglycosides, such as gentamicin, tobramycin, and amikacin. In the present study, we have confirmed by X-ray analyses that the binding mode of sisomicin is basically similar but not identical to that of the related compounds having saturated ring I. A remarkable difference is found in the stacking interaction between ring I and G1491. While the typical saturated ring I with a chair conformation stacks on G1491 through CH/π interactions, the unsaturated ring I of sisomicin with a partially planar conformation can share its π-electron density with G1491 and fits well within the A-site helix.
Collapse
Affiliation(s)
- Jiro Kondo
- Department of Materials
and Life Sciences, Faculty
of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Mai Koganei
- Department of Materials
and Life Sciences, Faculty
of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | | |
Collapse
|
23
|
Chen W, Green KD, Tsodikov OV, Garneau-Tsodikova S. Aminoglycoside multiacetylating activity of the enhanced intracellular survival protein from Mycobacterium smegmatis and its inhibition. Biochemistry 2012; 51:4959-67. [PMID: 22646013 DOI: 10.1021/bi3004473] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enhanced intracellular survival (Eis) protein improves the survival of Mycobacterium smegmatis (Msm) in macrophages and functions as the acetyltransferase responsible for kanamycin A resistance, a hallmark of extensively drug-resistant (XDR) tuberculosis, in a large number of Mycobacterium tuberculosis (Mtb) clinical isolates. We recently demonstrated that Eis from Mtb (Eis_Mtb) efficiently multiacetylates a variety of aminoglycoside (AG) antibiotics. Here, to gain insight into the origin of substrate selectivity of AG multiacetylation by Eis, we analyzed AG acetylation by Eis_Msm, investigated its inhibition, and compared these functions to those of Eis_Mtb. Even though for several AGs the multiacetylation properties of Eis_Msm and Eis_Mtb are similar, there are three major differences. (i) Eis_Msm diacetylates apramycin, a conformationally constrained AG, which Eis_Mtb cannot modify. (ii) Eis_Msm triacetylates paromomycin, which can be only diacetylated by Eis_Mtb. (iii) Eis_Msm only monoacetylates hygromycin, a structurally unique AG that is diacetylated by Eis_Mtb. Several nonconserved amino acid residues lining the AG-binding pocket of Eis are likely responsible for these differences between the two Eis homologues. Specifically, we propose that because the AG-binding pocket of Eis_Msm is more open than that of Eis_Mtb, it accommodates apramycin for acetylation in Eis_Msm, but not in Eis_Mtb. We also demonstrate that inhibitors of Eis_Mtb that we recently discovered can inhibit Eis_Msm activity. These observations help define the structural origins of substrate preference among Eis homologues and suggest that Eis_Mtb inhibitors may be applied against all pathogenic mycobacteria to overcome AG resistance caused by Eis upregulation.
Collapse
Affiliation(s)
- Wenjing Chen
- Life Sciences Institute, 210 Washtenaw Avenue, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | | | | |
Collapse
|
24
|
Dibrov S, McLean J, Hermann T. Structure of an RNA dimer of a regulatory element from human thymidylate synthase mRNA. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:97-104. [PMID: 21245530 PMCID: PMC3045271 DOI: 10.1107/s0907444910050900] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 12/04/2010] [Indexed: 11/10/2022]
Abstract
A sequence around the start codon of the mRNA of human thymidylate synthase (TS) folds into a secondary-structure motif in which the initiation site is sequestered in a metastable hairpin. Binding of the protein to its own mRNA at the hairpin prevents the production of TS through a translation-repression feedback mechanism. Stabilization of the mRNA hairpin by other ligands has been proposed as a strategy to reduce TS levels in anticancer therapy. Rapidly proliferating cells require high TS activity to maintain the production of thymidine as a building block for DNA synthesis. The crystal structure of a model oligonucleotide (TS1) that represents the TS-binding site of the mRNA has been determined. While fluorescence studies showed that the TS1 RNA preferentially adopts a hairpin structure in solution, even at high RNA concentrations, an asymmetric dimer of two hybridized TS1 strands was obtained in the crystal. The TS1 dimer contains an unusual S-turn motif that also occurs in the `off' state of the human ribosomal decoding site RNA.
Collapse
Affiliation(s)
- Sergey Dibrov
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jaime McLean
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
25
|
Kythreoti G, Vourloumis D. A Homo sapiens cytoplasmic ribosomal decoding A-site affinity screen evaluating aminoglycoside and analogue binding. Anal Biochem 2011; 412:102-7. [PMID: 21238425 DOI: 10.1016/j.ab.2011.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Accepted: 01/11/2011] [Indexed: 01/05/2023]
Abstract
The potential of aminoglycoside antibiotics to induce premature stop codon read-through in eukaryotic systems has been reported recently, inspiring the evaluation of structural alterations within the Homo sapiens cytoplasmic decoding center on ligand binding. Here we report the employment of an affinity screen capable of monitoring conformational changes of adenines 1492 and 1493 in solution. Thus, changes induced by the presence of a ligand can be directly translated to binding affinities for the eukaryotic decoding center. Binding data for the eukaryotic ribosomal decoding center can be easily obtained by this method and are in excellent agreement with previously reported values measured by alternative techniques. Furthermore, a good correlation is obtained between the experimental binding affinities and the biological activity of the compounds examined. In addition, illustrating the generality of the assay, unnatural rigid aminoglycoside analogues of potential therapeutic significance were evaluated.
Collapse
Affiliation(s)
- Georgia Kythreoti
- Institute of Physical Chemistry, Laboratory of Chemical Biology of Natural Products and Designed Molecules, NCSR Demokritos, 15310 Athens, Greece
| | | |
Collapse
|
26
|
McCoy LS, Xie Y, Tor Y. Antibiotics that target protein synthesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:209-32. [DOI: 10.1002/wrna.60] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Kondo J, Westhof E. Base pairs and pseudo pairs observed in RNA-ligand complexes. J Mol Recognit 2010; 23:241-52. [PMID: 19701919 DOI: 10.1002/jmr.978] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previously, a geometric nomenclature was proposed in which RNA base pairs were classified by their interaction edges (Watson-Crick, Hoogsteen or sugar-edge) and the glycosidic bond orientations relative to the hydrogen bonds formed (cis or trans). Here, base pairs and pseudo pairs observed in RNA-ligand complexes are classified in a similar manner. Twenty-one basic geometric families are geometrically possible (18 for base pairs formed between a nucleic acid base and a ligand containing heterocycle and 3 families for pseudo pairs). Of those, 16 of them have been observed in X-ray and/or NMR structures.
Collapse
Affiliation(s)
- Jiro Kondo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS, 15 rue René Descartes, 67084 Strasbourg, France
| | | |
Collapse
|
28
|
Balenci D, D'Amelio N, Gaggelli E, Gaggelli N, Cellai L, Molteni E, Valensin G. Structural features of apramycin bound at the bacterial ribosome a site as detected by NMR and CD spectroscopy. Chembiochem 2010; 11:166-9. [PMID: 20024973 DOI: 10.1002/cbic.200900629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Duccio Balenci
- Department of Chemistry, University of Siena, Via A. Moro, 53100 Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Moumné R, Larue V, Seijo B, Lecourt T, Micouin L, Tisné C. Tether influence on the binding properties of tRNALys3 ligands designed by a fragment-based approach. Org Biomol Chem 2010; 8:1154-9. [PMID: 20165808 DOI: 10.1039/b921232a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A small library of 1,5-triazole derivatives linking a diaminocyclopentadiol and aromatic ketones has been prepared and screened using NMR and fluorescent techniques against tRNA(Lys)(3), the HIV reverse transcription primer. The comparison of their binding properties to those of their 1,4-triazole isomers, previously discovered in a fragment-based approach, outlines the influence of the linker on affinity and binding selectivity in such an approach.
Collapse
Affiliation(s)
- Roba Moumné
- Chimie Thérapeutique, Université Paris Descartes, CNRS UMR 8638, 4 avenue de l'Observatoire, 75006, Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Duca M, Malnuit V, Barbault F, Benhida R. Design of novel RNA ligands that bind stem–bulge HIV-1 TAR RNA. Chem Commun (Camb) 2010; 46:6162-4. [DOI: 10.1039/c0cc00645a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
|
32
|
|
33
|
Boer DR, Canals A, Coll M. DNA-binding drugs caught in action: the latest 3D pictures of drug-DNA complexes. Dalton Trans 2008:399-414. [PMID: 19122895 DOI: 10.1039/b809873p] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this paper, we review recent DNA-binding agents that are expected to influence the field of DNA-targeting. We restrict ourselves to binders for which the three-dimensional structure in complex with DNA or RNA has been determined by X-ray crystallography or NMR. Furthermore, we primarily focus on unprecedented ways of targeting peculiar DNA structures, such as junctions, quadruplexes, and duplex DNAs different from the B-form. Classical binding modes of small molecular weight compounds to DNA, i.e. groove binding, intercalation and covalent addition are discussed in those cases where the structures represent a novelty. In addition, we review 3D structures of triple-stranded DNA, of the so-called Peptide Nucleic Acids (PNAs), which are oligonucleotide bases linked by a polypeptide backbone, and of aptamers, which are DNA or RNA receptors that are designed combinatorially. A discussion on perspectives in the field of DNA-targeting and on sequence recognition is also provided.
Collapse
Affiliation(s)
- D Roeland Boer
- Institute for Research in Biomedicine and Institut de Biologia Molecular de Barcelona (CSIC), Barcelona Science Park, Barcelona, Spain
| | | | | |
Collapse
|
34
|
Azimov R, Abuladze N, Sassani P, Newman D, Kao L, Liu W, Orozco N, Ruchala P, Pushkin A, Kurtz I. G418-mediated ribosomal read-through of a nonsense mutation causing autosomal recessive proximal renal tubular acidosis. Am J Physiol Renal Physiol 2008; 295:F633-41. [PMID: 18614622 DOI: 10.1152/ajprenal.00015.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autosomal recessive proximal renal tubular acidosis is caused by mutations in the SLC4A4 gene encoding the electrogenic sodium bicarbonate cotransporter NBCe1-A. The mutations that have been characterized thus far result in premature truncation, mistargeting, or decreased function of the cotransporter. Despite bicarbonate treatment to correct the metabolic acidosis, extrarenal manifestations persist, including glaucoma, cataracts, corneal opacification, and mental retardation. Currently, there are no known therapeutic approaches that can specifically target mutant NBCe1-A proteins. In the present study, we tested the hypothesis that the NBCe1-A-Q29X mutation can be rescued in vitro by treatment with aminoglycoside antibiotics, which are known for their ability to suppress premature stop codons. As a model system, we cloned the NBCe1-A-Q29X mutant into a vector lacking an aminoglycoside resistance gene and transfected the mutant cotransporter in HEK293-H cells. Cells transfected with the NBCe1-A-Q29X mutant failed to express the cotransporter because of the premature stop codon. Treatment of the cells with G418 significantly increased the expression of the full-length cotransporter, as assessed by immunoblot analysis. Furthermore, immunocytochemical studies demonstrated that G418 treatment induced cotransporter expression on the plasma membrane whereas in the absence of G418, NBCe1-A-Q29X was not expressed. In HEK293-H cells transfected with the NBCe1-A-Q29X mutant not treated with G418, NBCe1-A-mediated flux was not detectable. In contrast, in cells transfected with the NBCe1-A-Q29X mutant, G418 treatment induced Na(+)- and HCO(3)(-)-dependent transport that did not differ from wild-type NBCe1-A function. G418 treatment in mock-transfected cells was without effect. In conclusion, G418 induces ribosomal read-through of the NBCe1-A-Q29X mutation in HEK293-H cells. These findings represent the first evidence that in the presence of the NBCe1-A-Q29X mutation that causes proximal renal tubular acidosis, full-length functional NBCe1-A protein can be produced. Our results provide the first demonstration of a mutation in NBCe1-A that has been treated in a targeted and specific manner.
Collapse
Affiliation(s)
- Rustam Azimov
- Division of Nephrology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tselika S, Konstantinidis T, Synetos D. Two nucleotide substitutions in the A-site of yeast 18S rRNA affect translation and differentiate the interaction of ribosomes with aminoglycoside antibiotics. Biochimie 2008; 90:908-17. [DOI: 10.1016/j.biochi.2008.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 02/12/2008] [Indexed: 11/27/2022]
|
36
|
Kondo J, Westhof E. The bacterial and mitochondrial ribosomal A-site molecular switches possess different conformational substates. Nucleic Acids Res 2008; 36:2654-66. [PMID: 18346970 PMCID: PMC2377432 DOI: 10.1093/nar/gkn112] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The A site of the small ribosomal subunit participates in the fidelity of decoding by switching between two states, a resting ‘off’ state and an active decoding ‘on’ state. Eight crystal structures of RNA duplexes containing two minimal decoding A sites of the Homo sapiens mitochondrial wild-type, the A1555G mutant or bacteria have been solved. The resting ‘off’ state of the mitochondrial wild-type A site is surprisingly different from that of the bacterial A site. The mitochondrial A1555G mutant has two types of the ‘off’ states; one is similar to the mitochondrial wild-type ‘off’ state and the other is similar to the bacterial ‘off’ state. Our present results indicate that the dynamics of the A site in bacteria and mitochondria are different, a property probably related to the small number of tRNAs used for decoding in mitochondria. Based on these structures, we propose a hypothesis for the molecular mechanism of non-syndromic hearing loss due to the mitochondrial A1555G mutation.
Collapse
Affiliation(s)
- Jiro Kondo
- Architecture et Réactivité de l'ARN, Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, CNRS, 15 rue René Descartes, 67084 Strasbourg, France
| | | |
Collapse
|
37
|
Kondo J, Hainrichson M, Nudelman I, Shallom-Shezifi D, Barbieri CM, Pilch DS, Westhof E, Baasov T. Differential selectivity of natural and synthetic aminoglycosides towards the eukaryotic and prokaryotic decoding A sites. Chembiochem 2008; 8:1700-9. [PMID: 17705310 DOI: 10.1002/cbic.200700271] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The lack of absolute prokaryotic selectivity of natural antibiotics is widespread and is a significant clinical problem. The use of this disadvantage of aminoglycoside antibiotics for the possible treatment of human genetic diseases is extremely challenging. Here, we have used a combination of biochemical and structural analysis to compare and contrast the molecular mechanisms of action and the structure-activity relationships of a new synthetic aminoglycoside, NB33, and a structurally similar natural aminoglycoside apramycin. The data presented herein demonstrate the general molecular principles that determine the decreased selectivity of apramycin for the prokaryotic decoding site, and the increased selectivity of NB33 for the eukaryotic decoding site. These results are therefore extremely beneficial for further research on both the design of new aminoglycoside-based antibiotics with diminished deleterious effects on humans, as well as the design of new aminoglycoside-based structures that selectively target the eukaryotic ribosome.
Collapse
Affiliation(s)
- Jiro Kondo
- Architecture et Réactivité de l'ARN, Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, CNRS, 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hainrichson M, Nudelman I, Baasov T. Designer aminoglycosides: the race to develop improved antibiotics and compounds for the treatment of human genetic diseases. Org Biomol Chem 2007; 6:227-39. [PMID: 18174989 DOI: 10.1039/b712690p] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminoglycosides are highly potent, broad-spectrum antibiotics that exert their bactericidal therapeutic effect by selectively binding to the decoding aminoacyl site (A-site) of the bacterial 16 S rRNA, thereby interfering with translational fidelity during protein synthesis. The appearance of bacterial strains resistant to these drugs, as well as their relative toxicity, have inspired extensive searches towards the goal of obtaining novel molecular designs with improved antibacterial activity and reduced toxicity. In the last few years, a new, aminoglycoside dependent therapeutic approach for the treatment of certain human genetic diseases has been identified. These treatments rely on the ability of certain aminoglycosides to induce mammalian ribosomes to readthrough premature stop codon mutations. This new and challenging task has introduced fresh research avenues in the field of aminoglycoside research. Recent observations and current challenges in the design of aminoglycosides with improved antibacterial activity and the treatment of human genetic diseases are discussed.
Collapse
Affiliation(s)
- Mariana Hainrichson
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | |
Collapse
|
39
|
Hermann T, Tereshko V, Skripkin E, Patel DJ. Apramycin recognition by the human ribosomal decoding site. Blood Cells Mol Dis 2007; 38:193-8. [PMID: 17258916 DOI: 10.1016/j.bcmd.2006.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 11/07/2006] [Accepted: 11/07/2006] [Indexed: 11/27/2022]
Abstract
Aminoglycoside antibiotics bind specifically to the bacterial ribosomal decoding-site RNA and thereby interfere with fidelity but not efficiency of translation. Apramycin stands out among aminoglycosides for its mechanism of action which is based on blocking translocation and its ability to bind also to the eukaryotic decoding site despite differences in key residues required for apramycin recognition by the bacterial target. To elucidate molecular recognition of the eukaryotic decoding site by apramycin we have determined the crystal structure of an oligoribonucleotide containing the human sequence free and in complex with the antibiotic at 1.5 A resolution. The drug binds in the deep groove of the RNA which forms a continuously stacked helix comprising non-canonical C.A and G.A base pairs and a bulged-out adenine. The binding mode of apramycin at the human decoding-site RNA is distinct from aminoglycoside recognition of the bacterial target, suggesting a molecular basis for the actions of apramycin in eukaryotes and bacteria.
Collapse
Affiliation(s)
- Thomas Hermann
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|