1
|
Zhang W, Qin W, Li H, Wu AM. Biosynthesis and Transport of Nucleotide Sugars for Plant Hemicellulose. FRONTIERS IN PLANT SCIENCE 2021; 12:723128. [PMID: 34868108 PMCID: PMC8636097 DOI: 10.3389/fpls.2021.723128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/22/2021] [Indexed: 05/13/2023]
Abstract
Hemicellulose is entangled with cellulose through hydrogen bonds and meanwhile acts as a bridge for the deposition of lignin monomer in the secondary wall. Therefore, hemicellulose plays a vital role in the utilization of cell wall biomass. Many advances in hemicellulose research have recently been made, and a large number of genes and their functions have been identified and verified. However, due to the diversity and complexity of hemicellulose, the biosynthesis and regulatory mechanisms are yet unknown. In this review, we summarized the types of plant hemicellulose, hemicellulose-specific nucleotide sugar substrates, key transporters, and biosynthesis pathways. This review will contribute to a better understanding of substrate-level regulation of hemicellulose synthesis.
Collapse
Affiliation(s)
- Wenjuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Wenqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Ai-min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Ai-min Wu,
| |
Collapse
|
2
|
Pandey RP, Parajuli P, Pokhrel AR, Sohng JK. Biosynthesis of novel 7,8-dihydroxyflavone glycoside derivatives and in silico
study of their effects on BACE1 inhibition. Biotechnol Appl Biochem 2017; 65:128-137. [DOI: 10.1002/bab.1570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/03/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering; SunMoon University; Asan-si Chungnam Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering; SunMoon University; Asan-si Chungnam Republic of Korea
| | - Prakash Parajuli
- Department of Life Science and Biochemical Engineering; SunMoon University; Asan-si Chungnam Republic of Korea
| | - Anaya Raj Pokhrel
- Department of Life Science and Biochemical Engineering; SunMoon University; Asan-si Chungnam Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering; SunMoon University; Asan-si Chungnam Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering; SunMoon University; Asan-si Chungnam Republic of Korea
| |
Collapse
|
3
|
Su C, Zhao XQ, Wang HN, Qiu RG, Tang L. Seamless stitching of biosynthetic gene cluster containing type I polyketide synthases using Red/ET mediated recombination for construction of stably co-existing plasmids. Gene 2014; 554:233-40. [PMID: 25311549 DOI: 10.1016/j.gene.2014.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/23/2014] [Accepted: 10/09/2014] [Indexed: 01/27/2023]
Abstract
Type I polyketides are natural products with diverse functions that are important for medical and agricultural applications. Manipulation of large biosynthetic gene clusters containing type I polyketide synthases (PKS) for heterologous expression is difficult due to the existence of conservative sequences of PKS in multiple modules. Red/ET mediated recombination has permitted rapid manipulation of large fragments; however, it requires insertion of antibiotic selection marker in the cassette, raising the problem of interference of expression by leaving "scar" sequence. Here, we report a method for precise seamless stitching of large polyketide biosynthetic gene cluster using a 48.4kb fragment containing type I PKS involved in fostriecin biosynthesis as an example. rpsL counter-selection was used to assist seamless stitching of large fragments, where we have overcome both the size limitations and the restriction on endonuclease sites during the Red/ET recombination. The compatibility and stability of the co-existing vectors (p184 and pMT) which respectively accommodate 16kb and 32.4kb inserted fragments were demonstrated. The procedure described here is efficient for manipulation of large DNA fragments for heterologous expression.
Collapse
Affiliation(s)
- Chun Su
- Research Center for Molecular Medicine, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin-Qing Zhao
- Research Center for Molecular Medicine, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China; School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Hai-Na Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Rong-Guo Qiu
- Research Center for Molecular Medicine, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China; Beijing Biostar Technologies, Ltd., Beijing 101111, China
| | - Li Tang
- Research Center for Molecular Medicine, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China; Beijing Biostar Technologies, Ltd., Beijing 101111, China.
| |
Collapse
|
4
|
Gutmann A, Krump C, Bungaruang L, Nidetzky B. A two-step O- to C-glycosidic bond rearrangement using complementary glycosyltransferase activities. Chem Commun (Camb) 2014; 50:5465-8. [PMID: 24714756 DOI: 10.1039/c4cc00536h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
An efficient 2'-O- to 3'-C-β-d-glucosidic bond rearrangement on the dihydrochalcone phloretin to convert phlorizin into nothofagin was achieved by combining complementary O-glycosyltransferase (OGT) and C-glycosyltransferase (CGT) activities in a one-pot transformation containing catalytic amounts of uridine 5'-diphosphate (UDP). Two separate enzymes or a single engineered dual-specific O/CGT were applied. Overall (quantitative) conversion occurred in two steps via intermediary UDP-glucose and phloretin.
Collapse
Affiliation(s)
- Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, A-8010 Graz, Austria.
| | | | | | | |
Collapse
|
5
|
Zhang J, Singh S, Hughes RR, Zhou M, Sunkara M, Morris AJ, Thorson JS. A simple strategy for glycosyltransferase-catalyzed aminosugar nucleotide synthesis. Chembiochem 2014; 15:647-52. [PMID: 24677528 PMCID: PMC4051237 DOI: 10.1002/cbic.201300779] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Indexed: 12/18/2022]
Abstract
A set of 2-chloro-4-nitrophenyl glucosamino-/xylosaminosides were synthesized and assessed as potential substrates in the context of glycosyltransferase-catalyzed formation of the corresponding UDP/TDP-α-D-glucosamino-/xylosaminosugars and in single-vessel model transglycosylation reactions. This study highlights a robust platform for aminosugar nucleotide synthesis and reveals OleD Loki to be a proficient catalyst for U/TDP-aminosugar synthesis and utilization
Collapse
Affiliation(s)
- Jianjun Zhang
- Dr. J. Zhang, Prof. S. Singh, R. R. Hughes, Prof. J. S. Thorson Center for Pharmaceutical Research and Innovation University of Kentucky 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Shanteri Singh
- Dr. J. Zhang, Prof. S. Singh, R. R. Hughes, Prof. J. S. Thorson Center for Pharmaceutical Research and Innovation University of Kentucky 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Ryan R. Hughes
- Dr. J. Zhang, Prof. S. Singh, R. R. Hughes, Prof. J. S. Thorson Center for Pharmaceutical Research and Innovation University of Kentucky 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Maoquan Zhou
- Dr. M. Zhou School of Pharmacy, University of Wisconsin-Madison 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Manjula Sunkara
- M. Sunkara, Prof. A. J. Morris Division of Cardiovascular Medicine University of Kentucky, Lexington, KY 40536(USA)
| | - Andrew J. Morris
- M. Sunkara, Prof. A. J. Morris Division of Cardiovascular Medicine University of Kentucky, Lexington, KY 40536(USA)
| | - Jon S. Thorson
- Dr. J. Zhang, Prof. S. Singh, R. R. Hughes, Prof. J. S. Thorson Center for Pharmaceutical Research and Innovation University of Kentucky 789 South Limestone Street, Lexington, KY 40536 (USA)
| |
Collapse
|
6
|
Timm M, Görl J, Kraus M, Kralj S, Hellmuth H, Beine R, Buchholz K, Dijkhuizen L, Seibel J. An Unconventional Glycosyl Transfer Reaction: Glucansucrase GTFA Functions as an Allosyltransferase Enzyme. Chembiochem 2013; 14:2423-6. [DOI: 10.1002/cbic.201300392] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Indexed: 11/12/2022]
|
7
|
Beale TM, Taylor MS. Synthesis of Cardiac Glycoside Analogs by Catalyst-Controlled, Regioselective Glycosylation of Digitoxin. Org Lett 2013; 15:1358-61. [DOI: 10.1021/ol4003042] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas M. Beale
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto ON M5S 3H6, Canada
| |
Collapse
|
8
|
Rale M, Schneider S, Sprenger GA, Samland AK, Fessner WD. Broadening deoxysugar glycodiversity: natural and engineered transaldolases unlock a complementary substrate space. Chemistry 2011; 17:2623-32. [PMID: 21290439 DOI: 10.1002/chem.201002942] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Indexed: 11/06/2022]
Abstract
The majority of prokaryotic drugs are produced in glycosylated form, with the deoxygenation level in the sugar moiety having a profound influence on the drug's bioprofile. Chemical deoxygenation is challenging due to the need for tedious protective group manipulations. For a direct biocatalytic de novo generation of deoxysugars by carboligation, with regiocontrol over deoxygenation sites determined by the choice of enzyme and aldol components, we have investigated the substrate scope of the F178Y mutant of transaldolase B, TalB(F178Y), and fructose 6-phosphate aldolase, FSA, from E. coli against a panel of variously deoxygenated aldehydes and ketones as aldol acceptors and donors, respectively. Independent of substrate structure, both enzymes catalyze a stereospecific carboligation resulting in the D-threo configuration. In combination, these enzymes have allowed the preparation of a total of 22 out of 24 deoxygenated ketose-type products, many of which are inaccessible by available enzymes, from a [3×8] substrate matrix. Although aliphatic and hydroxylated aliphatic aldehydes were good substrates, D-lactaldehyde was found to be an inhibitor possibly as a consequence of inactive substrate binding to the catalytic Lys residue. A 1-hydroxy-2-alkanone moiety was identified as a common requirement for the donor substrate, whereas propanone and butanone were inactive. For reactions involving dihydroxypropanone, TalB(F178Y) proved to be the superior catalyst, whereas for reactions involving 1-hydroxybutanone, FSA is the only choice; for conversions using hydroxypropanone, both TalB(F178Y) and FSA are suitable. Structure-guided mutagenesis of Ser176 to Ala in the distant binding pocket of TalB(F178Y), in analogy with the FSA active site, further improved the acceptance of hydroxypropanone. Together, these catalysts are valuable new entries to an expanding toolbox of biocatalytic carboligation and complement each other well in their addressable constitutional space for the stereospecific preparation of deoxysugars.
Collapse
Affiliation(s)
- Madhura Rale
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | | | | | | | | |
Collapse
|
9
|
Borisova SA, Liu HW. Characterization of glycosyltransferase DesVII and its auxiliary partner protein DesVIII in the methymycin/picromycin biosynthetic pathway. Biochemistry 2010; 49:8071-84. [PMID: 20695498 DOI: 10.1021/bi1007657] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The in vitro characterization of the catalytic activity of DesVII, the glycosyltransferase involved in the biosynthesis of the macrolide antibiotics methymycin, neomethymycin, narbomycin, and pikromycin in Streptomyces venezuelae, is described. DesVII is unique among glycosyltransferases in that it requires an additional protein component, DesVIII, for activity. Characterization of the metabolites produced by a S. venezuelae mutant lacking the desVIII gene confirmed that desVIII is important for the biosynthesis of glycosylated macrolides but can be replaced by at least one of the homologous genes from other pathways. The addition of recombinant DesVIII protein significantly improves the glycosylation efficiency of DesVII in the in vitro assay. When affinity-tagged DesVII and DesVIII proteins were coproduced in Escherichia coli, they formed a tight (αβ)(3) complex that is at least 10(3)-fold more active than DesVII alone. The formation of the DesVII/DesVIII complex requires coexpression of both genes in vivo and cannot be fully achieved by mixing the individual protein components in vitro. The ability of the DesVII/DesVIII system to catalyze the reverse reaction with the formation of TDP-desosamine was also demonstrated in a transglycosylation experiment. Taken together, our data suggest that DesVIII assists the folding of DesVII during protein production and remains tightly bound during catalysis. This requirement must be taken into consideration in the design of combinatorial biosynthetic experiments with new glycosylated macrolides.
Collapse
Affiliation(s)
- Svetlana A Borisova
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
10
|
Wohlgemuth R. Tools and ingredients for the biocatalytic synthesis of carbohydrates and glycoconjugates. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420701801380] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Chen YL, Chen YH, Lin YC, Tsai KC, Chiu HT. Functional characterization and substrate specificity of spinosyn rhamnosyltransferase by in vitro reconstitution of spinosyn biosynthetic enzymes. J Biol Chem 2009; 284:7352-63. [PMID: 19126547 DOI: 10.1074/jbc.m808441200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spinosyn, a potent insecticide, is a novel tetracyclic polyketide decorated with d-forosamine and tri-O-methyl-L-rhamnose. Spinosyn rhamnosyltransferase (SpnG) is a key biocatalyst with unique sequence identity and controls the biosynthetic maturation of spinosyn. The rhamnose is critical for the spinosyn insecticidal activity and cell wall biosynthesis of the spinosyn producer, Saccharopolyspora spinosa. In this study, we have functionally expressed and characterized SpnG and the three enzymes, Gdh, Epi, and Kre, responsible for dTDP-L-rhamnose biosynthesis in S. spinosa by purified enzymes from Escherichia coli. Most notably, the substrate specificity of SpnG was thoroughly characterized by kinetic and inhibition experiments using various NDP sugar analogs made by an in situ combination of NDP-sugar-modifying enzymes. SpnG was found to exhibit striking substrate promiscuity, yielding corresponding glycosylated variants. Moreover, the critical residues presumably involved in catalytic mechanism of Gdh and SpnG were functionally evaluated by site-directed mutagenesis. The information gained from this study has provided important insight into molecular recognition and mechanism of the enzymes, especially SpnG. The results have made possible the structure-activity characterization of SpnG, as well as the use of SpnG or its engineered form to serve as a combinatorial tool to make spinosyn analogs with altered biological activities and potency.
Collapse
Affiliation(s)
- Yi-Lin Chen
- Department of Biological Science and Technology, 75 Po-Ai St., National Chiao Tung University, Hsinchu 300, Taiwan
| | | | | | | | | |
Collapse
|
12
|
Abstract
Many biologically active bacterial natural products contain highly modified deoxysugar residues that are often critical for the activity of the parent compounds. Most of these deoxysugars are secondary metabolites that are biosynthesized in the form of nucleotide diphosphate (NDP) sugars prior to their transfer to natural product aglycones by glycosyltransferases. Over the past decade, many biosynthetic pathways that lead to the formation of these unusual sugars have been unraveled, and the mechanisms of many key enzymatic transformations involved in these pathways have been elucidated. However, obtaining workable quantities of NDP-deoxysugars for in vitro studies is often a difficult task. This limitation has hindered an in-depth investigation of the substrate specificity of deoxysugar biosynthetic enzymes, many of which are promiscuous with respect to their NDP-sugar substrates and are, thus, potentially useful catalysts for natural product glycoengineering. Presented in this review are procedures for the enzymatic synthesis and purification of a variety of NDP-deoxysugars, including some early intermediates in NDP-deoxysugar biosynthetic pathways, and highly modified NDP-deoxysugars that are late intermediates in their respective biosynthetic pathways. The procedures described herein could be used as general guidelines for the development of specific protocols for the synthesis of other NDP-deoxysugars.
Collapse
|
13
|
Thibodeaux C, Melançon C, Liu HW. Biosynthese von Naturstoffzuckern und enzymatische Glycodiversifizierung. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801204] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Breit B, Bigot A. Enantioselective synthesis of 2,6-dideoxy carbasugars based on a desymmetrizing hydroformylation-carbonyl ene cyclization process. Chem Commun (Camb) 2008:6498-500. [PMID: 19057758 DOI: 10.1039/b817786d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical one-pot process involving a desymmetrizing hydroformylation with the aid of a chiral catalyst-directing group (CDG*), followed by a carbonyl ene cyclization provides a straightforward access to both enantiomers of the resulting cyclohexanediol; further divergent, highly selective and protecting group-free transformations furnish the carbocyclic analogues of four important 2,6-dideoxysugars.
Collapse
Affiliation(s)
- Bernhard Breit
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | | |
Collapse
|
15
|
Yokoyama K, Yamamoto Y, Kudo F, Eguchi T. Involvement of Two DistinctN-Acetylglucosaminyltransferases and a Dual-Function Deacetylase in Neomycin Biosynthesis. Chembiochem 2008; 9:865-9. [DOI: 10.1002/cbic.200700717] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Thibodeaux CJ, Melançon CE, Liu HW. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem Int Ed Engl 2008; 47:9814-59. [PMID: 19058170 PMCID: PMC2796923 DOI: 10.1002/anie.200801204] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many biologically active small-molecule natural products produced by microorganisms derive their activities from sugar substituents. Changing the structures of these sugars can have a profound impact on the biological properties of the parent compounds. This realization has inspired attempts to derivatize the sugar moieties of these natural products through exploitation of the sugar biosynthetic machinery. This approach requires an understanding of the biosynthetic pathway of each target sugar and detailed mechanistic knowledge of the key enzymes. Scientists have begun to unravel the biosynthetic logic behind the assembly of many glycosylated natural products and have found that a core set of enzyme activities is mixed and matched to synthesize the diverse sugar structures observed in nature. Remarkably, many of these sugar biosynthetic enzymes and glycosyltransferases also exhibit relaxed substrate specificity. The promiscuity of these enzymes has prompted efforts to modify the sugar structures and alter the glycosylation patterns of natural products through metabolic pathway engineering and enzymatic glycodiversification. In applied biomedical research, these studies will enable the development of new glycosylation tools and generate novel glycoforms of secondary metabolites with useful biological activity.
Collapse
Affiliation(s)
- Christopher J. Thibodeaux
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Charles E. Melançon
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| |
Collapse
|
17
|
Kopp M, Rupprath C, Irschik H, Bechthold A, Elling L, Müller R. SorF: a glycosyltransferase with promiscuous donor substrate specificity in vitro. Chembiochem 2007; 8:813-9. [PMID: 17407127 DOI: 10.1002/cbic.200700024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glycosylations are well-established steps in numerous biosynthetic pathways, and the attached sugar moieties often influence the specificity or pharmacology of the modified compounds. The sorangicins belong to the polyketide family of natural products, and exhibit antibiotic activity through inhibition of bacterial RNA polymerase. We have identified the sorangicin biosynthetic gene cluster in the producing myxobacterium Sorangium cellulosum So ce12. Within the cluster, sorF encodes a putative glycosyltransferase. To determine its function in sorangicin biosynthesis, SorF was heterologously expressed as a fusion protein in Escherichia coli. After purification by affinity chromatography, SorF was found to glucosylate sorangicin A in vitro, utilizing UDP-alpha-D-glucose as the natural donor substrate. Additionally, SorF showed high flexibility towards further UDP- and dTDP-sugars and was able to transfer several other sugar moieties-alpha-D-galactose, alpha-D-xylose, beta-L-rhamnose, and 6-deoxy-4-keto-alpha-D-glucose-onto the aglycon. SorF is therefore one of the rare glycosyltransferases able to transfer both D- and L-sugars, and could thus be used to generate novel sorangiosides.
Collapse
Affiliation(s)
- Maren Kopp
- Saarland University, Department of Pharmaceutical Biotechnology, P. O. Box 151150, 66041 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|