1
|
Winer L, Motiei L, Margulies D. Fluorescent Investigation of Proteins Using DNA-Synthetic Ligand Conjugates. Bioconjug Chem 2023; 34:1509-1522. [PMID: 37556353 PMCID: PMC10515487 DOI: 10.1021/acs.bioconjchem.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/27/2023] [Indexed: 08/11/2023]
Abstract
The unfathomable role that fluorescence detection plays in the life sciences has prompted the development of countless fluorescent labels, sensors, and analytical techniques that can be used to detect and image proteins or investigate their properties. Motivated by the demand for simple-to-produce, modular, and versatile fluorescent tools to study proteins, many research groups have harnessed the advantages of oligodeoxynucleotides (ODNs) for scaffolding such probes. Tight control over the valency and position of protein binders and fluorescent dyes decorating the polynucleotide chain and the ability to predict molecular architectures through self-assembly, inherent solubility, and stability are, in a nutshell, the important properties of DNA probes. This paper reviews the progress in developing DNA-based, fluorescent sensors or labels that navigate toward their protein targets through small-molecule (SM) or peptide ligands. By describing the design, operating principles, and applications of such systems, we aim to highlight the versatility and modularity of this approach and the ability to use ODN-SM or ODN-peptide conjugates for various applications such as protein modification, labeling, and imaging, as well as for biomarker detection, protein surface characterization, and the investigation of multivalency.
Collapse
Affiliation(s)
- Lulu Winer
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot, 76100, Israel
| | - Leila Motiei
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot, 76100, Israel
| | - David Margulies
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot, 76100, Israel
| |
Collapse
|
2
|
Shi B, Zhou Y, Li X. Recent advances in DNA-encoded dynamic libraries. RSC Chem Biol 2022; 3:407-419. [PMID: 35441147 PMCID: PMC8985084 DOI: 10.1039/d2cb00007e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The DNA-encoded chemical library (DEL) has emerged as a powerful technology platform in drug discovery and is also gaining momentum in academic research. The rapid development of DNA-/DEL-compatible chemistries has greatly expanded the chemical space accessible to DELs. DEL technology has been widely adopted in the pharmaceutical industry and a number of clinical drug candidates have been identified from DEL selections. Recent innovations have combined DELs with other legacy and emerging techniques. Among them, the DNA-encoded dynamic library (DEDL) introduces DNA encoding into the classic dynamic combinatorial libraries (DCLs) and also integrates the principle of fragment-based drug discovery (FBDD), making DEDL a novel approach with distinct features from static DELs. In this Review, we provide a summary of the recently developed DEDL methods and their applications. Future developments in DEDLs are expected to extend the application scope of DELs to complex biological systems with unique ligand-discovery capabilities.
Collapse
Affiliation(s)
- Bingbing Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jining Medical University Jining Shandong 272067 P. R. China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission Units 1503-1511 15/F. Building 17W Hong Kong SAR China
| |
Collapse
|
3
|
Busschaert N, Maity D, Samanta PK, English NJ, Hamilton AD. Improving structural stability and anticoagulant activity of a thrombin binding aptamer by aromatic modifications. Chembiochem 2022; 23:e202100670. [PMID: 34985829 DOI: 10.1002/cbic.202100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Indexed: 11/07/2022]
Abstract
The thrombin binding aptamer (TBA) is a 15-mer DNA oligonucleotide (5'-GGTTGGTGTGGTTGG-3'), that can form a stable intramolecular antiparallel chair-like G-quadruplex structure. This aptamer shows anticoagulant properties by interacting with one of the two anion binding sites of thrombin, namely the fibrinogen-recognition exosite. Here, we demonstrate that terminal modification of TBA with aromatic fragments such as coumarin, pyrene and perylene diimide (PDI), improves the G-quadruplex stability. The large aromatic surface of these dyes can π-π stack to the G-quadruplex or to each other, thereby stabilizing the aptamer. With respect to the original TBA, monoPDI-functionalized TBA exhibited the most remarkable improvement in melting temperature (ΔT m ≈ +18 °C) and displayed enhanced anticoagulant activity.
Collapse
Affiliation(s)
- Nathalie Busschaert
- Tulane University, Department of Chemistry, 6400 Freret St, 70118, New Orleans, UNITED STATES
| | | | - Pralok K Samanta
- University College Dublin, School of Chemical and Bioprocess engineering, IRELAND
| | - Niall J English
- University College Dublin, School of chemical and Bioprocess engineering, IRELAND
| | | |
Collapse
|
4
|
Chan MS, Leung HM, Wong SW, Lin Z, Gao Q, Chang TJH, Lai KWC, Lo PK. Reversible reconfiguration of high-order DNA nanostructures by employing G-quartet toeholds as adhesive units. NANOSCALE 2020; 12:2464-2471. [PMID: 31915778 DOI: 10.1039/c9nr08070h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
G-quadruplex structures are becoming useful alternative interaction modules for the assembly of DNA nanomaterials because of their unique inducibility by cations. In this study, we demonstrated a new strategy for the assembly of polymeric DNA nanoarchitectures in the presence of cations, such as K+ and Na+, by employing G-quartet toeholds at the edges of discrete mini-square DNA building blocks as adhesive units. In comparison with the Watson-Crick base-paired duplex linkers, G-quadruplex arrays embedded in the self-assembled DNA system exhibit higher thermal stability. The morphology of these doughnut-shaped or spherical-shaped DNA nanostructures is highly regulated by the orientation of the folded G-quadruplexes either in parallel or antiparallel orientation in response to different cations. Furthermore, this G-quadruplex-mediated assembly strategy is able to manipulate the cycling of DNA assemblies between discrete and polymeric states by means of introducing cations and chelating agents sequentially. This property enables the reversible manipulation of the DNA-based nanosystems for at least 4 cycles. The G-quadruplex array embedded in this self-assembled DNA system can become a scaffold for functional molecules, as a number of organic molecules and proteins exhibit specific binding to these G-quadruplex structures. Besides, embedded G-quadruplexes are also considered as functional components of nanoscale electronic materials due to their electron transport through the stacked orientation of the G-quartet. Therefore, this work is an important step towards obtaining reversible, responsive G-quadruplex-induced DNA-based nanomaterials with versatile functionalities which will be highly useful in further electronic, biomedical and drug-delivery applications.
Collapse
Affiliation(s)
- Miu Shan Chan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Hoi Man Leung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Sze Wing Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Zihong Lin
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Qi Gao
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Tristan Juin Han Chang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - King Wai Chiu Lai
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China and Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
5
|
|
6
|
Lustgarten O, Carmieli R, Motiei L, Margulies D. A Molecular Secret Sharing Scheme. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Omer Lustgarten
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Raanan Carmieli
- Department of Chemical Research Support; Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Leila Motiei
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 7610001 Israel
| | - David Margulies
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 7610001 Israel
| |
Collapse
|
7
|
Lustgarten O, Carmieli R, Motiei L, Margulies D. A Molecular Secret Sharing Scheme. Angew Chem Int Ed Engl 2018; 58:184-188. [DOI: 10.1002/anie.201809855] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/03/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Omer Lustgarten
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Raanan Carmieli
- Department of Chemical Research Support; Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Leila Motiei
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 7610001 Israel
| | - David Margulies
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 7610001 Israel
| |
Collapse
|
8
|
Su X, Zhou X, Zhang N, Zhu M, Zhang H, Jayawickramarajah J. A stable bidentate protein binder achieved via DNA self-assembly driven ligand migration. Chem Commun (Camb) 2016. [PMID: 26225890 DOI: 10.1039/c5cc03213j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herein we disclose the development of two complementary single stranded DNA-small molecule chimeras (DCs) that by themselves only bind weakly to a protein target (human serum albumin; HSA). However, upon self-assembly, the DC duplex facilitates a ligand migration reaction leading to a covalently fastened high-affinity, bidentate, protein-binder that resides at the terminus of only one of the DC strands. Due to this specific localization, the bidentate projection remains intact—and thus the system continues to strongly bind HSA—even under conditions that denature and degrade the DNA scaffolds.
Collapse
Affiliation(s)
- Xiaoye Su
- Department of Chemistry, Tulane University, Louisiana 70118, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Nissinkorn Y, Lahav‐Mankovski N, Rabinkov A, Albeck S, Motiei L, Margulies D. Sensing Protein Surfaces with Targeted Fluorescent Receptors. Chemistry 2015; 21:15981-7. [DOI: 10.1002/chem.201502069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Yael Nissinkorn
- Department of Organic Chemistry, Weizmann Institute of Science, 76100, Rehovot (Israel)
| | - Naama Lahav‐Mankovski
- Department of Organic Chemistry, Weizmann Institute of Science, 76100, Rehovot (Israel)
| | - Aharon Rabinkov
- Department of Biological Services, Weizmann Institute of Science, 76100, Rehovot (Israel)
| | - Shira Albeck
- Israel Structural Proteomics Center, Weizmann Institute of Science, 76100, Rehovot (Israel)
| | - Leila Motiei
- Department of Organic Chemistry, Weizmann Institute of Science, 76100, Rehovot (Israel)
| | - David Margulies
- Department of Organic Chemistry, Weizmann Institute of Science, 76100, Rehovot (Israel)
| |
Collapse
|
10
|
Li G, Zheng W, Chen Z, Zhou Y, Liu Y, Yang J, Huang Y, Li X. Design, preparation, and selection of DNA-encoded dynamic libraries. Chem Sci 2015; 6:7097-7104. [PMID: 28757982 PMCID: PMC5510007 DOI: 10.1039/c5sc02467f] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/09/2015] [Indexed: 01/10/2023] Open
Abstract
We report a method for the preparation and selection of DNA-encoded dynamic libraries (DEDLs). The library is composed of two sets of DNA-linked small molecules that are under dynamic exchange through DNA hybridization. Addition of the protein target shifted the equilibrium, favouring the assembly of high affinity bivalent binders. Notably, we introduced a novel locking mechanism to stop the dynamic exchange and "freeze" the equilibrium, thereby enabling downstream hit isolation and decoding by PCR amplification and DNA sequencing. Our DEDL approach has circumvented the limitation of library size and realized the analysis and selection of large dynamic libraries. In addition, this method also eliminates the requirement for modified and immobilized target proteins.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education , Beijing National Laboratory of Molecular Sciences (BNLMS) , College of Chemistry and Molecular Engineering , Peking University , Beijing , China 100871 .
| | - Wenlu Zheng
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , China 518055
| | - Zitian Chen
- Biodynamic Optical Imaging Centre (BIOPIC) and College of Engineering , Peking University , Beijing , China 100871
| | - Yu Zhou
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , China 518055
| | - Yu Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education , Beijing National Laboratory of Molecular Sciences (BNLMS) , College of Chemistry and Molecular Engineering , Peking University , Beijing , China 100871 .
| | - Junrui Yang
- Biodynamic Optical Imaging Centre (BIOPIC) and College of Engineering , Peking University , Beijing , China 100871
| | - Yanyi Huang
- Biodynamic Optical Imaging Centre (BIOPIC) and College of Engineering , Peking University , Beijing , China 100871
| | - Xiaoyu Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education , Beijing National Laboratory of Molecular Sciences (BNLMS) , College of Chemistry and Molecular Engineering , Peking University , Beijing , China 100871 . .,Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , China 518055
| |
Collapse
|
11
|
Chu X, Battle CH, Zhang N, Aryal GH, Mottamal M, Jayawickramarajah J. Bile Acid Conjugated DNA Chimera that Conditionally Inhibits Carbonic Anhydrase-II in the Presence of MicroRNA-21. Bioconjug Chem 2015; 26:1606-12. [PMID: 26191606 DOI: 10.1021/acs.bioconjchem.5b00231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In order to tackle the issue of systemic toxicity in chemotherapy, there is a need to develop novel mechanisms for the activation of protein inhibitors using biomarkers overexpressed in cancer cells. Many current strategies focus on using cancer associated enzymes as a triggering agent for prodrugs. Herein, we detail an alternative approach that harnesses a microRNA (miR-21) that is overexpressed in cancers as the trigger that activates an inhibitor of human carbonic anhydrase-II (hCA-II). Specifically, we have developed a DNA-small molecule chimera (DC) composed of an hCA-II binding lithocholic acid amide (LAA) headgroup that can transition from a rigid duplex state (that does not bind appreciably to hCA) to a single-stranded conformation via a miR-21 trigger. The activated single-stranded DC can project the LAA headgroup into the hCA-II active site and is a robust hCA-II inhibitor (K(i) of 3.12 μM). This work may spur research into developing new classes of cancer selective protein inhibitors.
Collapse
Affiliation(s)
- Xiaozhu Chu
- †Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Cooper H Battle
- †Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Nan Zhang
- †Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Gyan H Aryal
- †Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Madhusoodanan Mottamal
- ‡RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | | |
Collapse
|
12
|
Li G, Zheng W, Liu Y, Li X. Novel encoding methods for DNA-templated chemical libraries. Curr Opin Chem Biol 2015; 26:25-33. [PMID: 25635927 DOI: 10.1016/j.cbpa.2015.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/08/2015] [Indexed: 12/12/2022]
Abstract
Among various types of DNA-encoded chemical libraries, DNA-templated library takes advantage of the sequence-specificity of DNA hybridization, enabling not only highly effective DNA-templated chemical reactions, but also high fidelity in library encoding. This brief review summarizes recent advances that have been made on the encoding strategies for DNA-templated libraries, and it also highlights their respective advantages and limitations for the preparation of DNA-encoded libraries.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, Beijing National Laboratory of Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenlu Zheng
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ying Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, Beijing National Laboratory of Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoyu Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, Beijing National Laboratory of Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
13
|
Chmielewski MJ, Buhler E, Candau J, Lehn JM. Multivalency by Self-Assembly: Binding of Concanavalin A to Metallosupramolecular Architectures Decorated with Multiple Carbohydrate Groups. Chemistry 2014; 20:6960-77. [DOI: 10.1002/chem.201304511] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 12/17/2022]
|
14
|
Mignani S, El Kazzouli S, Bousmina MM, Majoral JP. Dendrimer Space Exploration: An Assessment of Dendrimers/Dendritic Scaffolding as Inhibitors of Protein–Protein Interactions, a Potential New Area of Pharmaceutical Development. Chem Rev 2013; 114:1327-42. [DOI: 10.1021/cr400362r] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Serge Mignani
- Laboratoire de Chimie et de
Biochimie Pharmacologiques
et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, 75006 Paris, France
| | - Saïd El Kazzouli
- Euro-Mediterranean University of Fez, Fès-Shore, Route de Sidi harazem, Fès, Morocco
| | - Mosto M. Bousmina
- Euro-Mediterranean University of Fez, Fès-Shore, Route de Sidi harazem, Fès, Morocco
- Hassan II Academy of Science and Technology, Avenue Mohammed
VI, 10222 Rabat, Morocco
| | - Jean-Pierre Majoral
- Laboratoire
de Chimie de Coordination, Centre National de la Recherche Scientifique, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| |
Collapse
|
15
|
Zhang N, Chu X, Fathalla M, Jayawickramarajah J. Photonic DNA-chromophore nanowire networks: harnessing multiple supramolecular assembly modes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10796-806. [PMID: 23895408 PMCID: PMC3826913 DOI: 10.1021/la402214p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Photonic DNA nanostructures are typically prepared by the assembly of multiple sequences of long DNA strands that are conjugated covalently to various dye molecules. Herein we introduce a noncovalent method for the construction of porphyrin-containing DNA nanowires and their networks that uses the programmed assembly of a single, very short, oligodeoxyribonucleotide sequence. Specifically, our strategy exploits a number of supramolecular binding modalities (including DNA base-pairing, metal-ion coordination, and β-cyclodextrin-adamantane derived host-guest interactions) for simultaneous nanowire assembly and porphyrin incorporation. Furthermore, we also show that the resultant DNA-porphyrin assembly can be further functionalized with a complementary "off-the-shelf" DNA binding dye resulting in photonic structures with broadband absorption and energy transfer capabilities.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana, 70118. Fax: (+1) 504-865-5596 Tel: (+1) 504-862-3580;
| | - Xiaozhu Chu
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana, 70118. Fax: (+1) 504-865-5596 Tel: (+1) 504-862-3580;
| | - Maher Fathalla
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana, 70118. Fax: (+1) 504-865-5596 Tel: (+1) 504-862-3580;
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Janarthanan Jayawickramarajah
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana, 70118. Fax: (+1) 504-865-5596 Tel: (+1) 504-862-3580;
- Corresponding author: Janarthanan Jayawickramarajah, Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana, 70118. Fax: (+1) 504-865-5596 Tel: (+1) 504-862-3580;
| |
Collapse
|
16
|
Battle C, Chu X, Jayawickramarajah J. Oligonucleotide-Based Systems for Input-Controlled and Non-Covalently Regulated Protein-Binding. Supramol Chem 2013; 25. [PMID: 24187478 DOI: 10.1080/10610278.2013.810337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Supramolecular chemists continuously take inspiration from complex biological systems to develop functional molecules involved in molecular recognition and self-assembly. In this regard, "smart" synthetic molecules that emulate allosteric proteins are both exciting and challenging, since many allosteric proteins can be considered as molecular switches that bind to other protein targets in a non-covalent fashion, and importantly, are capable of having their output activity controlled by prior binding to input molecules. This review discusses the foundations and passage toward the development of non-covalently operated oligonucleotide-based systems with protein-binding capacity that can be precisely regulated in an input-controlled manner.
Collapse
Affiliation(s)
- Cooper Battle
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | | | | |
Collapse
|
17
|
Wilson AJ, Ault JR, Filby MH, Philips HIA, Ashcroft AE, Fletcher NC. Protein destabilisation by ruthenium(II) tris-bipyridine based protein-surface mimetics. Org Biomol Chem 2013; 11:2206-12. [PMID: 23411505 PMCID: PMC3731202 DOI: 10.1039/c3ob26251k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly functionalised ruthenium(II) tris-bipyridine receptor 1 which acts as a selective sensor for equine cytochrome c (cyt c) is shown to destabilise the native protein conformation by around 25 °C. Receptors 2 and 3 do not exert this effect confirming the behaviour is a specific effect of molecular recognition between 1 and cyt c, whilst the absence of a destabilising effect on 60% acetylated cyt c demonstrates the behaviour of 1 to be protein specific. Molecular recognition also modifies the conformational properties of the target protein at room temperature as evidenced by ion-mobility spectrometry (IMS) and accelerated trypsin proteolysis.
Collapse
Affiliation(s)
- Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
18
|
Doluca O, Withers JM, Filichev VV. Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem Rev 2013; 113:3044-83. [PMID: 23391174 DOI: 10.1021/cr300225q] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Osman Doluca
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | | | | |
Collapse
|
19
|
Jiang QQ, Bartsch L, Sicking W, Wich PR, Heider D, Hoffmann D, Schmuck C. A new approach to inhibit human β-tryptase by protein surface binding of four-armed peptide ligands with two different sets of arms. Org Biomol Chem 2013; 11:1631-9. [DOI: 10.1039/c3ob27302d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
20
|
Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp EW, Haag R. Multivalenz als chemisches Organisations- und Wirkprinzip. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201114] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp EW, Haag R. Multivalency as a Chemical Organization and Action Principle. Angew Chem Int Ed Engl 2012; 51:10472-98. [DOI: 10.1002/anie.201201114] [Citation(s) in RCA: 688] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Indexed: 12/26/2022]
|
22
|
Silverman SK. DNA as a versatile chemical component for catalysis, encoding, and stereocontrol. Angew Chem Int Ed Engl 2011; 49:7180-201. [PMID: 20669202 DOI: 10.1002/anie.200906345] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
DNA (deoxyribonucleic acid) is the genetic material common to all of Earth's organisms. Our biological understanding of DNA is extensive and well-exploited. In recent years, chemists have begun to develop DNA for nonbiological applications in catalysis, encoding, and stereochemical control. This Review summarizes key advances in these three exciting research areas, each of which takes advantage of a different subset of DNA's useful chemical properties.
Collapse
Affiliation(s)
- Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
23
|
Filby MH, Muldoon J, Dabb S, Fletcher NC, Ashcroft AE, Wilson AJ. Protein surface recognition using geometrically pure Ru(II) tris(bipyridine) derivatives. Chem Commun (Camb) 2011; 47:559-61. [PMID: 21103575 PMCID: PMC3172587 DOI: 10.1039/c0cc04754f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 11/15/2010] [Indexed: 11/21/2022]
Abstract
This manuscript illustrates that the geometric arrangement of protein-binding groups around a ruthenium(II) core leads to dramatic differences in cytochrome c (cyt c) binding highlighting that it is possible to define synthetic receptors with shape complementarity to protein surfaces.
Collapse
Affiliation(s)
- Maria H. Filby
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. ; Fax: +44 (0)113 3436565; Tel: +44 (0)113 3431409
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - James Muldoon
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. ; Fax: +44 (0)113 3436565; Tel: +44 (0)113 3431409
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Serin Dabb
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK
| | - Nicholas C. Fletcher
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Andrew J. Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. ; Fax: +44 (0)113 3436565; Tel: +44 (0)113 3431409
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
24
|
Diezmann F, Seitz O. DNA-guided display of proteins and protein ligands for the interrogation of biology. Chem Soc Rev 2011; 40:5789-801. [DOI: 10.1039/c1cs15054e] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Combinatorial protein recognition as an alternative approach to antibody-mimetics. Curr Opin Chem Biol 2010; 14:705-12. [DOI: 10.1016/j.cbpa.2010.07.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 11/23/2022]
|
26
|
Watanabe K, Kano K. Time-Dependent Enzyme Activity Dominated by Dissociation of J-Aggregates Bound to Protein Surface. Bioconjug Chem 2010; 21:2332-8. [DOI: 10.1021/bc100355v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenji Watanabe
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| | - Koji Kano
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| |
Collapse
|
27
|
Rosenzweig BA, Ross NT, Adler MJ, Hamilton AD. Altered binding of a multimeric protein by changing the self-assembling properties of its substrate. J Am Chem Soc 2010; 132:6749-54. [PMID: 20415446 DOI: 10.1021/ja100485n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Artificially controlled cell recognition has potentially far-reaching applications in both the understanding and altering of biological function. The event of recognition often involves a multimeric protein binding a cellular membrane. While such an interaction is energetically favorable, it has been surprisingly underexploited in artificial control of recognition. Herein we describe how changing properties of substrate (phosphocholine, PC) self-assembly can affect both binding behavior and substrate affinity to a pentameric recognition protein (C-reactive protein, CRP). PC was modified with a short, self-assembling DNA strand to make the substrate self-assembly sensitive and responsive to ionic environment. A significant shift in CRP binding affinity was observed when substrates were assembled in the presence of Cs(+) rather than K(+). Furthermore, alteration of the linker length tethering PC to DNA showed trends similar to other multivalent systems. In optimizing these linker lengths, positive cooperativity increased and K(d) of the substrate assembly to CRP improved roughly 1000-fold. Such experiments both inform our understanding of biological, multivalent interactions in self-assembling systems and present a potential method to exogenously control events in cell recognition.
Collapse
Affiliation(s)
- Brooke A Rosenzweig
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06511, USA
| | | | | | | |
Collapse
|
28
|
Scheuermann J, Neri D. DNA-encoded chemical libraries: a tool for drug discovery and for chemical biology. Chembiochem 2010; 11:931-7. [PMID: 20391457 DOI: 10.1002/cbic.201000066] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jörg Scheuermann
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland.
| | | |
Collapse
|
29
|
Silverman SK. DNA - eine vielseitige chemische Verbindung für die Katalyse, zur Kodierung und zur Stereokontrolle. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906345] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
Saha S, Cai J, Eiler D, Hamilton AD. Programing the formation of DNA and PNA quadruplexes by pi-pi-stacking interactions. Chem Commun (Camb) 2010; 46:1685-7. [PMID: 20177616 PMCID: PMC3186060 DOI: 10.1039/b915955j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Guanine (G) rich G(4)T(4)G(4) DNA and homologous PNA strands tend to form antiparallel dimeric quadruplexes. In contrast, the same DNA strands carrying planar aromatic 5'-residues preferentially form parallel DNA quadruplex. Conformation and composition of the DNA quadruplexes can be programed by pi-pi-stacking interaction exerted by the 5'-residues.
Collapse
Affiliation(s)
- Sourav Saha
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, USA. Fax: (+1) 203-432-3221; Tel: (+1) 203-432-5570;
| | - Jianfeng Cai
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, USA. Fax: (+1) 203-432-3221; Tel: (+1) 203-432-5570;
| | - Daniel Eiler
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, USA. Fax: (+1) 203-432-3221; Tel: (+1) 203-432-5570;
| | - Andrew D. Hamilton
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, USA. Fax: (+1) 203-432-3221; Tel: (+1) 203-432-5570;
| |
Collapse
|
31
|
Muldoon J, Ashcroft AE, Wilson AJ. Selective protein-surface sensing using ruthenium(II) tris(bipyridine) complexes. Chemistry 2010; 16:100-3. [PMID: 19946912 DOI: 10.1002/chem.200902368] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James Muldoon
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
32
|
Zhu Z, Cuozzo J. Review article: high-throughput affinity-based technologies for small-molecule drug discovery. ACTA ACUST UNITED AC 2010; 14:1157-64. [PMID: 19822881 DOI: 10.1177/1087057109350114] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-throughput affinity-based technologies are rapidly growing in use as primary screening methods in drug discovery. In this review, their principles and applications are described and their impact on small-molecule drug discovery is evaluated. In general, these technologies can be divided into 2 groups: those that detect binding interactions by measuring changes to the protein target and those that detect bound compounds. Technologies detecting binding interactions by focusing on the protein have limited throughput but can reveal mechanistic information about the binding interaction; technologies detecting bound compounds have very high throughput, some even significantly higher than current high-throughput screening technologies, but offer limited information about the binding interaction. In addition, the appropriate use of affinity-based technologies is discussed. Finally, nanotechnology is predicted to generate a significant impact on the future of affinity-based technologies.
Collapse
|
33
|
Chiba F, Mann G, Twyman LJ. Investigating possible changes in protein structure during dendrimer–protein binding. Org Biomol Chem 2010; 8:5056-8. [DOI: 10.1039/c0ob00041h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
van der Wijst T, Lippert B, Swart M, Guerra CF, Bickelhaupt FM. Differential stabilization of adenine quartets by anions and cations. J Biol Inorg Chem 2009; 15:387-97. [PMID: 19943071 PMCID: PMC2830606 DOI: 10.1007/s00775-009-0611-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/26/2009] [Indexed: 11/29/2022]
Abstract
We have investigated the structures and stabilities of four different adenine quartets with alkali and halide ions in the gas phase and in water, using dispersion-corrected density functional theory at the BLYP-D/TZ2P level. First, we examine the empty quartets and how they interact with alkali cations and halide anions with formation of adenine quartet–ion complexes. Second, we examine the interaction in a stack, in which a planar adenine quartet interacts with a cation or anion in the periphery as well as in the center of the quartet. Interestingly, for the latter situation, we find that both cations and anions can stabilize a planar adenine quartet in a stack.
Collapse
Affiliation(s)
- Tushar van der Wijst
- Fakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | | | | | | | | |
Collapse
|
35
|
Wilson AJ. Inhibition of protein-protein interactions using designed molecules. Chem Soc Rev 2009; 38:3289-300. [PMID: 20449049 DOI: 10.1039/b807197g] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although many cellular processes depend upon enzymatic reactions, protein-protein interactions (PPIs) mediate a large number of important regulatory pathways and thus play a central role in disease development. In order to understand and selectively inhibit cellular signalling pathways, there is a pressing need for small molecules that target PPIs, particularly in the context of pharmaceutical development. This tutorial review will introduce the relevance of PPIs to chemical biology and highlight the key challenges in designing inhibitors. Some of the successes using conventional approaches to the identification of small-molecule PPI inhibitors will be highlighted, and also the reasons why these approaches have not always proven successful. Several general approaches tailored to particular protein topologies are emerging for the design of scaffolds that inhibit PPIs-these will form the major content of this review. Finally a summary of the challenges to be faced in developing inhibitors of PPIs into drug leads and how these challenges may differ from those encountered with enzyme-like targets will be given.
Collapse
Affiliation(s)
- Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, LS2 9JT, Leeds, UK.
| |
Collapse
|
36
|
Rosenzweig BA, Ross NT, Tagore DM, Jayawickramarajah J, Saraogi I, Hamilton AD. Multivalent protein binding and precipitation by self-assembling molecules on a DNA pentaplex scaffold. J Am Chem Soc 2009; 131:5020-1. [PMID: 19226172 DOI: 10.1021/ja809219p] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A supramolecular assembly containing an isoguanosine pentaplex with both a "protein-binding" face and a "reporter" face has been generated. When phosphocholine is appended to the protein-binding face this supramolecular assembly binds multivalently to the pentameric human C-reactive protein, a biomolecule implicated in inflammation and heart disease.
Collapse
Affiliation(s)
- Brooke A Rosenzweig
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06511, USA
| | | | | | | | | | | |
Collapse
|
37
|
Rosenzweig BA, Hamilton AD. Self-assembly of a four-helix bundle on a DNA quadruplex. Angew Chem Int Ed Engl 2009; 48:2749-51. [PMID: 19267377 DOI: 10.1002/anie.200804849] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Come together: A novel method for assembling monomers and controlling structure of a de novo helix bundle protein is described. A guanine (G)-rich oligodeoxynucleotide scaffold forms a hydrogen-bonded DNA quadruplex in the presence of potassium counterions, thereby inducing a helical structure and fourfold stoichiometry in conjugated, amphiphilic peptide sequences. The DNA scaffold shows potential for rapidly assembling designed proteins.
Collapse
Affiliation(s)
- Brooke A Rosenzweig
- Department of Chemistry, Yale University, P.O. Box 208017, New Haven, CT 06520-8107, USA
| | | |
Collapse
|
38
|
Harris DC, Chu X, Jayawickramarajah J. Protein recognition via oligonucleotide-linked small molecules: Utilisation of the hemin-binding aptamer. Supramol Chem 2009. [DOI: 10.1080/10610270802549717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- D. Calvin Harris
- a Department of Chemistry , Tulane University , New Orleans, USA
| | - Xiaozhu Chu
- a Department of Chemistry , Tulane University , New Orleans, USA
| | | |
Collapse
|
39
|
Cai J, Shapiro EM, Hamilton AD. Self-assembling DNA quadruplex conjugated to MRI contrast agents. Bioconjug Chem 2009; 20:205-8. [PMID: 19125646 DOI: 10.1021/bc8004182] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the preparation and magnetic resonance (MR) characterization of new MRI contrast agents based on gadolinium complexes conjugated to a self-assembling DNA quadruplex scaffold. As a single gadolinium-DOTA chelated DNA strand, the r(1) molar relaxivity is 6.4 mM(-1) s(-1) per Gd and increases to 11.7 mM(-1) s(-1) per Gd upon formation of a DNA quadruplex. Similar results were obtained when a gadolinium-DOTA dendrimer was conjugated to DNA, with the r(1) molar relaxivity increasing to 12.9 mM(-1) s(-1) per Gd upon the formation of DNA quadruplex, compared to that of 6.0 mM(-1) s(-1) for a single strand of gadolinium-DOTA dendrimer chelate. This yields an r(1) molar relaxivity of 154.8 and 46.8 mM(-1) s(-1) per DNA quadruplex based on DOTA dendrimer or monomer, respectively. Importantly, the DNA quadruplex scaffold is approximately 2.5 nm(3) in size, potentially enabling this type of contrast agent to be used for targeted delivery in vivo to detect specific cells or tissues, even behind intact blood vessels.
Collapse
Affiliation(s)
- Jianfeng Cai
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, USA
| | | | | |
Collapse
|
40
|
|
41
|
Margulies D, Hamilton A. Protein Recognition by an Ensemble of Fluorescent DNA G-Quadruplexes. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200804887] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Margulies D, Hamilton A. Protein Recognition by an Ensemble of Fluorescent DNA G-Quadruplexes. Angew Chem Int Ed Engl 2009; 48:1771-4. [DOI: 10.1002/anie.200804887] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Abstract
The inhibition of protein-protein interactions using small molecules is a viable approach for the treatment of a range of pathological conditions that result from a malfunctioning of these interactions. Our strategy for the design of such agents involves the mimicry of side-chain residues on one face of the alpha-helix; these residues frequently play a key role in mediating protein-protein interactions. The first-generation terphenyl scaffold, with a 3,2',2''-substitution pattern, is able to successfully mimic key helix residues and disrupt therapeutically relevant interactions, including the Bcl-X(L)-Bak and the p53-hDM2 (human double minute 2) interactions that are implicated in cancer. The second- and third-generation scaffolds have resulted in greater synthetic accessibility and more drug-like character in these molecules.
Collapse
|
44
|
Cai J, Rosenzweig B, Hamilton A. Inhibition of Chymotrypsin by a Self-Assembled DNA Quadruplex Functionalized with Cyclic Peptide Binding Fragments. Chemistry 2008; 15:328-32. [DOI: 10.1002/chem.200801637] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
45
|
Martos V, Castreño P, Valero J, de Mendoza J. Binding to protein surfaces by supramolecular multivalent scaffolds. Curr Opin Chem Biol 2008; 12:698-706. [DOI: 10.1016/j.cbpa.2008.08.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 08/18/2008] [Indexed: 11/26/2022]
|
46
|
Harris DC, Chu X, Jayawickramarajah J. DNA-small molecule chimera with responsive protein-binding ability. J Am Chem Soc 2008; 130:14950-1. [PMID: 18855469 DOI: 10.1021/ja806552c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this communication, we disclose a generalizable strategy for developing agents with regulable protein-binding ability. In particular, a responsive DNA-small molecule chimera (DC) 1 consisting of two synthetic protein-binding arms and a core oligonucleotide (ODN) domain is discussed. DC 1 can be cycled from a bidentate intramolecular quadruplex form to a monodentate duplex structure, via addition of external ODN stimuli. Importantly, these distinct secondary structures of 1 lead to significantly different protein-binding abilities, with the bidentate conformation showing a 20-fold enhancement (with a 0.8 microM dissociation constant, Kd) in trypsin-binding potency.
Collapse
Affiliation(s)
- D Calvin Harris
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, USA
| | | | | |
Collapse
|
47
|
Röglin L, Seitz O. Controlling the activity of peptides and proteins with smart nucleic acid–protein hybrids. Org Biomol Chem 2008; 6:3881-7. [DOI: 10.1039/b807838f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
48
|
Jayawickramarajah J, Tagore D, Tsou L, Hamilton A. Allosteric Control of Self-Assembly: Modulating the Formation of Guanine Quadruplexes through Orthogonal Aromatic Interactions. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200701883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Jayawickramarajah J, Tagore DM, Tsou LK, Hamilton AD. Allosteric Control of Self-Assembly: Modulating the Formation of Guanine Quadruplexes through Orthogonal Aromatic Interactions. Angew Chem Int Ed Engl 2007; 46:7583-6. [PMID: 17823899 DOI: 10.1002/anie.200701883] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
|