1
|
Li K, Xiao P, Yuan N, Yan S, Zhao P, Zuo G. Precise quantification of microRNAs based on proximity ligation of AuNPs-immobilized DNA probes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1281-1287. [PMID: 38327233 DOI: 10.1039/d3ay02136j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
MiRNAs are critical regulators of target gene expression in many biological processes and are considered promising biomarkers for diseases. In this study, we developed a simple, specific, and sensitive miRNA detection method based on proximity ligation reaction, which is easy to operate. The method uses a pair of target-specific DNA probes immobilized on the same gold nanoparticles (AuNPs), which hybridize to the target miRNA. Hybridization brings the probes close together, allowing the formation of a continuous DNA sequence that can be amplified by Quantitative Real-time PCR (qPCR). This method eliminates the need for complex reverse transcription design and achieves high specificity for discriminating single base mismatches between miRNAs through a simple procedure. This method can sensitively measure three different miRNAs with a detection limit of 20 aM, providing high versatility and sensitivity, even distinguishing single-base variations among members of the miR-200 family with high selectivity. Due to its high selectivity and sensitivity, this method has important implications for the investigation of miRNA biological functions and related biomedical research.
Collapse
Affiliation(s)
- Keyu Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xiao
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Ningning Yuan
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Shujuan Yan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510620, China.
| | - Pei Zhao
- Department of Laboratory Medicine, Hebei General Hospital, Shijiazhuang 050051, China.
| | - Guowei Zuo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Cai H, Zhou Y, Guo Z, Zheng X. Ratiometric electrogenerated chemiluminescence sensing microRNA based on electrochemically controlled release of lucigenin from silica/chitosan/lucigenin nanoparticles. Anal Chim Acta 2024; 1288:342170. [PMID: 38220301 DOI: 10.1016/j.aca.2023.342170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
The dye-doped silica nanoparticles-based electrogenerated chemiluminescence (ECL) has been widely explored for analytical purposes due to its high sensitivity, simplicity and wide dynamic concentration range. However, only a few of dye molecules located at the near surface of nanoparticles can participate in the ECL reaction due to the poor conductivity of silica nano-matrix. In addition, the ECL signal is easy to be affected by environmental interference, which results in poor accuracy. Herein, a ratiometric ECL sensing method is established based on the electrochemically controlled release of lucigenin molecules from silica/chitosan/lucigenin composite nanoparticles (Lu/CS NPs) with the aid of sulfide ions. Firstly, H+ produced from the electrochemical oxidation of HS- ions can combine with SiO- and displace lucigenin from Lu/CS NPs. The released lucigenin molecules react with the reactive oxygen species (ROS) generated from the electroreduction of dissolved oxygen to produce the cathodic ECL signal. In addition, the excited elemental sulfur from the electrooxidation of HS- ions transfers its energy to lucigenin molecules and makes them be excited to produce energy-transfer anodic ECL signal. Based on these findings, a ratiometric ECL sensor is developed taking the anodic ECL intensity of lucigenin as a reference signal for the cathodic ECL of lucigenin. The proposed ratiometric ECL sensor has been successfully applied to the detection of let-7a with a wide linear range of 0.1-9.0 pM, a low detection limit of 28 fM, high selectivity and good reproducibility. Moreover, the developed approach was used to detect let-7a in human serum composite samples with good recoveries.
Collapse
Affiliation(s)
- Haoting Cai
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Yanxin Zhou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Zhihui Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Xingwang Zheng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China.
| |
Collapse
|
3
|
Meng X, Pang X, Zhang K, Gong C, Yang J, Dong H, Zhang X. Recent Advances in Near-Infrared-II Fluorescence Imaging for Deep-Tissue Molecular Analysis and Cancer Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202035. [PMID: 35762403 DOI: 10.1002/smll.202202035] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Fluorescence imaging with high sensitivity and minimal invasiveness has received tremendous attention, which can accomplish visualized monitoring and evaluation of cancer progression. Compared with the conventional first near-infrared (NIR-I) optical window (650-950 nm), fluorescence imaging in the second NIR optical window (NIR-II, 950-1700 nm) exhibits deeper tissue penetration capability and higher temporal-spatial resolution with lower background interference for achieving deep-tissue in vivo imaging and real-time monitoring of cancer development. Encouraged by the significant preponderances, a variety of multifunctional NIR-II fluorophores have been designed and fabricated for sensitively imaging biomarkers in vivo and visualizing the treatment procedure of cancers. In this review, the differences between NIR-I and NIR-II fluorescence imaging are briefly introduced, especially the advantages of NIR-II fluorescence imaging for the real-time visualization of tumors in vivo and cancer diagnosis. An important focus is to summarize the NIR-II fluorescence imaging for deep-tissue biomarker analysis in vivo and tumor tissue visualization, and a brief introduction of NIR-II fluorescence imaging-guided cancer therapy is also presented. Finally, the significant challenges and reasonable prospects of NIR-II fluorescence imaging for cancer diagnosis in clinical applications are outlined.
Collapse
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Xuejiao Pang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Kai Zhang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chenchen Gong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Junyan Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518071, P. R. China
| |
Collapse
|
4
|
Rezaei H, Hosseini M, Radfar S. A dual-signaling electrochemical ratiometric strategy combining "signal-off" and "signal-on" approaches for detection of MicroRNAs. Anal Biochem 2021; 632:114356. [PMID: 34516967 DOI: 10.1016/j.ab.2021.114356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/16/2022]
Abstract
A dual-signaling electrochemical ratio metric strategy was developed for detection microRNA-18a based on the duplex-specific nuclease-assisted target recycling and electrochemical atom transfer radical polymerization signal amplification. In the presence of target microRNA, RNA/DNA duplexes are formed, which become the substrate of the duplex-specific nuclease-assisted target recycling. Hence only the DNA strand is cleaved by duplex-specific nuclease enzyme, resulting in the throw away of methylene blue (MB) from the electrode (signal off) accompanied by releasing of target microRNA, which can be recycled in the next hybridization. The remaining piece of capture DNAs on the electrode surface hybridize with the Azide labeled-signal DNAs. "Click reactions" were carried out between 3-Butynyl-2-bromoisobutyrate and Azide to initiate the electrochemical atom transfer radical polymerization reaction. This process could bring a great number of ferrocenylmethyl methacrylate (FMMA) on the surface of electrode (signal on). The IFMMA/IMB value was proportionate to the microRNA-18a concentration and measured by square wave voltammetry. The promising potential of the proposed biosensor in clinical analyses was exhibited by its remarkable features such as strong performance, high specificity, agreeable storage stability, and notable selectivity in real sample evaluation with no pretreatment or amplification. Finally, our biosensing method offers such an application to be used for the early clinical diagnosis of Pancreatic Cancer.
Collapse
Affiliation(s)
- H Rezaei
- Genetics Division, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - M Hosseini
- Chemical Engineering Group, University of Jahad Higher Education Institute of Isfahan Province, Isfahan, Iran
| | - S Radfar
- Faculty of Sciences, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran.
| |
Collapse
|
5
|
Lu X, Hu C, Jia D, Fan W, Ren W, Liu C. Amplification-Free and Mix-and-Read Analysis of Multiplexed MicroRNAs on a Single Plasmonic Microbead. NANO LETTERS 2021; 21:6718-6724. [PMID: 34324345 DOI: 10.1021/acs.nanolett.1c02473] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, a single microbead covered with a plasmonic layer is employed as the microreactor for the multiplexed miRNA analysis without nucleic acid amplification. On the plasmonic layer, the S9.6 antibody is adopted as the universal module for binding DNA/miRNA duplexes regardless of the sequence. Meanwhile, there is also a SERS reporter gold nanoparticle (GNP) pool, in which each group of GNPs is labeled with both a Raman coding molecule and a DNA probe for recognizing a given miRNA of interest. The target miRNAs will lead to the specific capture of the corresponding SERS reporter GNPs onto the plasmonic layer, which will enormously enhance the target miRNA-induced SERS signals. Finally, the enhanced SERS signals concentrated on the microbead will be mapped out by a confocal Raman microscope. The proposed method achieves the high-precision sensing of sub-pM target miRNA in a simple mix-and-read format and possesses multiplexed assay capability.
Collapse
Affiliation(s)
- Xiaohui Lu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an, Shaanxi Province 710119, P. R. China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi'an, Shaanxi Province 710119, P. R. China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| | - Chen Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an, Shaanxi Province 710119, P. R. China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi'an, Shaanxi Province 710119, P. R. China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| | - Dailu Jia
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an, Shaanxi Province 710119, P. R. China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi'an, Shaanxi Province 710119, P. R. China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| | - Wenjiao Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an, Shaanxi Province 710119, P. R. China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi'an, Shaanxi Province 710119, P. R. China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an, Shaanxi Province 710119, P. R. China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi'an, Shaanxi Province 710119, P. R. China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an, Shaanxi Province 710119, P. R. China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi'an, Shaanxi Province 710119, P. R. China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| |
Collapse
|
6
|
Loibl N, Arenz C, Seitz O. Monitoring Dicer-Mediated miRNA-21 Maturation and Ago2 Loading by a Dual-Colour FIT PNA Probe Set. Chembiochem 2020; 21:2527-2532. [PMID: 32270536 PMCID: PMC7496889 DOI: 10.1002/cbic.202000173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/06/2020] [Indexed: 12/14/2022]
Abstract
The inhibition of micro RNA (miRNA) maturation by Dicer and loading matured miRNAs into the RNA-induced silencing complex (RISC) is envisioned as a modality for treatment of cancer. Existing methods for evaluating maturation either focus on the conversion of modified precursors or detect mature miRNA. Whereas the former is not applicable to native pre-miRNA, the latter approach underestimates maturation when both nonmatured and matured miRNA molecules are subject to cleavage. We present a set of two orthogonally labelled FIT PNA probes that distinguish between cleaved pre-miRNA and the mature miRNA duplex. The probes allow Dicer-mediated miR21 maturation to be monitored and Ago2-mediated unwinding of the miR21 duplex to be assayed. A two-channel fluorescence readout enables measurement in real-time without the need for specialized instrumentation or further enzyme mediated amplification.
Collapse
Affiliation(s)
- Natalia Loibl
- Department of ChemistryHumbolt-Universität zu BerlinBrook-Taylor-Strase 212489BerlinGermany
| | - Christoph Arenz
- Department of ChemistryHumbolt-Universität zu BerlinBrook-Taylor-Strase 212489BerlinGermany
| | - Oliver Seitz
- Department of ChemistryHumbolt-Universität zu BerlinBrook-Taylor-Strase 212489BerlinGermany
| |
Collapse
|
7
|
Wang X, Yuan W, Xu Y, Yuan H, Li F. Sensitive multiplex detection of MicroRNAs based on liquid suspension nano-chip. Anal Chim Acta 2020; 1112:24-33. [DOI: 10.1016/j.aca.2020.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 01/06/2023]
|
8
|
Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review. Mikrochim Acta 2020; 187:234. [PMID: 32180011 DOI: 10.1007/s00604-020-4173-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
This review (with 145 refs.) summarizes the progress that has been made in the use of zeolitic imidazolate frameworks in chemical sensing and biosensing. Zeolitic imidazolate frameworks (ZIFs) are a type of porous material with zeolite topological structure that combine the advantages of zeolite and traditional metal-organic frameworks. Owing to the structural flexibility of ZIFs, their pore sizes and surface functionalization can be reasonably designed. Following an introduction into the field of metal-organic frameworks and the zeolitic imidazolate framework (ZIF) subclass, a first large section covers the various kinds and properties of ZIFs. The next large section covers electrochemical sensors and assays (with subsections on methods for gases, electrochemiluminescence, electrochemical biomolecules). This is followed by main sections on ZIF-based colorimetric and luminescent sensors, with subsections on sensors for metal ions and anions, for gases, and for organic biomolecules. The last section covers SERS-based assays. Several tables are presented that give an overview on the wealth of methods and materials. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends. Graphical abstract In recent years, ZIFs and their composites have been widely used as probes in chemical sensing, and these probes have shown great advantages over other materials. This review describes the current progress on ZIFs toward electrochemical, luminescence, colorimetric, and SERS-based sensing applications, highlighting the different strategies for designing ZIFs and their composites and potential challenges in this field.
Collapse
|
9
|
Zhang H, Fan M, Jiang J, Shen Q, Cai C, Shen J. Sensitive electrochemical biosensor for MicroRNAs based on duplex-specific nuclease-assisted target recycling followed with gold nanoparticles and enzymatic signal amplification. Anal Chim Acta 2019; 1064:33-39. [DOI: 10.1016/j.aca.2019.02.060] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022]
|
10
|
Zhang J, He M, Nie C, He M, Pan Q, Liu C, Hu Y, Yi J, Chen T, Chu X. Biomineralized Metal–Organic Framework Nanoparticles Enable Enzymatic Rolling Circle Amplification in Living Cells for Ultrasensitive MicroRNA Imaging. Anal Chem 2019; 91:9049-9057. [DOI: 10.1021/acs.analchem.9b01343] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Juan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Mengyun He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Cunpeng Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Manman He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Qingshan Pan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Chang Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Yanlei Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Jintao Yi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Tingting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| |
Collapse
|
11
|
Zhao XP, Liu FF, Hu WC, Younis MR, Wang C, Xia XH. Biomimetic Nanochannel-Ionchannel Hybrid for Ultrasensitive and Label-Free Detection of MicroRNA in Cells. Anal Chem 2019; 91:3582-3589. [PMID: 30758184 DOI: 10.1021/acs.analchem.8b05536] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A biomimetic nanochannel-ionchannel hybrid coupled with electrochemical detector was developed for label-free and ultrasensitive detection of microRNA (miRNA) in cells. Probe single stranded DNA (ssDNA) was first immobilized on the outer surface of the nanochannel-ionchannel hybrid membrane, which can hybridize with the target miRNA in cells. Due to the unique mass transfer property of the hybrid, the DNA-miRNA hybridization kinetics can be sensitively monitored in real-time using the electrochemical technique. More importantly, due to the super small size of the ionchannels, the DNA probe immobilization and hybridization process can be carried out on the outer surface of the ionchannel side, which can effectively avoid the blockage and damage of channels and thus considerably enhance the reproducibility and accuracy of the method. Using this strategy, the miRNA ranging from 0.1 fM to 0.1 μM can be facilely detected with a low detection limit of 15.4 aM, which is much lower than most reported work. The present strategy provides a sensitive and label-free miRNA detection platform, which will be of great significance in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Xiao-Ping Zhao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Fei-Fei Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Wen-Chao Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Muhammad Rizwan Younis
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Chen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| |
Collapse
|
12
|
Zhou D, Lin X, Gao W, Piao J, Li S, He N, Qian Z, Zhao M, Gong X. A novel template repairing-PCR (TR-PCR) reaction platform for microRNA detection using translesional synthesis on DNA templates containing abasic sites. Chem Commun (Camb) 2019; 55:2932-2935. [DOI: 10.1039/c8cc10226k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report template repairing-PCR, a novel reverse transcription-free RNA PCR based on miRNA-primed bypass synthesis at the abasic sites on the PCR template.
Collapse
Affiliation(s)
- Dianming Zhou
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Xiaohui Lin
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Weichen Gao
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology
- Tianjin 300072
- China
| | - Jiafang Piao
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology
- Tianjin 300072
- China
| | - Shufei Li
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Ning He
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Zhiyong Qian
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Miao Zhao
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Xiaoqun Gong
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology
- Tianjin 300072
- China
| |
Collapse
|
13
|
Lan L, Guo Q, Nie H, Zhou C, Cai Q, Huang J, Meng X. Linear-hairpin variable primer RT-qPCR for MicroRNA. Chem Sci 2018; 10:2034-2043. [PMID: 30842860 PMCID: PMC6375362 DOI: 10.1039/c8sc04621b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/02/2018] [Indexed: 12/31/2022] Open
Abstract
Here, we present a highly specific, sensitive and cost-effective system to quantify microRNA (miRNA) expression based on two-step RT-qPCR with EvaGreen detection chemistry, called linear-hairpin variable primer RT-qPCR.
Here, we present a highly specific, sensitive and cost-effective system to quantify microRNA (miRNA) expression based on two-step RT-qPCR with EvaGreen detection chemistry, called linear-hairpin variable primer RT-qPCR. It takes advantage of the novel designed variable primer, which is initially designed to be linear, extending to form a hairpin structure and replacing the target miRNA for cyclic RT. Then the RT product is quantified by conventional EvaGreen based qPCR. The results show that this method has a dynamic range of 8 logs and the sensitivity is sufficient to directly detect down to 4 target miRNA molecules with a total analysis time of less than 2 hours. It is capable of discriminating between similar miRNAs, leading to an accurate representation of the mature miRNA content in a sample. The RT step can be multiplexed and the 8 miRNA profiles measured in 7 mouse tissues by this method show an excellent correlation with the commercial standard TaqMan RT-qPCR assays (r2 = 0.9881).
Collapse
Affiliation(s)
- Lin Lan
- College of Biology , Hunan University , Changsha , P. R. China .
| | - Qiuping Guo
- College of Biology , Hunan University , Changsha , P. R. China . .,State Key Laboratory of Chemo/Biosensing and Chemometrics , P. R. China.,Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , P. R. China
| | - Hemin Nie
- College of Biology , Hunan University , Changsha , P. R. China .
| | - Chang Zhou
- School of Life Sciences , Hunan Normal University , Changsha , P. R. China
| | - Qingyun Cai
- College of Chemistry and Chemical Engineering , Hunan University , Changsha , P. R. China . .,State Key Laboratory of Chemo/Biosensing and Chemometrics , P. R. China
| | - Jin Huang
- College of Chemistry and Chemical Engineering , Hunan University , Changsha , P. R. China . .,State Key Laboratory of Chemo/Biosensing and Chemometrics , P. R. China.,Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , P. R. China
| | - Xiangxian Meng
- College of Biology , Hunan University , Changsha , P. R. China .
| |
Collapse
|
14
|
Meng X, Zhang K, Dai W, Cao Y, Yang F, Dong H, Zhang X. Multiplex microRNA imaging in living cells using DNA-capped-Au assembled hydrogels. Chem Sci 2018; 9:7419-7425. [PMID: 30542546 PMCID: PMC6237120 DOI: 10.1039/c8sc02858c] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
Non-invasively imaging multiplex microRNAs (miRNAs) in living cells is pivotal to understanding their physiological functions and pathological development due to the key regulatory roles of miRNAs in gene expression. However, developing smart delivery systems with large gene loading capacity, biocompatibility and responsiveness remains a significant challenge. Herein, we successfully incorporated DNA-capped Au nanoparticles (NPs) and their complementary fluorescent DNA sequences into a porous 3D hydrogel network (AuDH), in which hairpin-locked DNAzyme strands and active metal ions were loaded (AuDH/M n+/H) for simultaneously imaging multiplex miRNAs in living cells. After transfection into cells, the specific miRNAs trigger the strand-displacement reaction and sequentially activate the DNAzyme-assisted target recycling, leading to a strong increase in the corresponding fluorescence intensity for imaging. This enables simultaneous assessment of the abundance of multiplex cancer-related miRNAs, even if at a very low expression level, in different cells through the different fluorescence intensities due to the dual signal amplification, and the change in abundance of miRNAs induced by siRNA or miRNA mimics in living cells can also be efficiently monitored. The versatile and responsive DNA hydrogel system holds great potential for miRNA biomedical applications.
Collapse
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology , Research Center for Bioengineering and Sensing Technology , School of Chemistry and Biological Engineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Kai Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology , Research Center for Bioengineering and Sensing Technology , School of Chemistry and Biological Engineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology , Research Center for Bioengineering and Sensing Technology , School of Chemistry and Biological Engineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Yu Cao
- Beijing Key Laboratory for Bioengineering and Sensing Technology , Research Center for Bioengineering and Sensing Technology , School of Chemistry and Biological Engineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Fan Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology , Research Center for Bioengineering and Sensing Technology , School of Chemistry and Biological Engineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology , Research Center for Bioengineering and Sensing Technology , School of Chemistry and Biological Engineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology , Research Center for Bioengineering and Sensing Technology , School of Chemistry and Biological Engineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| |
Collapse
|
15
|
Naro Y, Ankenbruck N, Thomas M, Tivon Y, Connelly CM, Gardner L, Deiters A. Small Molecule Inhibition of MicroRNA miR-21 Rescues Chemosensitivity of Renal-Cell Carcinoma to Topotecan. J Med Chem 2018; 61:5900-5909. [PMID: 29993250 DOI: 10.1021/acs.jmedchem.7b01891] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemical probes of microRNA (miRNA) function are potential tools for understanding miRNA biology that also provide new approaches for discovering therapeutics for miRNA-associated diseases. MicroRNA-21 (miR-21) is an oncogenic miRNA that is overexpressed in most cancers and has been strongly associated with driving chemoresistance in cancers such as renal cell carcinoma (RCC). Using a cell-based luciferase reporter assay to screen small molecules, we identified a novel inhibitor of miR-21 function. Following structure-activity relationship studies, an optimized lead compound demonstrated cytotoxicity in several cancer cell lines. In a chemoresistant-RCC cell line, inhibition of miR-21 via small molecule treatment rescued the expression of tumor-suppressor proteins and sensitized cells to topotecan-induced apoptosis. This resulted in a >10-fold improvement in topotecan activity in cell viability and clonogenic assays. Overall, this work reports a novel small molecule inhibitor for perturbing miR-21 function and demonstrates an approach to enhancing the potency of chemotherapeutics specifically for cancers derived from oncomir addiction.
Collapse
Affiliation(s)
- Yuta Naro
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Nicholas Ankenbruck
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Meryl Thomas
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Yaniv Tivon
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Colleen M Connelly
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Laura Gardner
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Alexander Deiters
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| |
Collapse
|
16
|
Shi L, Lei J, Zhang B, Li B, Yang CJ, Jin Y. Ultrasensitive and Facile Detection of MicroRNA via a Portable Pressure Meter. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12526-12533. [PMID: 29624369 DOI: 10.1021/acsami.8b02551] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The upregulation of microRNA (miRNA) is highly related with some kinds of tumor, such as breast, prostate, lung, and pancreatic cancers. Therefore, for an important tumor biomarker, the point-of-care testing (POCT) of miRNA is of significant importance and is in great demand for disease diagnosis and clinical prognoses. Herein, a POCT assay for miRNA detection was developed via a portable pressure meter. Two hairpin DNA probes, H1 and H2, were ingeniously designed and functionalized with magnetic beads (MBs) and platinum nanoparticles (PtNPs), respectively, to form MBs-H1 and PtNPs-H2 complexes. In the presence of target microRNA 21 (miR-21), the cyclic strand displacement reaction (SDR) between MBs-H1 and PtNPs-H2 was triggered to continuously form the MBs-H1/PtNPs-H2 duplex. Owing to the amplification of cyclic SDR, numerous PtNPs were enriched onto the surface of MBs to catalytically decompose H2O2 for the generation of much O2. The gas pressure value has a linear relationship with the logarithmic value of miR-21 concentration in the range of 10 fM to 10 pM. The limit of detection is 7.6 fM, which is more sensitive than that in a number of previous reports. Hairpin DNA probes and magnetic separation highly ensured the specificity and reliability. Single-base mutation was easily discriminated, and the detection of miR-21 in the serum sample achieved satisfactory result. Therefore, it offers a reliable POCT strategy for the detection of miRNA, which is of great theoretical and practical importance for POCT clinical diagnostics.
Collapse
Affiliation(s)
- Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Jing Lei
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Bei Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Chaoyong James Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| |
Collapse
|
17
|
Luo Q, Liu L, Yang C, Yuan J, Feng H, Chen Y, Zhao P, Yu Z, Jin Z. A rapid, ratiometric, enzyme-free, and sensitive single-step miRNA detection using three-way junction based FRET probes. NANOTECHNOLOGY 2018; 29:114001. [PMID: 29337292 DOI: 10.1088/1361-6528/aaa824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) are single stranded endogenous molecules composed of only 18-24 nucleotides which are critical for gene expression regulating the translation of messenger RNAs. Conventional methods based on enzyme-assisted nucleic acid amplification techniques have many problems, such as easy contamination, high cost, susceptibility to false amplification, and tendency to have sequence mismatches. Here we report a rapid, ratiometric, enzyme-free, sensitive, and highly selective single-step miRNA detection using three-way junction assembled (or self-assembled) FRET probes. The developed strategy can be operated within the linear range from subnanomolar to hundred nanomolar concentrations of miRNAs. In comparison with the traditional approaches, our method showed high sensitivity for the miRNA detection and extreme selectivity for the efficient discrimination of single-base mismatches. The results reveal that the strategy paved a new avenue for the design of novel highly specific probes applicable in diagnostics and potentially in microscopic imaging of miRNAs in real biological environments.
Collapse
Affiliation(s)
- Qingying Luo
- Research Center for Micro/Nano System & Bionic Medicine, Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Xiao M, Man T, Zhu C, Pei H, Shi J, Li L, Qu X, Shen X, Li J. MoS 2 Nanoprobe for MicroRNA Quantification Based on Duplex-Specific Nuclease Signal Amplification. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7852-7858. [PMID: 29431420 DOI: 10.1021/acsami.7b18984] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
MicroRNAs (miRNAs) play significant regulatory roles in physiologic and pathologic processes and are considered as important biomarkers for disease diagnostics and therapeutics. Simple, fast, sensitive, and selective detection of miRNAs, however, is challenged by their short length, low abundance, susceptibility to degradation, and homogenous sequence. Here, we report a novel design of nanoprobes for highly sensitive and selective detection of miRNAs based on MoS2-loaded molecular beacons (MBs) and duplex-specific nuclease (DSN)-mediated signal amplification (DSNMSA). We show that MoS2 nanosheets not only exhibit high affinity toward MBs but also act as an efficient quencher for absorbed MBs. The strong fluorescence-quenching ability of MoS2 in combination with cyclic DSNMSA contributes to the superior sensitivity of our method, with a limit of detection 4 orders of magnitude lower than that of traditional hybridization methods. Moreover, the nanoprobes also show high selectivity for discriminating homogenous miRNA sequences with one-base differences because of the discrimination ability of MBs and DSN. Furthermore, we demonstrate that the MoS2-loaded MB nanoprobes can be utilized for multiplexed detection of miRNAs. Given its high sensitivity and specificity, as well as the multiplexed function; this novel method as an effective tool shows a great promise for simultaneous quantitative analysis of multiple miRNAs in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Mingshu Xiao
- Department of Gastroenterology, Zhongshan Hospital , Fudan University , 180 Fenglin Rd. , Shanghai 200032 , China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Changfeng Zhu
- Department of Gastroenterology, Zhongshan Hospital , Fudan University , 180 Fenglin Rd. , Shanghai 200032 , China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Jiye Shi
- UCB Pharma , 208 Bath Road , Slough SL1 3WE , U.K
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Xiangmeng Qu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Xizhong Shen
- Department of Gastroenterology, Zhongshan Hospital , Fudan University , 180 Fenglin Rd. , Shanghai 200032 , China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital , Fudan University , 180 Fenglin Rd. , Shanghai 200032 , China
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , P. R. China
| |
Collapse
|
19
|
Meng X, Dai W, Zhang K, Dong H, Zhang X. Imaging multiple microRNAs in living cells using ATP self-powered strand-displacement cascade amplification. Chem Sci 2018; 9:1184-1190. [PMID: 29675163 PMCID: PMC5885591 DOI: 10.1039/c7sc04725h] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Herein, we design a smart autonomous ATP self-powered strand-displacement cascade amplification (SDCA) system for highly sensitive multiple intracellular miRNA detection. Rationally engineered Y-motif DNA structures are functionalized on mesoporous silica-coated copper sulfide nanoparticles loaded with numerous ATPs (CuS@mSiO2-Y/ATP) through pH stimulus-responsive disulfide bonds. The SDCA system is implemented by endogenous specific miRNA as a trigger and ATP as fuel released from the nanocarrier at acidic pH and photothermal stimuli-responsive CuS. The ATP self-powered SDCA process presents higher sensitivity compared to that without amplification for intracellular miRNA imaging. Two-color simultaneous and sensitive imaging of multiple cancer-related miRNAs in living cells is also confirmed. This enables facile and accurate differentiation between normal cells and different types of cancer cell using intracellular miRNA imaging, which improves the veracity and timeliness for early cancer diagnosis.
Collapse
Affiliation(s)
- Xiangdan Meng
- Research Center for Bioengineering and Sensing Technology , School of Chemistry and Bioengineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- National Institute of Precision Medicine & Health , Beijing , 100083 , P. R. China
| | - Wenhao Dai
- Research Center for Bioengineering and Sensing Technology , School of Chemistry and Bioengineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- National Institute of Precision Medicine & Health , Beijing , 100083 , P. R. China
| | - Kai Zhang
- Research Center for Bioengineering and Sensing Technology , School of Chemistry and Bioengineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- National Institute of Precision Medicine & Health , Beijing , 100083 , P. R. China
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology , School of Chemistry and Bioengineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- National Institute of Precision Medicine & Health , Beijing , 100083 , P. R. China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology , School of Chemistry and Bioengineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- National Institute of Precision Medicine & Health , Beijing , 100083 , P. R. China
| |
Collapse
|
20
|
Li D, Zhou W, Yuan R, Xiang Y. A DNA-Fueled and Catalytic Molecule Machine Lights Up Trace Under-Expressed MicroRNAs in Living Cells. Anal Chem 2017; 89:9934-9940. [PMID: 28809475 DOI: 10.1021/acs.analchem.7b02247] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The detection of specific intracellular microRNAs (miRNAs) in living cells can potentially provide insight into the causal mechanism of cancer metastasis and invasion. However, because of the characteristic nature of miRNAs in terms of small sizes, low abundance, and similarity among family members, it is a great challenge to monitor miRNAs in living cells, especially those with much lower expression levels. In this work, we describe the establishment of a DNA-fueled and catalytic molecule machinery in cell signal amplification approach for monitoring trace and under-expressed miRNAs in living cells. The presence of the target miRNA releases the hairpin sequences from the dsDNA (containing the fluorescence resonance energy transfer (FRET) pair-labeled and unfolded hairpin sequences)-conjugated gold nanoparticles (dsDNA-AuNPs), and the DNA fuel strands assist the recycling of the target miRNA sequences via two cascaded strand displacement reactions, leading to the operation of the molecular machine in a catalytic fashion and the release of many hairpin sequences. As a result, the liberated hairpin sequences restore the folded hairpin structures and bring the FRET pair into close proximity to generate significantly amplified signals for detecting trace miRNA targets. Besides, the dsDNA-AuNP nanoprobes have good nuclease stability and show low cytotoxicity to cells, and the application of such a molecular system for monitoring trace and under-expressed miRNAs in living cells has also been demonstrated. With the advantages of in cell signal amplification and reduced background noise, the developed method thus offers new opportunities for detecting various trace intracellular miRNA species.
Collapse
Affiliation(s)
- Daxiu Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Wenjiao Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| |
Collapse
|
21
|
A gold nanoparticle-based colorimetric strategy coupled to duplex-specific nuclease signal amplification for the determination of microRNA. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2030-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Tian H, Sun Y, Liu C, Duan X, Tang W, Li Z. Precise Quantitation of MicroRNA in a Single Cell with Droplet Digital PCR Based on Ligation Reaction. Anal Chem 2016; 88:11384-11389. [DOI: 10.1021/acs.analchem.6b01225] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hui Tian
- Key laboratory of Analytical
Chemistry for Life Science of Shaanxi Province, School of Chemistry
and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang’an
Street, Xi’an, Shaanxi 710119, P. R. China
| | - Yuanyuan Sun
- Key laboratory of Analytical
Chemistry for Life Science of Shaanxi Province, School of Chemistry
and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang’an
Street, Xi’an, Shaanxi 710119, P. R. China
| | - Chenghui Liu
- Key laboratory of Analytical
Chemistry for Life Science of Shaanxi Province, School of Chemistry
and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang’an
Street, Xi’an, Shaanxi 710119, P. R. China
| | - Xinrui Duan
- Key laboratory of Analytical
Chemistry for Life Science of Shaanxi Province, School of Chemistry
and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang’an
Street, Xi’an, Shaanxi 710119, P. R. China
| | - Wei Tang
- Key laboratory of Analytical
Chemistry for Life Science of Shaanxi Province, School of Chemistry
and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang’an
Street, Xi’an, Shaanxi 710119, P. R. China
| | - Zhengping Li
- Key laboratory of Analytical
Chemistry for Life Science of Shaanxi Province, School of Chemistry
and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang’an
Street, Xi’an, Shaanxi 710119, P. R. China
| |
Collapse
|
23
|
Mercurio ME, Tomassi S, Gaglione M, Russo R, Chambery A, Lama S, Stiuso P, Cosconati S, Novellino E, Di Maro S, Messere A. Switchable Protecting Strategy for Solid Phase Synthesis of DNA and RNA Interacting Nucleopeptides. J Org Chem 2016; 81:11612-11625. [DOI: 10.1021/acs.joc.6b01829] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maria Emilia Mercurio
- Department
of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Stefano Tomassi
- Department
of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Maria Gaglione
- Department
of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosita Russo
- Department
of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Angela Chambery
- Department
of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Stefania Lama
- Department
of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via De Crecchio 7, 80127 Napoli, Italy
| | - Paola Stiuso
- Department
of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via De Crecchio 7, 80127 Napoli, Italy
| | - Sandro Cosconati
- Department
of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano
49, 80131 Napoli, Italy
| | - Salvatore Di Maro
- Department
of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Anna Messere
- Department
of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
24
|
Wang Q, Li RD, Yin BC, Ye BC. Colorimetric detection of sequence-specific microRNA based on duplex-specific nuclease-assisted nanoparticle amplification. Analyst 2016; 140:6306-12. [PMID: 26258182 DOI: 10.1039/c5an01350j] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Developing simple and rapid methods for sequence-specific microRNA (miRNA) analysis is imperative to the miRNA study and use in clinical diagnosis. We have developed a colorimetric method for miRNA detection based on duplex-specific nuclease (DSN)-assisted signal amplification coupled to the aggregation of gold nanoparticles (AuNPs). The proposed method involves two processes: target-mediated probe digestion by a DSN enzyme and probe-triggered AuNP aggregation as a switch for signal output. The reaction system consists of a rationally designed probe complex formed by two partly complementary DNA probes, and two sets of different oligonucleotide-modified AuNPs with sequences complementary to a DNA probe in the probe complex. In the presence of target miRNA, the probe complex is invaded, resulting in the formation of a miRNA-probe heteroduplex as the substrate of the DSN enzyme, and releasing the other probe to link to the AuNPs. The proposed method allows quantitative detection of miR-122 in the range of 20 pM to 1 nM with a detection limit of ∼16 pM, and shows an excellent ability to discriminate single-base differences. Moreover, the detection assay can be applied to accurately quantify miR-122 in cancerous cell lysates which is in excellent agreement with the results from a commercial miRNA detection kit. This method is simple, cost-effective, highly selective, and free of dye label and separation procedures.
Collapse
Affiliation(s)
- Qian Wang
- Lab of Biosystem and Microanalysis, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | | | | | | |
Collapse
|
25
|
Li X, Li D, Zhou W, Chai Y, Yuan R, Xiang Y. A microRNA-activated molecular machine for non-enzymatic target recycling amplification detection of microRNA from cancer cells. Chem Commun (Camb) 2016; 51:11084-7. [PMID: 26065649 DOI: 10.1039/c5cc03723a] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of the microRNA-141 target molecules activates the DNA molecular machine powered by the DNA fuel strands, leading to non-enzymatic target cyclic reuse of microRNA-141 and significantly amplified fluorescent signals for sensitive monitoring of microRNA-141 from low numbers of human prostate cancer cells.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | | | | | |
Collapse
|
26
|
Lv W, Zhao J, Situ B, Li B, Ma W, Liu J, Wu Z, Wang W, Yan X, Zheng L. A target-triggered dual amplification strategy for sensitive detection of microRNA. Biosens Bioelectron 2016; 83:250-5. [PMID: 27131998 DOI: 10.1016/j.bios.2016.04.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
The accurate and quantitative analysis of microRNA (miRNA) expression is critical for biomedical research and clinical theranostics. In this study, we report a novel sensor for the sensitive detection of miRNA based on a duplex-specific nuclease (DSN)-assisted dual signal amplification strategy. A chimeric probe (DNA/2-OMe-RNA) that consists of a miRNA recognition DNA sequence and a Taqman probe hybridization RNA sequence (2'-O-methyl RNA) was designed and synthesized. One molecule of target miRNA can trigger cyclical cleavage of the chimeric probes to produce 2'-O-methyl RNA by DSN in the first round of amplification. The 2'-O-methyl RNA molecules can subsequently hybridize with Taqman probes and initiate the second round of cyclical amplification to generate detectable fluorescence by DSN. The proposed strategy exhibits high specificity in discriminating cognate miRNAs, and the dual signal transduction process enables the detection of miRNA concentrations as low as 7.3fM. We further applied this assay to miRNA quantification in cancer cells to confirm its applicability. The present study provides a sensitive, specific and simple method for miRNA detection and holds great potential for further application in biomedical research and in the clinical laboratory.
Collapse
Affiliation(s)
- Weifeng Lv
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China
| | - Jiamin Zhao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China
| | - Bo Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China
| | - Wen Ma
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China
| | - Jumei Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China
| | - Zixian Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China
| | - Wen Wang
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Xiaohui Yan
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China.
| |
Collapse
|
27
|
Min X, Zhang M, Huang F, Lou X, Xia F. Live Cell MicroRNA Imaging Using Exonuclease III-Aided Recycling Amplification Based on Aggregation-Induced Emission Luminogens. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8998-9003. [PMID: 27011025 DOI: 10.1021/acsami.6b01581] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Enzyme-assisted detection strategies of microRNAs (miRNAs) in vitro have accomplished both great sensitivity and specificity. However, low expression of miRNAs and a complex environment in cells induces big challenges for monitoring and tracking miRNAs in vivo. The work reports the attempt to carry miRNA imaging into live cells, by enzyme-aided recycling amplification. We utilize facile probes based yellow aggregation-induced emission luminogens (AIEgens) with super photostable property but without quencher, which are applied to monitor miRNAs not only from urine sample extracts (in vitro) but also in live cells (in vivo). The assay could distinguish the cancer patients' urine samples from the healthy urine due to the good specificity. Moreover, the probe showed much higher fluorescence intensity in breast cancer cells (MCF-7) (miR-21 in high expression) than that in cervical cancer cells (HeLa) and human lung fibroblast cells (HLF) (miR-21 in low expression) in more than 60 min, which showed the good performance and super photostability for the probe in vivo. As controls, another two probes with FAM/Cy3 and corresponding quenchers, respectively, could perform miRNAs detections in vitro and parts of in vivo tests but were not suitable for the long-term cell tracking due to the photobleach phenomena, which also demonstrates that the probe with AIEgens is a potential candidate for the accurate identification of cancer biomarkers.
Collapse
Affiliation(s)
- Xuehong Min
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Mengshi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Fujian Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Xiaoding Lou
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| |
Collapse
|
28
|
Du W, Lv M, Li J, Yu R, Jiang J. A ligation-based loop-mediated isothermal amplification (ligation-LAMP) strategy for highly selective microRNA detection. Chem Commun (Camb) 2016; 52:12721-12724. [DOI: 10.1039/c6cc06160e] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel ligation-based loop-mediated isothermal amplification (ligation-LAMP) method has been developed for sensitive and selective detection of microRNA.
Collapse
Affiliation(s)
- Wenfang Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Mengmei Lv
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Junjie Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Ruqin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
29
|
Zhang YY, Feng QM, Xu JJ, Chen HY. Silver Nanoclusters for High-Efficiency Quenching of CdS Nanocrystal Electrochemiluminescence and Sensitive Detection of microRNA. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26307-14. [PMID: 26561442 DOI: 10.1021/acsami.5b09129] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this work, oligonucleotide-encapusulated silver nanoclusters were applied in the electrochemiluminescence (ECL) system of CdS nanocrystals (NCs)/ K2S2O8 based on dual ECL quenching effects. We found that the ECL emission of CdS NCs matched well with the absorption band of oligonucleotide encapsulated Ag nanoclusters, which could act as the energy acceptor of CdS NCs ECL so as to lead to an effective ECL resonance energy transfer (RET). On the other hand, the Ag nanoclusters could also catalyze electrochemical reduction of K2S2O8, resulting in increased consumption of ECL coreactant near the working electrode and decreased ECL intensity from CdS NCs. On the basis of the dual ECL quenching effects, a sensitive ECL biosensor for detection of microRNA was successfully achieved with a wide linear range from 10 fM to 100 pM.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Qiu-Mei Feng
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| |
Collapse
|
30
|
Wang C, Zhai W, Wang Y, Yu P, Mao L. MnO2 nanosheets based fluorescent sensing platform with organic dyes as a probe with excellent analytical properties. Analyst 2015; 140:4021-9. [PMID: 25919222 DOI: 10.1039/c5an00581g] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Manganese dioxide (MnO2) nanosheets have recently been demonstrated to be particularly attractive for fluorescent sensing and imaging; however, almost all MnO2 nanosheets-based fluorescent assays have been developed with emissive nanoparticles as the probes. In this study, we developed a novel strategy to use organic dyes, instead of emissive nanoparticles, as the probe to construct a platform for biosensing with excellent analytical properties. With 5-carboxyfluorescein (FAM) as a model organic dye, we firstly investigate the effect of MnO2 nanosheets on the fluorescence of FAM and find that the fluorescence intensity of FAM is considerably suppressed by MnO2 nanosheets based on the inner filter effect (IFE). To demonstrate that the MnO2 nanosheets-based fluorescence sensing platform can easily achieve a high selectivity with organic dyes as the probe, we use single-stranded DNA (ssDNA) oligonucleotide as a typical biorecognition unit, which is labeled with the FAM probe to form FAM-ssDNA. The fluorescent intensity of FAM-ssDNA is first suppressed by MnO2 nanosheets through the combination of IFE and Förster resonant energy transfer (FRET), and then recovered with subsequent hybridization with the complementary DNA oligonucleotide. To demonstrate the potential applications of the MnO2 nanosheets-based fluorescence sensing platform with organic dyes as the probes, we developed methods for simple but effective microRNA and thrombin assays. With the platform demonstrated here, the limits of detection for miR124a and thrombin are 0.8 nM and 11 nM, respectively. Moreover, the fluorescent sensing assay for thrombin exhibits high selectivity. This study essentially demonstrates a new 2D nanostructure-based fluorescent sensing platform that is robust, technically simple, and easily manipulated to achieve high selectivity and sensitivity for practical applications.
Collapse
Affiliation(s)
- Chunxia Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | |
Collapse
|
31
|
Xie Y, Lin X, Huang Y, Pan R, Zhu Z, Zhou L, Yang CJ. Highly sensitive and selective detection of miRNA: DNase I-assisted target recycling using DNA probes protected by polydopamine nanospheres. Chem Commun (Camb) 2015; 51:2156-8. [PMID: 25554948 DOI: 10.1039/c4cc08912j] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Based on the protective properties of polydopamine nanospheres for DNA probes against nuclease digestion, we have developed a DNase I-assisted target recycling signal amplification method for highly sensitive and selective detection of miRNA.
Collapse
Affiliation(s)
- Yi Xie
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Hao N, Li XL, Zhang HR, Xu JJ, Chen HY. A highly sensitive ratiometric electrochemiluminescent biosensor for microRNA detection based on cyclic enzyme amplification and resonance energy transfer. Chem Commun (Camb) 2014; 50:14828-30. [DOI: 10.1039/c4cc06801g] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Yu Y, Chen Z, Shi L, Yang F, Pan J, Zhang B, Sun D. Ultrasensitive Electrochemical Detection of MicroRNA Based on an Arched Probe Mediated Isothermal Exponential Amplification. Anal Chem 2014; 86:8200-5. [DOI: 10.1021/ac501505a] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yanyan Yu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zuanguang Chen
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lijuan Shi
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Fan Yang
- School
of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Jianbin Pan
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Beibei Zhang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Duanping Sun
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
34
|
Zhou DM, Du WF, Xi Q, Ge J, Jiang JH. Isothermal nucleic acid amplification strategy by cyclic enzymatic repairing for highly sensitive microRNA detection. Anal Chem 2014; 86:6763-7. [PMID: 24949808 DOI: 10.1021/ac501857m] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Technologies enabling highly sensitive and selective detection of microRNAs (miRNAs) are critical for miRNA discovery and clinical theranostics. Here we develop a novel isothermal nucleic acid amplification technology based on cyclic enzymatic repairing and strand-displacement polymerase extension for highly sensitive miRNA detection. The enzymatic repairing amplification (ERA) reaction is performed via replicating DNA template using lesion bases by DNA polymerase and cleaving the DNA replicate at the lesions by repairing enzymes, uracil-DNA glycosylase, and endonuclease IV, to prime a next-round replication. By utilizing the miRNA target as the primer, the ERA reaction is capable of producing a large number of reporter sequences from the DNA template, which can then be coupled to a cyclic signal output reaction mediated by endonuclease IV. The ERA reaction can be configured as a single-step, close-tube, and real-time format, which enables highly sensitive and selective detection of miRNA with excellent resistance to contaminants. The developed technology is demonstrated to give a detection limit of 0.1 fM and show superb specificity in discriminating single-base mismatch. The results reveal that the ERA reaction may provide a new paradigm for efficient nucleic acid amplification and may hold the potential for miRNA expression profiling and related theranostic applications.
Collapse
Affiliation(s)
- Dian-Ming Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | | | | | | | | |
Collapse
|
35
|
Hesse M, Davies BP, Arenz C. Assaying Dicer-mediated miRNA maturation by means of fluorescent substrates. Methods Mol Biol 2014; 1095:95-102. [PMID: 24166305 DOI: 10.1007/978-1-62703-703-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Assaying Dicer-mediated miRNA maturation is a valuable tool not only for validating miRNA maturation itself but also for testing Dicer activity in cell lysate and for screening small molecules inhibiting miRNA maturation in a high-throughput format. The classical assay for miRNA maturation relies on radioactive labeling of a pre-miRNA and subsequent gel electrophoresis and autoradiography. Here we present a fluorescently labeled and quenched pre-miRNA beacon that can be ligated easily out of two single labeled RNA strands. Upon Dicer cleavage of the beacon, fluorophore and quencher are separated, which results in an increase of fluorescence over time. Unlike (32)P-labeled probes, our fluorescently labeled pre-miRNA beacon is stable for at least 5 years under storage conditions. Dicer or miRNA maturation assays can be easily performed in a 384-well plate format, consuming less than 1 pmol of RNA beacon per reaction.
Collapse
Affiliation(s)
- Marlen Hesse
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | | | | |
Collapse
|
36
|
Abstract
Numerous studies describe alterations in the levels of specific microRNAs (miRNAs) that are associated with human pathologies. Some of these alterations may give rise to the development of novel diagnostic tools, while certain miRNAs additionally could serve as novel drug targets. Moreover, components of the miRNA maturation machinery may be up- or down-regulated in human disease. In such cases, the consequences for the expression of individual miRNAs are however only poorly understood. Herein, we review the current knowledge of how miRNAs are linked to human disease and which parts of the miRNA maturation machinery could serve as future drug targets.
Collapse
Affiliation(s)
- Marlen Hesse
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
37
|
Zhang P, Zhang J, Wang C, Liu C, Wang H, Li Z. Highly sensitive and specific multiplexed microRNA quantification using size-coded ligation chain reaction. Anal Chem 2014; 86:1076-82. [PMID: 24364819 DOI: 10.1021/ac4026384] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As important regulators of gene expression, microRNAs (miRNAs) are emerging as novel biomarkers with powerful predictive value in diagnosis and prognosis for several diseases, especially for cancers. There is a great demand for flexible multiplexed miRNA quantification methods that can quantify very low levels of miRNA targets with high specificity. For further analysis of miRNA signatures in biological samples, we describe here a highly sensitive and specific method to detect multiple miRNAs simultaneously in total RNA. First, we rationally design one of the DNA probes modified with two ribonucleotides, which can greatly improve the ligation efficiency of DNA probes templated by miRNAs. With the modified DNA probes, the ligation chain reaction (LCR) can be well applied to miRNA detection and as low as 0.2 fM miRNA can be accurately determined. High specificity to clearly discriminate a single nucleotide difference among miRNA sequences can also be achieved. By simply coding the DNA probes with different length of oligo (dA) for different miRNA targets, multiple miRNAs can be simultaneously detected in one LCR reaction. In our proof of principle work, we detect three miRNAs: let-7a, mir-92a, and mir-143, which can also be simultaneously detected in as small as 2 ng of total RNA sample.
Collapse
Affiliation(s)
- Pengbo Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, Hebei Province, P. R. China
| | | | | | | | | | | |
Collapse
|
38
|
Neubacher S, Arenz C. Detection of microRNA maturation using unmodified pre-microRNA and branched rolling circle amplification. Methods Mol Biol 2014; 1095:109-119. [PMID: 24166307 DOI: 10.1007/978-1-62703-703-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The ever-increasing number of different miRNAs and their association with a vast number of cellular dysfunctions and diseases have initiated several groups to investigate miRNA maturation, which ultimately leads to down regulation of a target messenger RNA (mRNA) and its downstream product. A rapid, convenient, and reliable assay to detect the Dicer-mediated miRNA-maturation step may facilitate research in this field. Here we describe the in vitro detection of the Dicer-mediated miRNA maturation step using unmodified pre-miRNA and branched rolling circle amplification.
Collapse
Affiliation(s)
- Saskia Neubacher
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
39
|
Lin X, Zhang C, Huang Y, Zhu Z, Chen X, Yang CJ. Backbone-modified molecular beacons for highly sensitive and selective detection of microRNAs based on duplex specific nuclease signal amplification. Chem Commun (Camb) 2013; 49:7243-5. [PMID: 23842896 DOI: 10.1039/c3cc43224f] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Based on backbone-modified molecular beacons and duplex-specific nuclease, we have developed a target recycling amplification method for highly sensitive and selective miRNA detection. The combination of a low fluorescence background of 2-OMe-RNA modified MB and nuclease-assisted signal amplification leads to ultrahigh assay sensitivity, and the powerful discriminating ability of MB enables the differentiation of highly similar miRNAs with one-base difference, both of which are of great significance to miRNA detection.
Collapse
Affiliation(s)
- Xiaoyan Lin
- The Key Laboratory of Analytical Science, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | |
Collapse
|
40
|
Perspectives in targeting miRNA function. Bioorg Med Chem 2013; 21:6115-8. [PMID: 23602624 DOI: 10.1016/j.bmc.2013.03.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 12/21/2022]
Abstract
First oligonucleotide analogues that inhibit miRNA function are currently investigated in clinical trials. In addition, several alternative methods are under development that may allow for controlling miRNA function by small molecules-mediated inhibiting of its biogenesis. In this perspectives article, we provide a short overview on recent developments in this field.
Collapse
|
41
|
Seo H, Kim S, Kim JI, Kang H, Jung W, Yeo WS. Ultrasensitive detection of microRNAs using nanoengineered micro gold shells and laser desorption/ionization time-of-flight MS. Anal Biochem 2013; 434:199-201. [DOI: 10.1016/j.ab.2012.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/09/2012] [Accepted: 11/09/2012] [Indexed: 11/30/2022]
|
42
|
Zhu X, Zhou X, Xing D. Label-Free Detection of MicroRNA: Two-Step Signal Enhancement with a Hairpin-Probe-Based Graphene Fluorescence Switch and Isothermal Amplification. Chemistry 2013; 19:5487-94. [DOI: 10.1002/chem.201204605] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Indexed: 11/06/2022]
|
43
|
Dojahn CM, Hesse M, Arenz C. A chemo-enzymatic approach to specifically click-modified RNA. Chem Commun (Camb) 2013; 49:3128-30. [DOI: 10.1039/c3cc40594j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Yang L, Liu C, Ren W, Li Z. Graphene surface-anchored fluorescence sensor for sensitive detection of microRNA coupled with enzyme-free signal amplification of hybridization chain reaction. ACS APPLIED MATERIALS & INTERFACES 2012. [PMID: 23182299 DOI: 10.1021/am302268t] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A new enzyme-free signal amplification-based assay for microRNA (miRNA) detection is developed by using hybridization chain reaction (HCR) coupled with a graphene oxide (GO) surface-anchored fluorescence signal readout pathway. MiRNAs can efficiently initiate HCR between two species of fluorescent hairpin probes. After HCR, both of the excess hairpin probes and the HCR products will be anchored on the GO surface. The fluorescence of the hairpin probes can be completely quenched by GO, whereas the HCR products maintain strong fluorescence. Therefore, integrating HCR strategy for signal amplification with selective fluorescence quenching effects of GO provides a versatile miRNA assay.
Collapse
Affiliation(s)
- Lang Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, Hebei Province, PR China
| | | | | | | |
Collapse
|
45
|
Wang L, Cheng Y, Wang H, Li Z. A homogeneous fluorescence sensing platform with water-soluble carbon nanoparticles for detection of microRNA and nuclease activity. Analyst 2012; 137:3667-72. [PMID: 22801584 DOI: 10.1039/c2an35396b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Based on the high efficiency of fluorescence quenching and the different affinities of water-soluble carbon nanoparticles (CNPs) towards single-stranded DNA (ssDNA) and double-stranded DNA/RNA hybrid, a novel, rapid and cost-effective assay for detection of microRNA and nuclease activity was developed. The fluorescein-labeled ssDNA probe (FAM-P) could be adsorbed on the surface of CNPs through π-π stacking interaction giving rise to fluorescence quenching. By introduction of microRNA complementary to the DNA probe, the double-stranded DNA/miRNA hybrid could be formed and released from the surface of CNPs resulting in the fluorescence recovery. Thus, microRNA was successfully detected in homogenous fashion without any amplification or enzyme-involving reactions. Moreover, we demonstrated that the nuclease activities of RNase H and DNase I could also be sensitively monitored by using CNPs based on the fluorescence changing of the DNA probe. So, the CNPs provide an excellent homogeneous sensing platform for studying molecular diagnosis and therapeutics.
Collapse
Affiliation(s)
- Liyong Wang
- Key Laboratory of Medicine Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environment Science, Hebei University, Baoding, China
| | | | | | | |
Collapse
|
46
|
Dong H, Jin S, Ju H, Hao K, Xu LP, Lu H, Zhang X. Trace and label-free microRNA detection using oligonucleotide encapsulated silver nanoclusters as probes. Anal Chem 2012; 84:8670-4. [PMID: 22985191 DOI: 10.1021/ac301860v] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A simple, sensitive, and label-free method for microRNA (miRNA) biosensing was described using oligonucleotide encapsulated silver nanoclusters (Ag-NCs) as effective electrochemical probes. The functional oligonucleotide probe integrates both recognition sequence for hybridization and template sequence for in situ synthesis of Ag-NCs, which appears to possess exceptional metal mimic enzyme properties for catalyzing H(2)O(2) reduction. The miRNA assay employs gold electrodes to immobilize the molecular beacon (MB) probe. After the MB probe subsequently hybridizes with the target and functional probe, the oligonucleotide encapsulated Ag-NCs are brought to the electrode surface and produce a detection signal, in response to H(2)O(2) reduction. An electrochemical miRNA biosensor down to 67 fM with a linear range of 5 orders of magnitude was obtained. Meanwhile, the MB probe allows the biosensor to detect the target with high selectivity. The Ag-NCs-based approach provides a novel avenue to detect miRNA with high sensitivity and selectivity while avoiding laborious label and signal amplification. It is convinced that rational introduction of signal amplification strategy to the Ag-NCs-based bioanalysis can further improve the sensitivity. To our best knowledge, this is the first application of the electrocatalytic activity of Ag-NCs in bioanalysis, which would be attractive for genetic analysis and clinic biomedical application.
Collapse
Affiliation(s)
- Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
47
|
Gao S, Zhang R, Yu Z, Xi Z. Antofine Analogues Can Inhibit Tobacco Mosaic Virus Assembly through Small-Molecule-RNA Interactions. Chembiochem 2012; 13:1622-7. [DOI: 10.1002/cbic.201200313] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Indexed: 11/10/2022]
|
48
|
Sato Y, Ichihashi T, Nishizawa S, Teramae N. Strong and Selective Binding of Amiloride to an Abasic Site in RNA Duplexes: Thermodynamic Characterization and MicroRNA Detection. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Sato Y, Ichihashi T, Nishizawa S, Teramae N. Strong and Selective Binding of Amiloride to an Abasic Site in RNA Duplexes: Thermodynamic Characterization and MicroRNA Detection. Angew Chem Int Ed Engl 2012; 51:6369-72. [DOI: 10.1002/anie.201201790] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Indexed: 01/04/2023]
|
50
|
Jiang L, Duan D, Shen Y, Li J. Direct microRNA detection with universal tagged probe and time-resolved fluorescence technology. Biosens Bioelectron 2012; 34:291-5. [PMID: 22365748 DOI: 10.1016/j.bios.2012.01.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 01/26/2023]
Abstract
microRNAs have emerged as the central player in gene expression regulation and have been considered as potent cancer biomarkers for early disease diagnosis. Direct microRNA detection without amplification and labeling is highly desired. Here we present a rapid, sensitive and selective microRNA detection method based on the base stacking hybridization coupling with time-resolved fluorescence technology. Other than planar microarrays, magnetic beads are used as reaction platforms. In this method, one universal tag is used to report all microRNA targets. Its specificity allows for discrimination between microRNAs differing by a single nucleotide, and between precursor and mature microRNAs. This method also provides a high sensitivity down to 20 fM. Moreover, the full protocol can be completed in about 3 h starting from total RNA.
Collapse
Affiliation(s)
- Li Jiang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, PR China
| | | | | | | |
Collapse
|