1
|
Parra-Cadenas B, Fernández I, Carrillo-Hermosilla F, García-Álvarez J, Elorriaga D. Addition of allyl Grignard to nitriles in air and at room temperature: experimental and computational mechanistic insights in pH-switchable synthesis. Chem Sci 2024; 15:5929-5937. [PMID: 38665519 PMCID: PMC11040652 DOI: 10.1039/d3sc06403d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/03/2024] [Indexed: 04/28/2024] Open
Abstract
A straightforward and selective conversion of nitriles into highly substituted tetrahydropyridines, aminoketones or enamines by using allylmagnesium bromide as an addition partner (under neat conditions) and subsequent treatment with different aqueous-based hydrolysis protocols is reported. Refuting the conventional wisdom of the incompatibility of Grignard reagents with air and moisture, we herein report that the presence of water allows us to promote the chemoselective formation of the target tetrahydropyridines over other competing products (even in the case of highly challenging aliphatic nitriles). Moreover, the careful tuning of both the reaction media employed (acid or basic aqueous solutions for the hydrolysis protocol) and the electronic properties of the starting nitriles allowed us to design a multi-task system capable of producing either β-aminoketones or enamines in a totally selective manner. Importantly, and for the first time in the chemistry of main-group polar organometallic reagents in non-conventional protic solvents (e.g., water), both experimental and computational studies showed that the excellent efficiency and selectivity observed in aqueous media cannot be replicated by using standard dry volatile organic solvents (VOCs) under inert atmosphere conditions.
Collapse
Affiliation(s)
- Blanca Parra-Cadenas
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha 13071 Ciudad Real Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Fernando Carrillo-Hermosilla
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha 13071 Ciudad Real Spain
| | - Joaquín García-Álvarez
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo E33071 Oviedo Spain
| | - David Elorriaga
- Group of Bioorganometallic Chemistry and Catalysis (BIOMCAT), Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo E33071 Oviedo Spain
| |
Collapse
|
2
|
Rodríguez-Álvarez MJ, Ríos-Lombardía N, García-Garrido SE, Concellón C, del Amo V, Capriati V, García-Álvarez J. Recent Advancements in the Utilization of s-Block Organometallic Reagents in Organic Synthesis with Sustainable Solvents. Molecules 2024; 29:1422. [PMID: 38611702 PMCID: PMC11012548 DOI: 10.3390/molecules29071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
This mini-review offers a comprehensive overview of the advancements made over the last three years in utilizing highly polar s-block organometallic reagents (specifically, RLi, RNa and RMgX compounds) in organic synthesis run under bench-type reaction conditions. These conditions involve exposure to air/moisture and are carried out at room temperature, with the use of sustainable solvents as reaction media. In the examples provided, the adoption of Deep Eutectic Solvents (DESs) or even water as non-conventional and protic reaction media has not only replicated the traditional chemistry of these organometallic reagents in conventional and toxic volatile organic compounds under Schlenk-type reaction conditions (typically involving low temperatures of -78 °C to 0 °C and a protective atmosphere of N2 or Ar), but has also resulted in higher conversions and selectivities within remarkably short reaction times (measured in s/min). Furthermore, the application of the aforementioned polar organometallics under bench-type reaction conditions (at room temperature/under air) has been extended to other environmentally responsible reaction media, such as more sustainable ethereal solvents (e.g., CPME or 2-MeTHF). Notably, this innovative approach contributes to enhancing the overall sustainability of s-block-metal-mediated organic processes, thereby aligning with several key principles of Green Chemistry.
Collapse
Affiliation(s)
- María Jesús Rodríguez-Álvarez
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Consorzio Interuniversitario Nazionale “Metodologie e Processi Innovativi di Sintesi” (C.I.N.M.P.I.S.), Via E. Orabona 4, I-70125 Bari, Italy
| | - Nicolás Ríos-Lombardía
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles” (IUQOEM), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Sergio E. García-Garrido
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles” (IUQOEM), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Carmen Concellón
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles” (IUQOEM), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Vicente del Amo
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles” (IUQOEM), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Vito Capriati
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Consorzio Interuniversitario Nazionale “Metodologie e Processi Innovativi di Sintesi” (C.I.N.M.P.I.S.), Via E. Orabona 4, I-70125 Bari, Italy
| | - Joaquín García-Álvarez
- Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles” (IUQOEM), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain
| |
Collapse
|
3
|
Shah TA, Sarkar T, Kar S, Maharana PK, Talukdar K, Punniyamurthy T. Transition-Metal-Catalyzed Directed C-H Functionalization in/on Water. Chem Asian J 2024; 19:e202300815. [PMID: 37932013 DOI: 10.1002/asia.202300815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 11/08/2023]
Abstract
Directing group assisted C-H bond functionalization using transition-metal-catalysis has emerged as a reliable synthetic tool for the construction of regioselective carbon-carbon/heteroatom bonds. Off late, "in/on water directed transition-metal-catalysis", though still underdeveloped, has appeared as one of the prominent themes in sustainable organic chemistry. This article covers the advancements, mechanistic insights and application of the sustainable directed C-H bond functionalization of (hetero)arenes in/on water in the presence of transition-metal-catalysis.
Collapse
Affiliation(s)
- Tariq A Shah
- Department of Chemistry and Advanced Material Chemistry Center (AMCC), Khalifa University, PO Box, 127788, Abu Dhabi, U.A.E
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Subhradeep Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | | |
Collapse
|
4
|
Lv XX, Liu N, Chen F, Zhang H, Du ZH, Wang P, Yuan M, Da CS. Highly asymmetric aldol reaction of isatins and ketones catalyzed by chiral bifunctional primary-amine organocatalyst on water. Org Biomol Chem 2023; 21:8695-8701. [PMID: 37861676 DOI: 10.1039/d3ob01227a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Herein, we have reported an environmentally friendly asymmetric aldol reaction between isatins and ketones catalyzed by double-hydrogen-bonded primary amine organocatalysts on water under mild conditions. Enantioenriched 3-hydroxy-2-oxindoles were obtained in high yields (up to 99%) and excellent stereoselectivities (up to 99 : 1 dr and 99% ee) under optimal conditions. Furthermore, the model reaction involving isatin and cyclohexanone was successfully scaled to 10 mmol with no reduction in yield or stereoselectivity. In addition, the catalyst was recovered via simple filtration and was subsequently reused on water, which highlights its good application potential.
Collapse
Affiliation(s)
- Xiao-Xiong Lv
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, China.
| | - Ning Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, China.
| | - Fei Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, China.
| | - Hao Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, China.
| | - Zhi-Hong Du
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, China.
| | - Pei Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Meng Yuan
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chao Shan Da
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Gutiérrez López MÁ, Tan ML, Frontera A, Matile S. The Origin of Anion-π Autocatalysis. JACS AU 2023; 3:1039-1051. [PMID: 37124310 PMCID: PMC10131205 DOI: 10.1021/jacsau.2c00656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 05/03/2023]
Abstract
The autocatalysis of epoxide-opening ether cyclizations on the aromatic surface of anion-π catalysts stands out as a leading example of emergent properties expected from the integration of unorthodox interactions into catalysis. A working hypothesis was proposed early on, but the mechanism of anion-π autocatalysis has never been elucidated. Here, we show that anion-π autocatalysis is almost independent of peripheral crowding in substrate and product. Inaccessible asymmetric anion-π autocatalysis and sometimes erratic reproducibility further support that the origin of anion-π autocatalysis is more complex than originally assumed. The apparent long-distance communication without physical contact calls for the inclusion of water between substrate and product on the catalytic aromatic surface. Efficient anion-π autocatalysis around equimolar amounts but poor activity in dry solvents and with excess water indicate that this inclusion of water requires high precision. Computational models suggest that two water molecules transmit dual substrate activation by the product and serve as proton shuttles along antiparallel but decoupled hydrogen-bonded chains to delocalize and stabilize evolving charge density in the transition state by "anion-π double bonds". This new transition-state model of anion-π autocatalysis provides a plausible mechanism that explains experimental results and brings anion-π catalysis to an unprecedented level of sophistication.
Collapse
Affiliation(s)
- M. Ángeles Gutiérrez López
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering
(MSE), CH-4002 Basel, Switzerland
| | - Mei-Ling Tan
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering
(MSE), CH-4002 Basel, Switzerland
| | - Antonio Frontera
- Departament
de Química, Universitat de les Illes
Balears, SP-07122 Palma de Mallorca, Spain
| | - Stefan Matile
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering
(MSE), CH-4002 Basel, Switzerland
| |
Collapse
|
6
|
Bondzić BP, Daskalakis K, Taniguchi T, Monde K, Hayashi Y. Stereoselective Construction of Fluorinated Quaternary Stereogenic Centers via an Organocatalytic Asymmetric exo-Selective Diels-Alder Reaction in the Presence of Water. Org Lett 2022; 24:7455-7460. [PMID: 36190808 DOI: 10.1021/acs.orglett.2c03043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A catalytic, asymmetric Diels-Alder reaction of α-fluoro α,β-unsaturated aldehydes and cyclopentadiene was developed using diarylprolinol silyl ether as an organocatalyst. The reaction proceeds in toluene with trifluoroacetic acid as an additive (condition A). Perchloric acid salt of diarylprolinol silyl ether also promotes the reaction using water as a reaction medium (condition B). In both cases, excellent exo-selectivity and enantioselectivity were obtained with generation of a fluorinated quaternary chiral center.
Collapse
Affiliation(s)
- Bojan P Bondzić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11 000 Belgrade, Serbia
| | - Konstantinos Daskalakis
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tohru Taniguchi
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kenji Monde
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yujiro Hayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
7
|
Das N, Maity C. Switchable aqueous catalytic systems for organic transformations. Commun Chem 2022; 5:115. [PMID: 36697818 PMCID: PMC9814960 DOI: 10.1038/s42004-022-00734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
In living organisms, enzyme catalysis takes place in aqueous media with extraordinary spatiotemporal control and precision. The mechanistic knowledge of enzyme catalysis and related approaches of creating a suitable microenvironment for efficient chemical transformations have been an important source of inspiration for the design of biomimetic artificial catalysts. However, in "nature-like" environments, it has proven difficult for artificial catalysts to promote effective chemical transformations. Besides, control over reaction rate and selectivity are important for smart application purposes. These can be achieved via incorporation of stimuli-responsive features into the structure of smart catalytic systems. Here, we summarize such catalytic systems whose activity can be switched 'on' or 'off' by the application of stimuli in aqueous environments. We describe the switchable catalytic systems capable of performing organic transformations with classification in accordance to the stimulating agent. Switchable catalytic activity in aqueous environments provides new possibilities for the development of smart materials for biomedicine and chemical biology. Moreover, engineering of aqueous catalytic systems can be expected to grow in the coming years with a further broadening of its application to diverse fields.
Collapse
Affiliation(s)
- Nikita Das
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Chandan Maity
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
8
|
El Jemli Y, Khallouk K, Lanaya S, Brulé M, Barakat A, Abdelouahdi K, Solhy A. Hybrid Alginate-Brushite Beads Easily Catalyze the Knoevenagel Condensation On-Water. ACS OMEGA 2022; 7:27831-27838. [PMID: 35990453 PMCID: PMC9386701 DOI: 10.1021/acsomega.1c07247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An innovative hybrid organic-inorganic material composed of alginate-brushite xerogel beads was successfully applied for the catalysis of the Knoevenagel condensation. The catalyst was derived from phosphated alginate xerogel microspheres formed from the ionotropic gelling effect of phosphated alginate. To this end, alginate was phosphated by the addition of diammonium hydrogen phosphate in a 1% w/w alginate gel. The phosphated alginate was subsequently precipitated by chelation of Ca2+ cations, generating a phosphated alginate hydrogel microsphere, which was washed and dried, forming hybrid organic-inorganic xerogel beads as a crystalline phosphate-rich mineral fraction covered by alginate. X-ray diffraction analysis revealed that the crystalline inorganic matrix of the material was composed predominantly of brushite. SEM analysis revealed plate-like, ribbon-like, or needle-like morphologies in the hybrid alginate-brushite beads. The hybrid material was tested as a catalyst for Knoevenagel condensation, which was performed ″on-water″ under mild conditions with aromatic aldehydes and activated methylene compounds, giving high yields (up to 97%). The reaction rate and product yield increased together with the reaction temperature for all reagents. The recyclable solid catalyst was effective for three runs, revealing the potential of the innovative hybrid catalyst as an eco-friendly heterogeneous catalyst.
Collapse
Affiliation(s)
- Yousra El Jemli
- IMED-Lab,
FST, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Khadija Khallouk
- LMPCE,
EST, Université Sidi Mohammed Ben
Abdellah, Fes 30000, Morocco
- UMR
IATE, University of Montpellier, INRAE,
Agro Institute Montpellier, Montpellier 34060, France
| | - Salaheddine Lanaya
- UMR
IATE, University of Montpellier, INRAE,
Agro Institute Montpellier, Montpellier 34060, France
- Organic Chemistry
and Analytical Laboratory, FST, University
of Sultane Moulay Slimane, Béni-Mellal 23000, Morocco
| | - Mathieu Brulé
- UMR
IATE, University of Montpellier, INRAE,
Agro Institute Montpellier, Montpellier 34060, France
| | - Abdellatif Barakat
- UMR
IATE, University of Montpellier, INRAE,
Agro Institute Montpellier, Montpellier 34060, France
- Mohamed
VI Polytechnic University, Lot 660-Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | | | - Abderrahim Solhy
- UMR
IATE, University of Montpellier, INRAE,
Agro Institute Montpellier, Montpellier 34060, France
| |
Collapse
|
9
|
Borthakur I, Kumari S, Kundu S. Water as a solvent: transition metal catalyzed dehydrogenation of alcohols going green. Dalton Trans 2022; 51:11987-12020. [PMID: 35894592 DOI: 10.1039/d2dt01060g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The long-established practice of using organic solvents in synthetic chemistry is currently becoming a major focus of environmental alarms as many of the chemical wastes are generated in the form of organic solvents. Recently, various alternative solvents have been recognized by the scientific community, including water, ionic liquids, supercritical fluids, glycerol, polyethylene glycol, etc. Among these alternatives, water is unquestionably an ideal solvent as it is abundant, cheap, non-toxic, and non-flammable. In the last few decades, a breakthrough has been achieved in the field of transition metal-catalyzed dehydrogenation of alcohols and the related chemistry for the sustainable synthesis of a wide range of valuable compounds. Although a large number of reports with new potential are published every year following this alcohol dehydrogenation strategy, the utilization of water as a solvent in alcohol dehydrogenation and related coupling reactions is yet to be highlighted properly. This review summarizes the advances in metal-catalyzed dehydrogenative functionalization of alcohols using water as a solvent.
Collapse
Affiliation(s)
- Ishani Borthakur
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh (U.P.), India.
| | - Saloni Kumari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh (U.P.), India.
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh (U.P.), India.
| |
Collapse
|
10
|
Hayashi Y. Diarylprolinol as an Effective Organocatalyst in Asymmetric Cross-aldol Reactions of Two Different Aldehydes. CHEM REC 2022:e202200159. [PMID: 35896950 DOI: 10.1002/tcr.202200159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022]
Abstract
The aldol reaction is one of the most important carbon-carbon bond-forming reactions in organic chemistry. Asymmetric direct cross-aldol reaction of two different aldehydes has been regarded as a difficult reaction because of the side reactions such as self-aldol reaction and over reaction. We found that trifluoromethyl-substituted diarylprolinol, α,α-bis[3,5-bis(trifluoromethyl)phenyl]-2-pyrrolidinemethanol (1), is an effective organocatalyst that promotes several cross-aldol reactions of aldehydes with excellent diastereo- and enantioselectivities. Acetaldehyde can be employed as a suitable nucleophilic aldehyde. Successful electrophilic aldehydes are ethyl glyoxylate, chloroacetaldehyde, dichloroacetaldehyde, chloral, α-alkyl-α-oxo aldehyde, trifluoroacetaldehyde, glyoxal, alkenyl aldehyde, alkynyl aldehyde, and formaldehyde. Some of the aldehydes are commercially available as a polymer solution, an aqueous solution, or in the hydrated form. They can be used directly in the asymmetric aldol reaction as a commercially available form, which is a synthetic advantage. Given that the obtained aldol products possess several functional groups along with a formyl moiety, they are synthetically useful chiral building blocks.
Collapse
Affiliation(s)
- Yujiro Hayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| |
Collapse
|
11
|
Soni R, Sihag M, Rani N, Kinger M, Aneja DK. Aqueous Mediated Reactions Involving Hypervalent Iodine Reagents. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rinku Soni
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Monika Sihag
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Neha Rani
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Mayank Kinger
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Deepak Kumar Aneja
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| |
Collapse
|
12
|
Nugent TC, Vos AE, Hussain I, El Damrany Hussein HA, Goswami F. A 2000 to 2020 Practitioner's Guide to Chiral Amine‐Based Enantioselective Aldol Reactions: Ketone Substrates, Best Methods, in Water Reaction Environments, and Defining Nuances. European J Org Chem 2022. [DOI: 10.1002/ejoc.202100529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Thomas C. Nugent
- Department of Life Sciences and Chemistry Jacobs University Bremen 28759 Bremen Germany
| | - Alice E. Vos
- Department of Life Sciences and Chemistry Jacobs University Bremen 28759 Bremen Germany
| | - Ishtiaq Hussain
- Department of Pharmacy Abbottabad University of Science and Technology Havelian Abbottabad 22010 Pakistan
| | | | - Falguni Goswami
- Department of Life Sciences and Chemistry Jacobs University Bremen 28759 Bremen Germany
| |
Collapse
|
13
|
Cannalire R, Santoro F, Russo C, Graziani G, Tron GC, Carotenuto A, Brancaccio D, Giustiniano M. Photomicellar Catalyzed Synthesis of Amides from Isocyanides: Optimization, Scope, and NMR Studies of Photocatalyst/Surfactant Interactions. ACS ORGANIC & INORGANIC AU 2021; 2:66-74. [PMID: 36855402 PMCID: PMC9954382 DOI: 10.1021/acsorginorgau.1c00028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The merging of micellar and photoredox catalysis represents a key issue to promote "in water" photochemical transformations. A photomicellar catalyzed synthesis of amides from N-methyl-N-alkyl aromatic amines and both aliphatic and aromatic isocyanides is herein presented. The mild reaction conditions enabled a wide substrate scope and a good functional groups tolerance, as further shown in the late-stage functionalization of complex bioactive scaffolds. Furthermore, solution 1D and 2D NMR experiments performed, for the first time, in the presence of paramagnetic probes enabled the study of the reaction environment at the atomic level along with the localization of the photocatalyst with respect to the micelles, thus providing experimental data to drive the identification of optimum photocatalyst/surfactant pairing.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy
| | - Federica Santoro
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy
| | - Camilla Russo
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy
| | - Giulia Graziani
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy
| | - Gian Cesare Tron
- Department
of Drug Science, University of Piemonte
Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Alfonso Carotenuto
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy,
| | - Diego Brancaccio
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy,
| | - Mariateresa Giustiniano
- Department
of Pharmacy, University of Naples Federico
II, via D. Montesano
49, 80131 Napoli, Italy,
| |
Collapse
|
14
|
Alberca S, Matador E, Iglesias-Sigüenza J, de Gracia Retamosa M, Fernández R, Lassaletta JM, Monge D. Asymmetric cross-aldol reactions of α-keto hydrazones and α,β-unsaturated γ-keto hydrazones with trifluoromethyl ketones. Chem Commun (Camb) 2021; 57:11835-11838. [PMID: 34698741 DOI: 10.1039/d1cc05014a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-Keto hydrazones and α,β-unsaturated γ-keto hydrazones are suitable pro-nucleophiles for asymmetric cross-aldol reactions with trifluoromethyl ketones via aza-di(tri)enamine-type intermediates. A quinidine-derived primary amine catalyst affords tertiary trifluoromethylated alcohols in good-to-excellent yields and high enantioselectivities. Subsequent transformations of hydrazono moieties yield appealing fluorinated carboxylic acids, 1,4-dicarbonyls and γ-keto acids.
Collapse
Affiliation(s)
- Saúl Alberca
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain.
| | - Esteban Matador
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain.
| | - Javier Iglesias-Sigüenza
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain.
| | - Ma de Gracia Retamosa
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain. .,Departamento de Química Orgánica e Instituto de Síntesis Orgánica, Universidad de Alicante, Centro de Innovación en Química Avanzada (ORFEO-CINQA), 03080-Alicante, Spain.
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain.
| | - José M Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - David Monge
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain.
| |
Collapse
|
15
|
Yang L, Liu X, Zhang Y, Yang Y, Xue Y. Influence of water content on the [2σ+2σ+2π] cycloaddition of dimethyl azodicarboxylate with quadricyclane in mixed methanol-water solvents from QM/MM Monte Carlo simulations. Phys Chem Chem Phys 2021; 23:20524-20532. [PMID: 34505591 DOI: 10.1039/d1cp01973b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mixed quantum mechanics/molecular mechanics Monte Carlo (QM/MM/MC) simulations combined with the free energy perturbation (FEP) theory have been performed to investigate the mechanism and solvent effect of the [2σ+2σ+2π] cycloaddition reaction between dimethyl azodicarboxylate and quadricyclanes in the binary mixture solvents of methanol and water by varying the water content from 0 to 100 vol%. The two-dimensional potentials of mean force (2D PMF) calculations demonstrated that the mechanism of the reaction is a collaborative asynchronous procedure. The transition structures do not show large variation among different solvents. The calculated free energies of activation indicated that the QM/MM/MC method reproduced well the tendency of rate enhancement from pure methanol to methanol-water mixtures to "on water" with the water content increasing obtained in the experimental observation. The analyses of the energy pair distribution and radial distribution functions illustrated that hydrogen bonding plays an indispensable role in the stabilization of the transition structures. According to the results in methanol-water mixtures at different volume ratios, it is clear that the site-specific hydrogen bond effects are the central reason which leads to fast rate increases in progressing from a methanol-water volume ratio of 3 : 1 to 1 : 1. This work provides a new insight into the solvent effect for the [2σ+2σ+2π] cycloaddition reaction.
Collapse
Affiliation(s)
- Lian Yang
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Xudong Liu
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Yan Zhang
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Yongsheng Yang
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Ying Xue
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China.
| |
Collapse
|
16
|
Nugent TC, Goswami F, Debnath S, Hussain I, Ali El Damrany Hussein H, Karn A, Nakka S. Harnessing Additional Capability from in Water Reaction Conditions: Aldol
versus
Knoevenagel Chemoselectivity. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas C. Nugent
- Department of Life Sciences and Chemistry Jacobs University Bremen 28759 Bremen Germany
| | - Falguni Goswami
- Department of Life Sciences and Chemistry Jacobs University Bremen 28759 Bremen Germany
| | - Samarpita Debnath
- Department of Life Sciences and Chemistry Jacobs University Bremen 28759 Bremen Germany
| | - Ishtiaq Hussain
- Department of Pharmacy Abbottabad University of Science and Technology Havelian Abbottabad 22010 Pakistan
| | | | - Alka Karn
- Department of Life Sciences and Chemistry Jacobs University Bremen 28759 Bremen Germany
| | - Srinuvasu Nakka
- Department of Life Sciences and Chemistry Jacobs University Bremen 28759 Bremen Germany
| |
Collapse
|
17
|
Kitanosono T, Kobayashi S. Synthetic Organic "Aquachemistry" that Relies on Neither Cosolvents nor Surfactants. ACS CENTRAL SCIENCE 2021; 7:739-747. [PMID: 34079894 PMCID: PMC8161484 DOI: 10.1021/acscentsci.1c00045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 06/12/2023]
Abstract
There is a growing awareness of the underlying power of catalytic reactions in water that is not limited to innate sustainability alone. Some Type III reactions are catalytically accelerated without dissolution of reactants and are occasionally highly selective, as shown by comparison with the corresponding reactions run in organic solvents or under solvent-free conditions. Such catalysts are highly diversified, including hydrophilic, lipophilic, and even solid catalysts. In this Outlook, we highlight the impressive characteristics of illustrative catalysis that is exerted despite the immiscibility of the substrates and reveal the intrinsic benefits of these enigmatic reactions for synthetic organic chemistry, albeit with many details remaining unclear. We hope that this brief introduction to the expanding field of synthetic organic "aquachemistry" will inspire organic chemists to use the platform to invent new transformations.
Collapse
Affiliation(s)
- Taku Kitanosono
- Department of Chemistry,
School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Kobayashi
- Department of Chemistry,
School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Juaristi E. Recent developments in next generation (S)-proline-derived chiral organocatalysts. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
19
|
Lipshutz BH. Illuminating a Path4914. Copyright 2016 Wiley for Organic Synthesis Towards Sustainability. No One Said It Would Be Easy…. Synlett 2021. [DOI: 10.1055/s-0040-1706027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractA personalized account is presented describing some of the stories behind the scenes in efforts to convert organic chemistry into a more sustainable discipline. These are part of a group ‘crusade’ started almost 15 years ago aimed at providing technologies illustrative of how key reactions used today can be ‘faster, better, cheaper’ when run in recyclable water. Hence, the option now exists to do organic synthesis in a far more environmentally responsible fashion. By contrast, most of organic chemistry developed over the past 200 years that relies on organic solvents continues to generate enormous amounts of pollution, while depleting finite petroleum reserves and our supplies of many precious and base metals. Making the switch to water, Nature’s chosen reaction medium, akin to that in which bio-catalysis is typically performed, is inevitable.1 The Story Begins: A Different Type of Prejudice2 Are We up to the Challenge? Too Late Now…3 ‘Impossible’ Reactive Metal Chemistry in Water4 Didn’t I Once Say: ‘It’s All about the Ligand’?5 What Happens When Our Supply of Palladium Runs Out?6 What Are the Implications from These Tales for Today and Tomorrow?7 What Is the ‘Broader Impact’ of This Work?8 The Bottom Line…
Collapse
|
20
|
Kuepfert M, Ahmed E, Weck M. Self-Assembled Thermoresponsive Molecular Brushes as Nanoreactors for Asymmetric Aldol Addition in Water. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02708] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Kuepfert
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Eman Ahmed
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Marcus Weck
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
21
|
Kamanna K. Amino Acids and Peptides Organocatalysts: A Brief Overview on Its Evolution and Applications in Organic Asymmetric Synthesis. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/2213337207999201117093848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review highlights the application of biopolymers of natural α-amino acids and its
derived wild-type peptides employed as organocatalysts for the asymmetric synthesis of various important
compounds published by researchers across the globe. The α-amino acid with L-configuration
is available commercially in the pure form and plays a crucial role in enantioselective chiral
molecule synthesis. Out of twenty natural amino acids, only one secondary amine-containing proline
amino acid exhibited revolution in the field of organocatalysis because of its rigid structure
and the formation of an imine like transition state during the reaction, which leads to more stereoselectivity.
Hence, it is referred to as a simple enzyme in organocatalyst. Chiral enantioselective organic
molecule synthesis has been further discussed by employing oligopeptides derived from the
natural amino acids as a robust biocatalyst that replaced enzyme catalysts. The di-, tri, tetra-,
penta- and oligopeptide derived from the natural amino acids are demonstrated as a potential
organocatalyst, whose catalytic activity and mechanistic pathways are reviewed in the present paper.
Several choices of organocatalyst are developed to achieve a facile and efficient stereoselective
synthesis of many complex natural products with optically pure isomer. Subsequently, the researcher
developed green and sustainable heterogeneous catalytic system containing organocatalyst
immobilized onto solid inorganic support or porous material for accelerating reaction rate with
asymmetric one isomer product through the heterogeneous phase. Further, researchers developed
heterogeneous organocatalysts-Metal-Organic Frameworks (MOFs) that emerged as alternative
simple and facile heterogeneous catalysts for the bulk production and flow reactor for enantioselective
synthesis. This review compiled many outstanding discoveries in organocatalysts derivative of
amino acids, peptides and heterogenized-MOFs employed for many organic transformations in research
and industrial applications.
Collapse
Affiliation(s)
- Kantharaju Kamanna
- Department of Chemistry, Peptide and Medicinal Chemistry Research Laboratory, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi -591156, Karnataka, India
| |
Collapse
|
22
|
p-TSA-catalyzed a simple and efficient one-pot eco-friendly synthesis of functionalized new isoxazolyl-4-hydroxyindole-3-carboxylate derivatives in aqueous medium. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2020.1825743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Debiais M, Hamoud A, Drain R, Barthélémy P, Desvergnes V. Bio-inspired NHC-organocatalyzed Stetter reaction in aqueous conditions. RSC Adv 2020; 10:40709-40718. [PMID: 35519190 PMCID: PMC9057722 DOI: 10.1039/d0ra08326g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
The first bio-inspired N-Heterocyclic Carbene (NHC)-catalyzed Stetter reaction in aqueous medium is reported with benzaldehyde and chalcone as model substrates. A screening of azolium salts as precatalysts revealed the remarkable efficiency of synthetic thiazolium salt 8 (up to 90% conversion in pure water at 75 °C). The reaction was successfully extended to various simple aldehyde substrates. The effect of temperature was also investigated in order to extend the reaction to lower temperature allowing a potential application to sensitive biomolecules. This study highlighted the influence of both solvent and temperature on the 1,4-diketone 3/benzoin 4 ratio. New precatalysts 26 and 27 were designed and synthesized to explore a possible compartmentalization of the reaction in aqueous conditions. Owing to the use of inexpensive metal-free N-Heterocyclic Carbene (NHC) as a bioinspired catalyst, we anticipate that this green strategy in aqueous conditions will be attractive for bioconjugation of many biomolecule-type aldehydes and enone derivatives.
Collapse
Affiliation(s)
- Mégane Debiais
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212 F-33000 Bordeaux France +33 557571176.,ChemBioPharm Team 146 Rue Leo Saignat, UFR Pharmacie, 3ième Tranche, 4ième étage 33076 Bordeaux Cedex France
| | - Aladin Hamoud
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212 F-33000 Bordeaux France +33 557571176.,ChemBioPharm Team 146 Rue Leo Saignat, UFR Pharmacie, 3ième Tranche, 4ième étage 33076 Bordeaux Cedex France
| | - Reihana Drain
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212 F-33000 Bordeaux France +33 557571176.,ChemBioPharm Team 146 Rue Leo Saignat, UFR Pharmacie, 3ième Tranche, 4ième étage 33076 Bordeaux Cedex France
| | - Philippe Barthélémy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212 F-33000 Bordeaux France +33 557571176.,ChemBioPharm Team 146 Rue Leo Saignat, UFR Pharmacie, 3ième Tranche, 4ième étage 33076 Bordeaux Cedex France
| | - Valérie Desvergnes
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212 F-33000 Bordeaux France +33 557571176.,ChemBioPharm Team 146 Rue Leo Saignat, UFR Pharmacie, 3ième Tranche, 4ième étage 33076 Bordeaux Cedex France
| |
Collapse
|
24
|
Mathavan S, B. R. D. Yamajala R. Sustainable Synthetic Approaches for 3‐Aminoimidazo‐fused Heterocycles viaGroebke‐Blackburn‐Bienaymé Process. ChemistrySelect 2020. [DOI: 10.1002/slct.202002894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sivagami Mathavan
- Department of chemistry, School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613401 India
| | - Rajesh B. R. D. Yamajala
- Department of chemistry, School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613401 India
| |
Collapse
|
25
|
Chimaladenne V, Manda R, Gudipally AR, Valluru KR, Brahman PK, Somarapu VL. An efficient microwave accelerated three component reaction of phenacyl azides and pyridinium phenacyl salts: A facile greener approach to 2-amino-2-ene-1,4-diones/pyrrolidin-2-ones. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1787447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Venkateswarlu Chimaladenne
- Department of Chemistry, Koneru Laksmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, India
- Chemistry Services, GVK Biosciences Pvt. Ltd, IDA Mallapur, Hyderabad, India
| | - Ramesh Manda
- Chemistry Services, GVK Biosciences Pvt. Ltd, IDA Mallapur, Hyderabad, India
| | | | | | - Pradeep Kumar Brahman
- Department of Chemistry, Koneru Laksmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Vijaya Laxmi Somarapu
- Department of Chemistry, Koneru Laksmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, India
- Department of Chemistry, Palamuru University, Mahabubnagar, India
| |
Collapse
|
26
|
Auria-Luna F, Fernández-Moreira V, Marqués-López E, Gimeno MC, Herrera RP. Ultrasound-assisted multicomponent synthesis of 4H-pyrans in water and DNA binding studies. Sci Rep 2020; 10:11594. [PMID: 32665694 PMCID: PMC7360557 DOI: 10.1038/s41598-020-68076-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
A simple approach to synthesize new highly substituted 4H-pyran derivatives is described. Efficient Et3N acts as a readily accessible catalyst of this process performed in pure water and with only a 20 mol% of catalyst loading. The extremely simple operational methodology, short reaction times, clean procedure and excellent product yields render this new approach extremely appealing for the synthesis of 4H-pyrans, as potentially biological scaffolds. Additionally, DNA interaction analysis reveals that 4H-pyran derivatives behave preferably as minor groove binders over major groove or intercalators. Therefore, this is one of the scarce examples where pyrans have resulted to be interesting DNA binders with high binding constants (Kb ranges from 1.53 × 104 M-1 to 2.05 × 106 M-1).
Collapse
Affiliation(s)
- Fernando Auria-Luna
- Departamento de Química Orgánica, Laboratorio de Organocatálisis Asimétrica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - Vanesa Fernández-Moreira
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - Eugenia Marqués-López
- Departamento de Química Orgánica, Laboratorio de Organocatálisis Asimétrica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - Raquel P Herrera
- Departamento de Química Orgánica, Laboratorio de Organocatálisis Asimétrica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain.
| |
Collapse
|
27
|
Kitanosono T, Kobayashi S. Reactions in Water Involving the “On‐Water” Mechanism. Chemistry 2020; 26:9408-9429. [DOI: 10.1002/chem.201905482] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/08/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Taku Kitanosono
- Department of ChemistrySchool of ScienceThe University of Tokyo Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shū Kobayashi
- Department of ChemistrySchool of ScienceThe University of Tokyo Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
28
|
Water plays a crucial role: Small molecule catalyzed C–C/C–X bond forming reactions using organosilicon reagents under “wet” conditions. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Sekhar T, Thriveni P, Ramesh K, Giri Prasad P, Srihari I, Gorityala N, Rao Sagurthi S, Sankar Allam U. Green synthesis, antitubercular evaluation, and molecular docking studies of ethyl 3,5-dicyano-6-oxo-2,4-diarylpiperidine-3-carboxylate derivatives. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02519-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Zheng W, Tan M, Yang L, Zhou L, Zeng Q. I2
-Catalyzed N-Sulfonylation of Sulfoximines with Sulfinates in Water at Room Temperature. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wenting Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection; College of Materials, Chemistry & Chemical Engineering; Chengdu University of Technology; 610059 Chengdu China
| | - Mingchao Tan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection; College of Materials, Chemistry & Chemical Engineering; Chengdu University of Technology; 610059 Chengdu China
| | - Lu Yang
- Department of Chemistry; Graduate School of Science; Tohoku University; 980-8578 Sendai Japan
| | - Lihong Zhou
- College of Environment and Ecology; College of Materials, Chemistry & Chemical Engineering; Chengdu University of Technology; 610059 Chengdu China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection; College of Materials, Chemistry & Chemical Engineering; Chengdu University of Technology; 610059 Chengdu China
| |
Collapse
|
31
|
Martins RDS, Pereira MP, de Castro PP, Bombonato FI. Design and preparation of a novel prolinamide-based organocatalyst for the solvent-free asymmetric aldol reaction. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
32
|
Ortiz R, Koukouras A, Marqués-López E, Herrera RP. Functionalization of π-activated alcohols by trapping carbocations in pure water under smooth conditions. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Kaur M, Singh B, Arjuna A. Lewis acid–catalyzed green synthesis and biological studies of pyrrolo[3,4‐c]pyrazoles in aqueous medium. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manpreet Kaur
- Department of ChemistryPunjabi University Patiala India
| | - Baldev Singh
- Department of ChemistryPunjabi University Patiala India
| | - Anania Arjuna
- Faculty of Applied Medical SciencesLovely Professional University Jalandhar India
| |
Collapse
|
34
|
Patel HA, Gutal A, Sahoo SK, Soni HP. Asymmetric Direct Aldol Reaction in Confined Space: Molecular Conformations of Organocatalyst Affect Chiral Induction. ChemistrySelect 2019. [DOI: 10.1002/slct.201903032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hemanshu A. Patel
- Department of ChemistryFaculty of ScienceThe Maharaja Sayajirao University of Baroda Vadodara- 390 002, Gujarat India
| | - Akash Gutal
- Department of Applied ChemistryS. V. National Institute of Technology (SVNIT) Surat- 395007, Gujarat India
| | - Suban K. Sahoo
- Department of Applied ChemistryS. V. National Institute of Technology (SVNIT) Surat- 395007, Gujarat India
| | - Hemant P. Soni
- Department of ChemistryFaculty of ScienceThe Maharaja Sayajirao University of Baroda Vadodara- 390 002, Gujarat India
| |
Collapse
|
35
|
Sánchez-Antonio O, Juaristi E. Synthesis of a new chiral organocatalyst derived from (S)-proline containing a 1,2,4-triazolyl moiety and its application in the asymmetric aldol reaction. Importance of one molecule of water generated in situ. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Vachan BS, Karuppasamy M, Vinoth P, Vivek Kumar S, Perumal S, Sridharan V, Menéndez JC. Proline and its Derivatives as Organocatalysts for Multi‐ Component Reactions in Aqueous Media: Synergic Pathways to the Green Synthesis of Heterocycles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900558] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- B. S. Vachan
- Department of Chemistry, School of Chemical and BiotechnologySASTRA Deemed University Thanjavur 613401, Tamil Nadu India
| | - Muthu Karuppasamy
- Department of Chemistry, School of Chemical and BiotechnologySASTRA Deemed University Thanjavur 613401, Tamil Nadu India
| | - Perumal Vinoth
- Department of Chemistry, School of Chemical and BiotechnologySASTRA Deemed University Thanjavur 613401, Tamil Nadu India
| | - Sundaravel Vivek Kumar
- Department of Organic Chemistry, School of ChemistryMadurai Kamaraj University Madurai 625021, Tamil Nadu India
| | - Subbu Perumal
- Department of Organic Chemistry, School of ChemistryMadurai Kamaraj University Madurai 625021, Tamil Nadu India
| | - Vellaisamy Sridharan
- Department of Chemistry, School of Chemical and BiotechnologySASTRA Deemed University Thanjavur 613401, Tamil Nadu India
- Department of Chemistry and Chemical SciencesCentral University of Jammu, Rahya-Suchani (Bagla), District-Samba Jammu 181143, Jammu and Kashmir India
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de FarmaciaUniversidad Complutense 28040 Madrid Spain
| |
Collapse
|
37
|
Pan S, Wu B, Hu J, Xu R, Jiang M, Zeng X, Zhong G. Palladium-Catalyzed Allylic Substitution Reaction of Benzothiazolylacetamide with Allylic Alcohols in Water. J Org Chem 2019; 84:10111-10119. [PMID: 31343177 DOI: 10.1021/acs.joc.9b01313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient tetrakis(triphenylphosphine)palladium- and Brønsted acid catalyzed allylic substitution reaction of benzothiazolylacetamide with allylic alcohols in water has been developed, and the corresponding allylated products were afforded in good to excellent (up to 99%) yields with high regioselectivities. This straightforward protocol exhibits good functional group tolerance and scalability.
Collapse
Affiliation(s)
- Shulei Pan
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Binqiang Wu
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Jinjin Hu
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Ruigang Xu
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Xiaofei Zeng
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| |
Collapse
|
38
|
Abstract
Introduction:The popularity of chitosan is increasing among the researchers due to its environment friendly nature, high activity and easy approachability. Chitosan based catalysts are not only the most active and selective in catalytic reaction, but their “green” accessibility also makes them promising in organic catalysis. Chitosan is commonly extracted from chitin by alkaline deacetylation and it is the second abundant biopolymer in nature after cellulose. Chitosan based catalysts are advantageous by means of non-metallic activation as it involves small organic molecules. The robustness, nontoxicity, the lack of metal leaching possibility, inertness towards moisture and oxygen, easy handling and storage are the main advantages of organocatalysts. Traditional drawbacks associated with the metal-based heterogeneous catalysts, like longer reaction times during any synthesis, metal-leaching after every reaction and structural instability of the catalyst for prolonged recycling experiments are also very negligible for chitosan based catalysts. Besides, these catalysts can contribute more in catalysis due to their reusability and these special features increase their demand as the functionalized and profitable catalysts.Objective:The thorough description about the preparation of organocatalysts from chitosan and their uniqueness and novel activities in various famous reactions includes as the main aim of this review. Reusable and recycle nature of chitosan based organocatalysts gain the advantages over traditional and conventional catalyst which is further discussed over here.Methods and Discussions:In this article only those reactions are discussed where chitosan has been used both as support in heterogeneous catalysts or used as a catalyst itself without any co-catalyst for some reactions. Owing to its high biodegradability, nontoxicity, and antimicrobial properties, chitosan is widely-used as a green and sustainable polymeric catalyst in vast number of the reactions. Most of the preparations of catalyst have been achieved by exploring the complexation properties of chitosan with metal ions in heterogeneous molecular catalysis. Organocatalysis with chitosan is primarily discussed for carbon-carbon bond-forming reactions, carbon dioxide fixation through cyclo- addition reaction, condensation reaction and fine chemical synthesis reactions. Furthermore, its application as an enantioselective catalyst is also considered here for the chiral, helical organization of the chitosan skeleton. Moreover, another advantage of this polymeric catalyst is its easy recovery and reusability for several times under solvent-free conditions which is also explored in the current article.Conclusion:Important organocatalyzed reactions with either native chitosan or functionalized chitosan as catalysts have attracted great attention in the recent past. Also, chitosan has been widely used as a very promising support for the immobilization of catalytic metals for many reactions. In this review, various reactions have been discussed which show the potentiality of chitosan as catalyst or catalyst support.
Collapse
Affiliation(s)
- Dipika Pan
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, India
| | - Jhuma Ganguly
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, India
| |
Collapse
|
39
|
Brahmachari G, Begam S. Ceric Ammonium Nitrate (CAN): An Efficient and Eco‐Friendly Catalyst for One‐Pot Synthesis of Diversely Functionalized Biscoumarins in Aqueous Medium under Ambient Conditions. ChemistrySelect 2019. [DOI: 10.1002/slct.201900961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic SynthesisDepartment of ChemistryVisva-Bharati (a Central University), Santiniketan- 731 235 West Bengal India
| | - Sanchari Begam
- Laboratory of Natural Products & Organic SynthesisDepartment of ChemistryVisva-Bharati (a Central University), Santiniketan- 731 235 West Bengal India
| |
Collapse
|
40
|
Chen Z, Hu F, Huang S, Zhao Z, Mao H, Qin W. Organocatalytic Enantioselective Selenosulfonylation of a C–C Double Bond To Form Two Stereogenic Centers in an Aqueous Medium. J Org Chem 2019; 84:8100-8111. [DOI: 10.1021/acs.joc.9b00973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Hui Mao
- Pharmaceutical and Material Engineering School, Jinhua Polytechnic, Jinhua, Zhejiang Province 321000, P. R. China
| | | |
Collapse
|
41
|
Thirukovela NS, Balaboina R, Kankala S, Vadde R, Vasam CS. Activation of nitriles by silver(I) N-heterocyclic carbenes: An efficient on-water synthesis of primary amides. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Xu EJ, Song Y, Wei ZL, Wang R, Duan HF, Lin YJ, Yang QB, Li YX. Novel chiral proline-based organocatalysts with amide and thiourea–amine units for highly efficient asymmetric aldol reaction in saturated brine without additives. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of novel proline-based organocatalysts with amide and thiourea-amine units (7a–7f) were developed and evaluated in the asymmetric aldol reaction of 4-nitrobenzaldehyde with cyclohexanone. The organocatalyst (7c or 7d, 5 mol%) exhibited efficient catalytic activity to afford aldol products in high diastereoselectivity (up to >99:1), enantioselectivity (up to >99%), and yield (up to >96%) at 0 °C in saturated brine without adding an acid. Aldol products of benzaldehyde derivatives almost universally provide high diastereoselectivity and enantioselectivity.
Collapse
Affiliation(s)
- En-Jie Xu
- College of Chemistry, Jilin University, Changchun 130012, China
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yan Song
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Zhong-Lin Wei
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Rui Wang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Hai-Feng Duan
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Ying-Jie Lin
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qing-Biao Yang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yao-Xian Li
- College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
43
|
Chen YJ, Xiang Y, He YH, Guan Z. Anti-selective direct asymmetric Mannich reaction catalyzed by protease. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Yang L, Zhao J, Yang X, Chen M, Xue Y. Effects of solvents on the DACBO-catalyzed vinylogous Henry reaction of isatin with 3,5-dimethyl-4-nitroisoxazole "on-water" and in solution from QM/MM MC simulations. RSC Adv 2019; 9:4932-4941. [PMID: 35514624 PMCID: PMC9060686 DOI: 10.1039/c9ra00082h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/30/2019] [Indexed: 02/05/2023] Open
Abstract
The mechanism of the DABCO-catalyzed vinylogous Henry reaction of isatin with 3,5-dimethyl-4-nitroisoxazole and solvent effects on it have been investigated using density functional theory (DFT) methods and QM/MM Monte Carlo (MC) simulation under "on-water" conditions as well as in methanol and THF solutions. The DFT calculations concluded that Path A, in which DABCO directly catalyzes the reaction of isatin 1a with 3,5-dimethyl-4-nitroisoxazole 2 in water, is the most favorable and the first step, the proton transfer process, is the rate-determining step for the reaction. For the roles of solvents in the reaction, QM/MM MC simulations using free energy perturbation theory and PDDG/PM3 as the QM method have been utilized to predict the free energy profiles. The results indicated that the QM/MM method reproduced well the large rate increases on-water. Solute-solvent energy pair distribution and radial distribution functions were also analyzed and illustrated that hydrogen bonding plays a significant role in stabilizing the transition structures. This work reveals the feasible reaction mechanisms and provides new insight into solvent effects for the DACBO-catalyzed vinylogous Henry reaction.
Collapse
Affiliation(s)
- Lian Yang
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University Chengdu 610064 People's Republic of China +86 28 85418330
| | - Jianming Zhao
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University Chengdu 610064 People's Republic of China +86 28 85418330
| | - Xin Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy Chengdu 610041 People's Republic of China
| | - Ming Chen
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University Chengdu 610064 People's Republic of China +86 28 85418330
| | - Ying Xue
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University Chengdu 610064 People's Republic of China +86 28 85418330
| |
Collapse
|
45
|
Konda S, Jakkampudi S, Arman HD, Zhao JCG. Enantioselective synthesis of spiro[ 4H-pyran-3,3'-oxindole] derivatives catalyzed by cinchona alkaloid thioureas: Significant water effects on the enantioselectivity. SYNTHETIC COMMUN 2019; 49:2971-2982. [PMID: 33012850 DOI: 10.1080/00397911.2019.1651866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An efficient stereoselective three-component reaction for the synthesis of functionalized spiro[4H-pyran-3,3'-oxindole] derivatives was realized through an organocatalyzed domino Knoevenagel/Michael/cyclization reaction using a cinchonidine-derived thiourea as the catalyst. Using water as the additive was found to improve the product ee values significantly. Under the optimized conditions, the reactions between isatins, malononitrile, and 1,3-dicarbonyl compounds yield the desired spirooxindole products in good yields (71-92%) and moderate to high ee values (up to 87% ee).
Collapse
Affiliation(s)
- Swapna Konda
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA
| | - Satish Jakkampudi
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA
| | - Hadi D Arman
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA
| | - John C-G Zhao
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA
| |
Collapse
|
46
|
García-Álvarez J, Hevia E, Capriati V. The Future of Polar Organometallic Chemistry Written in Bio-Based Solvents and Water. Chemistry 2018; 24:14854-14863. [PMID: 29917274 DOI: 10.1002/chem.201802873] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/22/2022]
Abstract
There is a strong imperative to reduce the release of volatile organic compounds (VOCs) into the environment, and many efforts are currently being made to replace conventional hazardous VOCs in favour of safe, green and bio-renewable reaction media that are not based on crude petroleum. Recent ground-breaking studies from a few laboratories worldwide have shown that both Grignard and (functionalised) organolithium reagents, traditionally handled under strict exclusion of air and humidity and in anhydrous VOCs, can smoothly promote both nucleophilic additions to unsaturated substrates and nucleophilic substitutions in water and other bio-based solvents (glycerol, deep eutectic solvents), competitively with protonolysis, at room temperature and under air. The chemistry of polar organometallics in the above protic media is a complex phenomenon influenced by several factors, and understanding its foundational character is stimulating in the perspective of the development of a sustainable organometallic chemistry.
Collapse
Affiliation(s)
- Joaquín García-Álvarez
- Laboratorio de Compuestos Organometálicos y Catálisis, Departamento de Química Orgánica e Inorganica (IUQOEM), Instituto, Universitario de Química Organometálica "Enrique Moles", Facultad de Química, Universidad de Oviedo, 33071, Oviedo, Spain
| | - Eva Hevia
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona, 4, 70125, Bari, Italy
| |
Collapse
|
47
|
Lee HJ, Arumugam N, Almansour AI, Kumar RS, Maruoka K. Practical synthesis of four different pseudoenantiomeric organocatalysts with both cis- and trans-substituted 1,2-cis-cyclohexanediamine structures from a common intermediate. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Bhati M, Kumari K, Easwar S. Probing the Synergistic Catalytic Model: A Rationally Designed Urea-Tagged Proline Catalyst for the Direct Asymmetric Aldol Reaction. J Org Chem 2018; 83:8225-8232. [PMID: 29847121 DOI: 10.1021/acs.joc.8b00962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A urea tag was incorporated at the C-4 position of proline, cis to its COOH group, in order to explore the prospect of a synergistic effect between the two functional groups in the transition state of the enamine route to the asymmetric aldol reaction. The catalyst proved to be an excellent performer, delivering aldols in high yields and with excellent enantio- and diastereoselectivities using just 2 mol % loading in the presence of water; it also exhibited good levels of recyclability under aqueous conditions. The favorable results reveal the interesting possibility of an intramolecular host-guest interaction between the urea and the amino acid moieties, exerting a beneficial effect on catalysis. The concept could certainly offer a new direction toward more efficient catalyst design.
Collapse
Affiliation(s)
- Meeta Bhati
- Department of Chemistry, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , NH-8, Bandarsindri , Distt. Ajmer , Rajasthan 305817 , India
| | - Kiran Kumari
- Department of Chemistry, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , NH-8, Bandarsindri , Distt. Ajmer , Rajasthan 305817 , India
| | - Srinivasan Easwar
- Department of Chemistry, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , NH-8, Bandarsindri , Distt. Ajmer , Rajasthan 305817 , India
| |
Collapse
|
49
|
Li F, Wang J, Pei W, Ma H, Li H, Cui M, Peng S, Wang S, Liu L. Catalytic alkenylation of γ-substituted butenolides with cyclic N -sulfonylated imines in water leading to α-arylidene butenolide derivatives. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Kurasawa K, Kwon E, Kuwahara S, Enomoto M. Bioinspired Total Synthesis of Delitschiapyrone A. Org Lett 2018; 20:4645-4648. [PMID: 30003791 DOI: 10.1021/acs.orglett.8b01932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A bioinspired seven-step total synthesis of delitschiapyrone A was accomplished in 32% overall yield from commercially available 4-bromo-3,5-dimethoxybenzoic acid. The key step of the synthesis is an exclusively regioselective and diastereoselective reaction cascade consisting of the Diels-Alder reaction, α-ketol rearrangement, and cyclic hemiacetalization, achieved by simply stirring a heterogeneous mixture of two Diels-Alder substrates (putative biosynthetic intermediates) and water at 35 °C, directly furnishing the pentacyclic natural product in 75% yield.
Collapse
Affiliation(s)
- Kazuki Kurasawa
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science , Tohoku University , 468-1 Aramaki Aza-Aoba , Aoba-ku , Sendai 980-8572 , Japan
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Science , Tohoku University , 6-3 Aramaki Aza-Aoba , Aoba-ku , Sendai 980-8578 , Japan
| | - Shigefumi Kuwahara
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science , Tohoku University , 468-1 Aramaki Aza-Aoba , Aoba-ku , Sendai 980-8572 , Japan
| | - Masaru Enomoto
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science , Tohoku University , 468-1 Aramaki Aza-Aoba , Aoba-ku , Sendai 980-8572 , Japan
| |
Collapse
|