1
|
Li Y, Cao T, Peng R, Zhou S, Long X, Jiang H, Zhu C. Chemoselective Thioacylation of Amines Enabled by Synergistic Defluorinative Coupling. Org Lett 2024; 26:6438-6443. [PMID: 39046793 DOI: 10.1021/acs.orglett.4c02237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A mild and chemoselective method for the thioacylation of amines, including amino acids and peptides, using gem-difluoroalkenes and sulfide, is reported. The distinguishing of the different nucleophilic sites (S-site and diverse N-sites) by the chemoselective C-F bond functionalization of gem-difluoroalkenes enables the unique synergistic defluorinative coupling reaction. This reaction features mild conditions, is operationally simple, efficient, and gram-scalable, tolerates various functional groups, and is activator-free and without racemization. Thioamide moieties were incorporated site-specifically into bioactive compounds. The proposed mechanism is illustrated by a DFT calculation.
Collapse
Affiliation(s)
- Yuqi Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Tongxiang Cao
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Rongbin Peng
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Shang Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Xujing Long
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Chuanle Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Laru S, Ghoshal S, Sarkar P, Hajra A. Unusual Regioselective C-H Difluoroalkylation of Heteroarenes under Photoredox Catalysis. Org Lett 2024; 26:5098-5104. [PMID: 38847562 DOI: 10.1021/acs.orglett.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
We disclose a new general strategy for the site-selective difluoroalkylation of nonprefunctionalized heteroarenes, such as quinoxaline at the C-8 position, and benzothiadiazole, benzoxadiazole, and benzothiazole at the C-4 position via consecutive organophotoredox-catalyzed radical-radical cross-coupling and base-assisted hydrogen abstraction reactions. The current methodology represents a site-selective direct difluoroalkylative strategy to allow broad functional group tolerance and a wide substrate scope in good to excellent yields. Careful experimental investigations and detailed DFT calculations revealed the exact site-selectivity of the heteroarenes and a possible mechanistic pathway.
Collapse
Affiliation(s)
- Sudip Laru
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan-731235, India
| | - Sourav Ghoshal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan-731235, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan-731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan-731235, India
| |
Collapse
|
3
|
Elavarasan S, Preety J, Kesavan M, Patel RB, Baskar B. Activation of enamine by photoexcited organocatalyst assisted singlet oxygen: synthesis of oxazoles and quinoxalines. Org Biomol Chem 2024; 22:4912-4921. [PMID: 38808593 DOI: 10.1039/d4ob00609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Herein, a novel transition-metal-free thiol-based donor-acceptor organophotocatalyst-assisted, singlet-oxygen-mediated tandem oxidative cyclization for the synthesis of substituted oxazoles in moderate-to-good yields is described. The developed method demonstrates applicability for the synthesis of various substituted quinoxalines in good-to-excellent yields. The metal-free methodology shows a practical route for the synthesis of oxazole and quinoxaline derivatives, which are privileged moieties prevalent in various biologically active compounds and natural products. To the best of our knowledge, both the thiol photocatalyst and synthesis of oxazoles by visible-light irradiation are reported for the first time.
Collapse
Affiliation(s)
- Selvaraj Elavarasan
- Laboratory of Sustainable Synthesis, Department of Chemistry, SRM Institute of Science and Technology, Kattankulatur, 603 203, Chengalpet (Dt), Tamilnadu, India.
| | - Jeyaraj Preety
- Laboratory of Sustainable Synthesis, Department of Chemistry, SRM Institute of Science and Technology, Kattankulatur, 603 203, Chengalpet (Dt), Tamilnadu, India.
| | - M Kesavan
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulatur, 603 203, Chengalpet (Dt), Tamilnadu, India
| | - Ravi B Patel
- Graduate School of Pharmacy, Gujarat Technological University, Ghandhinagar Campus, Ghandhinagar - 382028, Gujarat, India
| | - Baburaj Baskar
- Laboratory of Sustainable Synthesis, Department of Chemistry, SRM Institute of Science and Technology, Kattankulatur, 603 203, Chengalpet (Dt), Tamilnadu, India.
| |
Collapse
|
4
|
Ayesha, Ashraf A, Arshad M, Sajid N, Rasool N, Abbas M, Nazeer U, Khalid M, Imran M. Dinuclear Zn-Catalytic System as Brønsted Base and Lewis Acid for Enantioselectivity in Same Chiral Environment. ACS OMEGA 2024; 9:6074-6092. [PMID: 38375498 PMCID: PMC10876046 DOI: 10.1021/acsomega.3c07446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 02/21/2024]
Abstract
Zinc (Zn) is a crucial element with remarkable significance in organic transformations. The profusion of harmless zinc salts in the Earth's outer layer qualifies zinc as a noteworthy contender for inexpensive and eco-friendly reagents and catalysts. Recently, widely recognized uses of organo-Zn compounds in the field of organic synthesis have undergone extensive expansion toward asymmetric transformations. The ProPhenol ligand, a member of the chiral nitrogenous-crown family, exhibits the spontaneous formation of a dual-metal complex when reacted with alkyl metal (R-M) reagents, e.g., ZnEt2. The afforded Zn complex possesses two active sites, one Lewis acid and the other Brønsted base, thereby facilitating the activation of nucleophiles and electrophiles simultaneously within the same chiral pocket. In this comprehensive analysis, we provide a thorough account of the advancement and synthetic potential of these diverse catalysts in organic synthesis, while emphasizing the reactivity and selectivities, i.e., dr and ee due to the design/structure of the ligands employed.
Collapse
Affiliation(s)
- Ayesha
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Aisha Ashraf
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Mahwish Arshad
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Numan Sajid
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Nasir Rasool
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Mujahad Abbas
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Usman Nazeer
- Chemistry
Department, University of Houston, 3585 Cullen Boulvard, Houston, Texas 77204-5003, United States
| | | | - Muhammad Imran
- Chemistry
Department, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
5
|
Liang YF, Bilal M, Tang LY, Wang TZ, Guan YQ, Cheng Z, Zhu M, Wei J, Jiao N. Carbon-Carbon Bond Cleavage for Late-Stage Functionalization. Chem Rev 2023; 123:12313-12370. [PMID: 37942891 DOI: 10.1021/acs.chemrev.3c00219] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.
Collapse
Affiliation(s)
- Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Le-Yu Tang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Biesen L, Müller TJJ. Aroyl-S,N-Ketene Acetals: Luminous Renaissance of a Class of Heterocyclic Compounds. Chemistry 2023; 29:e202302067. [PMID: 37638792 DOI: 10.1002/chem.202302067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
Aroyl-S,N-ketene acetals represent a peculiar class of heterocyclic merocyanines, compounds bearing pronounced and rather short dipoles with great push-pull characteristics that define their rich properties. They are accessible via a wide array of synthetic concepts and procedures, ranging from addition-elimination and condensation procedures up to rearrangement and metal-mediated reactions. With our work from 2020, aroyl-S,N-ketene acetals have been identified as powerful and promising dyes with pronounced and vastly tunable solid-state emission and aggregation-induced emission properties. One characteristic trademark of this class of dye molecules is the level of control that could be exerted, and which was thoroughly explored. Based on these results, the field was opened to extend the system to bi- and multichromophoric systems by the full toolkit of synthetic organic chemistry thus giving access to even more exciting properties and manifolded substance libraries capitalizing on the AIE properties. This review aims at outlining the reaction-based principles that allow for a swift and facile access to aroyl-S,N-ketene acetals, their methodical and structural evolution and the plethora of fluorescence and aggregation properties.
Collapse
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
7
|
Ji D, Li X. Rh(III)-Catalyzed C-H Activation of Benzamides and Chemodivergent Annulation with Benzoxazinanones: Substrate Controlled Selectivity. Org Lett 2023; 25:7083-7088. [PMID: 37747919 DOI: 10.1021/acs.orglett.3c02371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Decarboxylative annulation of propargyl carbamates with benzamides has been realized via rhodium-catalyzed C-H bond activation under mild conditions, delivering two distinct classes of heterocycles in high efficiency and selectivity under substrate control. This protocol provides a direct synthetic method for the preparation of functionalized 1,8-naphthyridines and isoindolinones.
Collapse
Affiliation(s)
- Danqing Ji
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| |
Collapse
|
8
|
Parmar D, Sharma T, Sharma AK, Sharma U. Construction of unsymmetrical heterobiaryls via the Cp*Rh(III)-catalysed C-H/C-H coupling of heteroarenes. Chem Commun (Camb) 2023. [PMID: 37465886 DOI: 10.1039/d3cc03166g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Herein, a concise method for the Rh(III)-catalyzed, directing-group-assisted C-H/C-H cross-coupling of N-heterocycles (quinolines, indolines, indoles, pyridines, pyrimidines, pyrazoles) with other heteroarenes (benzoxazoles, benzofurans, and thiophenes) is disclosed for the synthesis of unsymmetrical heterobiaryl compounds in good to excellent yields. A plausible catalytic cycle has been delineated based on experimental and computational mechanistic studies.
Collapse
Affiliation(s)
- Diksha Parmar
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Tamanna Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
| | - Akhilesh K Sharma
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, Tarragona 43007, Spain.
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
9
|
Liao Y, Zhang S, Jiang X. Construction of Thioamide Peptides from Chiral Amino Acids. Angew Chem Int Ed Engl 2023; 62:e202303625. [PMID: 37118109 DOI: 10.1002/anie.202303625] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 04/30/2023]
Abstract
Thioamide peptides were synthesized in a straightforward one-pot process via the linkage of diverse natural amino acids in the presence of thiolphosphonate and trichlorosilane, wherein carbonyl groups were replaced with thiono compounds with minimal racemization. Experimental and computational mechanistic studies demonstrated that the trichlorosilane enables the activation of carboxylic acids via intense interactions with the Si-O bond, followed by coupling of the carboxylic acids with thiolphosphonate to obtain the key intermediate S-acyl dithiophosphate. Silyl-activated quadrangular metathesis transition states afforded the thioamide peptides. The potential applications of these thioamide peptides were further highlighted via late-stage linkages of diverse natural products and pharmaceutical drugs and the thioamide moiety.
Collapse
Affiliation(s)
- Yanyan Liao
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Institute of Eco-Chongming, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Shunmin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Institute of Eco-Chongming, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Institute of Eco-Chongming, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
10
|
Nalawade J, Shinde A, Abhale YK, Nandurkar Y, Bobade VD, Sarkar D, Mhaske PC. Synthesis and antimicrobial Evaluation of Novel 2'-aryl-4-aryl-2,4'-Bisthiazole and 2'-aryl-4-Pyridyl-2,4'-Bisthiazole Derivatives as Potential Antibacterial Agents. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2180524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Jitendra Nalawade
- Department of Chemistry, H. P. T. Arts and R. Y. K. Science College (Affiliated to Savitribai Phule Pune University), Nashik, India
| | - Abhijit Shinde
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| | | | - Yogesh Nandurkar
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| | - Vivek D. Bobade
- Department of Chemistry, H. P. T. Arts and R. Y. K. Science College (Affiliated to Savitribai Phule Pune University), Nashik, India
| | - Dhiman Sarkar
- CSIR-National Chemical Laboratory, Combi Chem Bio Resource Centre, Pune, India
| | - Pravin C. Mhaske
- Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University), Pune, India
| |
Collapse
|
11
|
Iskandar SE, Pelton JM, Wick ET, Bolhuis DL, Baldwin AS, Emanuele MJ, Brown NG, Bowers AA. Enabling Genetic Code Expansion and Peptide Macrocyclization in mRNA Display via a Promiscuous Orthogonal Aminoacyl-tRNA Synthetase. J Am Chem Soc 2023; 145:1512-1517. [PMID: 36630539 PMCID: PMC10411329 DOI: 10.1021/jacs.2c11294] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
mRNA display is revolutionizing peptide drug discovery through its ability to quickly identify potent peptide binders of therapeutic protein targets. Methods to expand the chemical diversity of display libraries are continually needed to increase the likelihood of identifying clinically relevant peptide ligands. Orthogonal aminoacyl-tRNA synthetases (ORSs) have proven utility in cellular genetic code expansion, but are relatively underexplored for in vitro translation (IVT) and mRNA display. Herein, we demonstrate that the promiscuous ORS p-CNF-RS can incorporate noncanonical amino acids at amber codons in IVT, including the novel substrate p-cyanopyridylalanine (p-CNpyrA), to enable a pyridine-thiazoline (pyr-thn) macrocyclization in mRNA display. Pyr-thn-based selections against the deubiquitinase USP15 yielded a potent macrocyclic binder that exhibits good selectivity for USP15 and close homologues over other ubiquitin-specific proteases (USPs). Overall, this work exemplifies how promiscuous ORSs can both expand side chain diversity and provide structural novelty in mRNA display libraries through a heterocycle forming macrocyclization.
Collapse
Affiliation(s)
- Sabrina E. Iskandar
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jarrett M. Pelton
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Elizaveta T. Wick
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Derek L. Bolhuis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Albert S. Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michael J. Emanuele
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Nicholas G. Brown
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
12
|
Synthesis and antifungal activities of novel trifluoroethane derivatives with coumarin, indole and thiophene. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Prashanth S, Adarsh D, Bantu R, Sridhar B, Subba Reddy B. Cu(II)-catalyzed synthesis of 2,4,5-trisubstituted oxazoles. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Synthesis of biheteroaryls via 2-methyl quinoline C(sp3)-H functionalization under metal-free conditions. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
15
|
Screening of Thiopeptide-Producing Streptomycetes Isolated From the Rhizosphere Soil of Juniperus excelsa. Curr Microbiol 2022; 79:305. [PMID: 36065025 DOI: 10.1007/s00284-022-03004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
Abstract
The identification of an increasing number of drug-resistant pathogens has stimulated the development of new therapeutic agents to combat them. Microbial natural products are among the most important elements when it comes to drug discovery. Today, thiopeptide antibiotics are receiving increasing research attention due to their potent activity against Gram-positive bacteria. In this study, we demonstrated the successful use of a whole-cell microbial biosensor (Streptomyces lividans TK24 pMO16) for the specific detection of thiopeptide antibiotics among the native actinomycete strains isolated from the rhizosphere soil of Juniperus excelsa (Bieb.). Among the native strains, two strains of Streptomyces, namely sp. Je 1-79 and Je 1-613, were identified that were capable of producing thiopeptide antibiotics. A multilocus sequence analysis of five housekeeping genes (gyrB, atpD, recA, rpoB, and trpB) classified them as representatives of two different species of the genus Streptomyces. The thiopeptide antibiotics berninamycin A and B were identified in the extracts of the two strains by means of a dereplication analysis. The berninamycin biosynthetic gene cluster was also detected in the genome of the Streptomyces sp. Je 1-79 strain and showed a high level of similarity (93%) with the ber cluster from S. bernensis. Thus, the use of this whole-cell biosensor during the first stage of the screening process could serve to accelerate the specific detection of thiopeptide antibiotics.
Collapse
|
16
|
Machín Rivera R, Burton NR, Call LD, Tomat MA, Lindsay VNG. Synthesis of Highly Congested Tertiary Alcohols via the [3,3] Radical Deconstruction of Breslow Intermediates. Org Lett 2022; 24:4275-4280. [PMID: 35657720 DOI: 10.1021/acs.orglett.2c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pericyclic processes such as [3,3]-sigmatropic rearrangements leading to the rapid generation of molecular complexity constitute highly valuable tools in organic synthesis. Herein, we report the formation of particularly hindered tertiary alcohols via rearrangement of Breslow intermediates formed in situ from readily available N-allyl thiazolium salts and benzaldehyde derivatives. Experimental mechanistic studies performed suggest that the reaction proceeds via a close radical pair which recombine in a regio- and diastereoselective manner, formally leading to [3,3]-rearranged products.
Collapse
Affiliation(s)
- Roger Machín Rivera
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Nikolas R Burton
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Luke D Call
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Marshall A Tomat
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Vincent N G Lindsay
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
17
|
Pei M, Wang A, Xie X, Hu X, Liu Y. Gold-Catalyzed Cyclization of Ynones Involving cis-Hydrofunctionalizations: Rapid Assembly of C-, O-, or S-Functionalized Pyrroles by a Single Methodology. Org Lett 2022; 24:1541-1545. [PMID: 35142526 DOI: 10.1021/acs.orglett.2c00205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A gold-catalyzed cyclization of conjugated ynones with various nucleophiles such as indoles, alcohols, and thiols has been developed. The reaction provides a new and efficient protocol for the synthesis of functionalized pyrroles with wide versatility and functional group compatibility. Remarkably, for indolyl, alkoxy, or sulfenyl pyrroles, all could be constructed efficiently by this single methodology. In addition, cis-hydrofunctionalizations of ynones are involved in these reactions.
Collapse
Affiliation(s)
- Miaomiao Pei
- Department of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province 450001, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Ali Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Xin Xie
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Xiaoping Hu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Yuanhong Liu
- Department of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province 450001, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| |
Collapse
|
18
|
Possible Functional Roles of Patellamides in the Ascidian-Prochloron Symbiosis. Mar Drugs 2022; 20:md20020119. [PMID: 35200648 PMCID: PMC8875616 DOI: 10.3390/md20020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Patellamides are highly bioactive compounds found along with other cyanobactins in the symbiosis between didemnid ascidians and the enigmatic cyanobacterium Prochloron. The biosynthetic pathway of patellamide synthesis is well understood, the relevant operons have been identified in the Prochloron genome and genes involved in patellamide synthesis are among the most highly transcribed cyanobacterial genes in hospite. However, a more detailed study of the in vivo dynamics of patellamides and their function in the ascidian-Prochloron symbiosis is complicated by the fact that Prochloron remains uncultivated despite numerous attempts since its discovery in 1975. A major challenge is to account for the highly dynamic microenvironmental conditions experienced by Prochloron in hospite, where light-dark cycles drive rapid shifts between hyperoxia and anoxia as well as pH variations from pH ~6 to ~10. Recently, work on patellamide analogues has pointed out a range of different catalytic functions of patellamide that could prove essential for the ascidian-Prochloron symbiosis and could be modulated by the strong microenvironmental dynamics. Here, we review fundamental properties of patellamides and their occurrence and dynamics in vitro and in vivo. We discuss possible functions of patellamides in the ascidian-Prochloron symbiosis and identify important knowledge gaps and needs for further experimental studies.
Collapse
|
19
|
Chen L, Xuchen X, Wang F, Yang Y, Deng G, Liu Y, Liang Y. Double C-S bond formation via multiple Csp 3-H bond cleavage: synthesis of 4-hydroxythiazoles from amides and elemental sulfur under metal-free conditions. Org Biomol Chem 2021; 19:10068-10072. [PMID: 34762083 DOI: 10.1039/d1ob01989a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel and efficient approach for the synthesis of 4-hydroxythiazoles from amides and elemental sulfur has been developed. In the presence of P2O5, DMSO and HMPA, this metal-free protocol proceeds smoothly and tolerates a spectrum of functional groups. Furthermore, this strategy involves the process of double Csp3-S bond formation through the cleavage of multiple Csp3-H bonds for the first time.
Collapse
Affiliation(s)
- Liang Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China. .,Huaihua Normal College, Huaihua 418008, China
| | - Xinyu Xuchen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Fei Wang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China. .,Ministry of Education Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yilin Liu
- Institute of Organic Synthesis, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China.
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
20
|
Dahiya R, Dahiya S, Chennupati SV, Davis V, Sahadeo V, Patel JK. Toward the Synthesis of a Heterocyclic Analogue of Natural Cyclooligopeptide with Improved Bio-Properties. Curr Org Synth 2021; 19:267-278. [PMID: 34636301 DOI: 10.2174/1570179418666211005141811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/25/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
AIMS The present investigation is targeted toward the synthesis of a novel analogue of a natural peptide of marine origin. <P> Background: Marine sponges are enriched with bioactive secondary metabolites especially circular peptides. Heterocycles are established organic compounds with potential biological value. Taking into consideration the bio-properties of heterocycles and marine sponge-derived natural peptides, an effort was made for the synthesis of a heterocyclic analogue of a natural cyclopeptide. <P> Objective: A heterocyclic analogue of a sponge-derived proline-containing cyclic peptide, rolloamide A, was synthesized by interaction of Boc-protected L-histidinyl-L-prolyl-L-valine and L-prolyl-L-leucyl-L-prolyl-L-isoleucine methyl ester and compared with synthetic rolloamide A with bioactivity against bacteria, fungi, and earthworms. <P> Methods: The synthesis of cycloheptapeptide was accomplished employing the liquid phase method. The larger peptide segment was prepared by interaction of Boc-protected L-prolyl-L-leucine with L-prolyl-L-isoleucine methyl ester. Similarly, the tripeptide unit was synthesized from Boc-protected L-histidinyl-L-proline with L-valine ester. The linear heptapeptide segment (7) was cyclized by utilizing pentafluorophenyl (pfp) ester, and the structure was elucidated by elemental and spectral (IR, 1H/13C NMR, MS) analysis. The peptide was also screened for diverse bioactivities such as antibacterial, antifungal, and potential against earthworms and cytotoxicity. <P> Results: The novel cyclooligopeptide was synthesized with 84% yield by making use of carbodiimides. The synthesized cyclopeptide exhibited significant cytotoxicity against two cell lines. In addition, promising antifungal and antihelmintic properties were observed for newly synthesized heterocyclic peptide derivative (8) against dermatophytes and three earthworm species at 6 µg/mL and 2 mg/mL, respectively. <P> Conclusion: Solution-phase technique employing carbodiimide chemistry established to be promising for synthesizing the cycloheptapeptide derivative (8), and C5H5N was proved a better base for heptapeptide circling, when compared to N-methylmorpholine and triethylamine.
Collapse
Affiliation(s)
- Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago. West Indies
| | - Sunita Dahiya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan. United States
| | - Suresh V Chennupati
- Department of Pharmacy, College of Medical and Health Sciences, Wollega University, Nekemte, Federal Democratic. Ethiopia
| | - Vernon Davis
- School of Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago. West Indies
| | - Vijaya Sahadeo
- School of Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago. West Indies
| | - Jayvadan K Patel
- Department of Pharmaceutics, Nootan Pharmacy College, Faculty of Pharmacy, Sankalchand Patel University, Visnagar, Mehsana, Gujarat. India
| |
Collapse
|
21
|
Hsiao YT, Beadle J, Pascoe C, Annadate R, Vederas JC. Decarboxylative Radical Addition to Methylideneoxazolidinones for Stereocontrolled Synthesis of Selectively Protected Diamino Diacids. Org Lett 2021; 23:7270-7273. [PMID: 34491060 DOI: 10.1021/acs.orglett.1c02684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Syntheses of stereochemically pure and selectively protected diamino diacids can be achieved by redox decarboxylation of distal N-hydroxyphthalimide esters of protected aspartic, glutamic or α-aminoadipic acids via radical addition to methylideneoxazolidinones. The products are useful for solid-supported syntheses of robust bioactive carbocyclic peptide analogs. Yields of reactive primary radical addition are superior to those of more stabilized radicals, and the reaction fails if the alkylideneoxazolidinone has a methyl substituent on its terminus (i.e., 13a/13b).
Collapse
Affiliation(s)
- Yu-Ting Hsiao
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Jonathan Beadle
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Cameron Pascoe
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Ritesh Annadate
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| |
Collapse
|
22
|
Han J, Liu X, Zhang L, Quinn RJ, Feng Y. Anti-mycobacterial natural products and mechanisms of action. Nat Prod Rep 2021; 39:77-89. [PMID: 34226909 DOI: 10.1039/d1np00011j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to June, 2020Tuberculosis (TB) continues to be a major disease with high mortality and morbidity globally. Drug resistance and long duration of treatment make antituberculosis drug discovery more challenging. In this review, we summarize recent advances on anti-TB natural products (NPs) and their potential molecular targets in cell wall synthesis, protein production, energy generation, nucleic acid synthesis and other emerging areas. We highlight compounds with activity against drug-resistant TB, and reveal several novel targets including Mtb biotin synthase, ATP synthase, 1,4-dihydroxy-2-naphthoate prenyltransferase and biofilms. These anti-TB NPs and their targets could facilitate target-based screening and accelerate TB drug discovery.
Collapse
Affiliation(s)
- Jianying Han
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
23
|
Dai Y, Chen J, Wang Z, Wang T, Wang L, Yang Y, Qiao X, Fan B. Asymmetric Reduction of Aromatic α-Dehydroamino Acid Esters with Water as Hydrogen Source. J Org Chem 2021; 86:7141-7147. [PMID: 33966384 DOI: 10.1021/acs.joc.1c00426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The asymmetric reduction of aromatic α-dehydroamino acid esters with water as the hydrogen source was developed by a Rh/Cu co-catalytic system. The reaction tolerates various functional groups, providing a valuable synthetic tool to access chiral α-amino acid esters readily. Moreover, the present methodology also was applied in the cost-effective and easy to handle preparation of chiral deuterated α-amino esters by using D2O.
Collapse
Affiliation(s)
- Yuze Dai
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Zheting Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Ting Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Lin Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Yong Yang
- Chongqing Key Laboratory of Traditional Chinese Medicine Health, Chongqing Accademy of Chinese Materia Medica, Chongqing 400065, China
| | - Xingfang Qiao
- Chongqing Key Laboratory of Traditional Chinese Medicine Health, Chongqing Accademy of Chinese Materia Medica, Chongqing 400065, China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650504, Yunnan, China.,Chongqing Key Laboratory of Traditional Chinese Medicine Health, Chongqing Accademy of Chinese Materia Medica, Chongqing 400065, China
| |
Collapse
|
24
|
Staś M, Broda MA, Siodłak D. Thiazole-amino acids: influence of thiazole ring on conformational properties of amino acid residues. Amino Acids 2021; 53:673-686. [PMID: 33837859 PMCID: PMC8128816 DOI: 10.1007/s00726-021-02974-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/29/2021] [Indexed: 12/29/2022]
Abstract
Post-translational modified thiazole-amino acid (Xaa-Tzl) residues have been found in macrocyclic peptides (e.g., thiopeptides and cyanobactins), which mostly inhibit protein synthesis in Gram + bacteria. Conformational study of the series of model compounds containing this structural motif with alanine, dehydroalanine, dehydrobutyrine and dehydrophenylalanine were performed using DFT method in various environments. The solid-state crystal structure conformations of thiazole-amino acid residues retrieved from the Cambridge Structural Database were also analysed. The studied structural units tend to adopt the unique semi-extended β2 conformation; which is stabilised mainly by N-H⋯NTzl hydrogen bond, and for dehydroamino acids also by π-electron conjugation. The conformational preferences of amino acids with a thiazole ring were compared with oxazole analogues and the role of the sulfur atom in stabilising the conformations of studied peptides was discussed.
Collapse
Affiliation(s)
- Monika Staś
- Faculty of Chemistry, University of Opole, 45-052, Opole, Poland.
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo Náměstí 2, 166 10, Praha 6, Czech Republic.
| | | | - Dawid Siodłak
- Faculty of Chemistry, University of Opole, 45-052, Opole, Poland.
| |
Collapse
|
25
|
Bera P, Aher A, Brandao P, Manna SK, Bhattacharyya I, Mondal G, Jana A, Santra A, Bera P. Anticancer activity, DNA binding and docking study of M( ii)-complexes (M = Zn, Cu and Ni) derived from a new pyrazine–thiazole ligand: synthesis, structure and DFT. NEW J CHEM 2021. [DOI: 10.1039/d0nj05883a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of structurally related Zn(ii), Cu(ii) and Ni(ii) complexes of 4-(2-(2-(1-(pyrazin-2-yl)ethylidene)hydrazinyl)-thiazol-4-yl)-benzonitrile (PyztbH) have been synthesized and characterized by spectroscopy, single crystal X-ray crystallography and density functional theory (DFT).
Collapse
Affiliation(s)
- Pradip Bera
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| | - Abhishek Aher
- Centre for DNA Fingerprinting & Diagnostics (CDFD)
- Hyderabad
- India
- Graduate Studies
- Regional Centre for Biotechnology
| | - Paula Brandao
- Department of Chemistry
- CICECO
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Sunil Kumar Manna
- Centre for DNA Fingerprinting & Diagnostics (CDFD)
- Hyderabad
- India
- Adjunct Faculty
- Regional Centre for Biotechnology
| | - Indranil Bhattacharyya
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| | - Gopinath Mondal
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| | - Abhimanyu Jana
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| | - Ananyakumari Santra
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| | - Pulakesh Bera
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| |
Collapse
|
26
|
Zhang J, Xu TH, Chen Z, Wu XF. Metal-free oxidative cyclization of trifluoroacetimidohydrazides with methylhetarenes: a facile access to 3-hetaryl-5-trifluoromethyl-1,2,4-triazoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00790d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A metal-free oxidative cyclization of trifluoroacetimidohydrazides with methylhetarenes for the efficient synthesis of 3-hetaryl-5-trifluoromethyl-1,2,4-triazoles has been developed.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Tian-Hui Xu
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
27
|
Phosphine-phosphonium ylides as ligands in palladium-catalysed C2-H arylation of benzoxazoles. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
|
29
|
Erşatır M, Yıldırım M, Giray ES, Yalın S. Synthesis and antiproliferative evaluation of novel biheterocycles based on coumarin and 2-aminoselenophene-3-carbonitrile unit. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02573-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Saito M, Murakami S, Nanjo T, Kobayashi Y, Takemoto Y. Mild and Chemoselective Thioacylation of Amines Enabled by the Nucleophilic Activation of Elemental Sulfur. J Am Chem Soc 2020; 142:8130-8135. [DOI: 10.1021/jacs.0c03256] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Masato Saito
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sho Murakami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Kobayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
31
|
Copper-catalyzed aerobic oxidative cyclization protocol for the synthesis of quinazolines via amination of C(sp3)-H bonds of methylazaarenes. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Sarmah BK, Konwar M, Bhattacharyya D, Adhikari P, Das A. Regioselective Cyanation of Six‐MemberedN‐Heteroaromatic Compounds Under Metal‐, Activator‐, Base‐ and Solvent‐Free Conditions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bikash Kumar Sarmah
- Department of ChemistryIndian Institute of Technology Guwahati 781039, Assam India
| | - Monuranjan Konwar
- Department of ChemistryIndian Institute of Technology Guwahati 781039, Assam India
| | | | - Priyanka Adhikari
- Department of ChemistryIndian Institute of Technology Guwahati 781039, Assam India
| | - Animesh Das
- Department of ChemistryIndian Institute of Technology Guwahati 781039, Assam India
| |
Collapse
|
33
|
Zhan H, Zhou R, Chen X, Yang Q, Jiang H, Su Q, Wang Y, Li J, Wu L, Wu S. Palygorskite-anchored Pd complexes catalyze the coupling reactions of pyrimidin-2-yl sulfonates. RSC Adv 2019; 9:30526-30533. [PMID: 35530191 PMCID: PMC9072395 DOI: 10.1039/c9ra06035a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
In this work, an anchored Pd complex (PGS–APTES–Pd(OAc)2) was prepared via simple and green steps from the natural clay mineral palygorskite and was well characterized by XPS, XRD, IR, SEM, and EDX. This complex was further utilized as a fine catalyst for the C–C/C–N coupling reactions of pyrimidin-2-yl sulfonates. Subsequently, the cyclic utilization test indicated the high stability and sustainability of this PGS–APTES–Pd(OAc)2 catalyst, and no activation was required in the recycling process, providing an applicable and reusable catalyst in organic synthesis. PGS–APTES–Pd(OAc)2 was prepared through simple and green steps from the natural clay mineral palygorskite. Obviously, the stability and reusability of PGS–APTES–Pd(OAc)2 were superior to those of the PGS–Pd catalyst (prepared by the impregnation method) in recycling test.![]()
Collapse
Affiliation(s)
- Huiying Zhan
- College of Chemical Engineering, Lanzhou University of Arts and Science Beimiantan 400 Lanzhou Gansu 730000 People's Republic of China
| | - Rongrong Zhou
- College of Chemical Engineering, Lanzhou University of Arts and Science Beimiantan 400 Lanzhou Gansu 730000 People's Republic of China
| | - Xudong Chen
- College of Chemical Engineering, Lanzhou University of Arts and Science Beimiantan 400 Lanzhou Gansu 730000 People's Republic of China
| | - Quanlu Yang
- College of Chemical Engineering, Lanzhou University of Arts and Science Beimiantan 400 Lanzhou Gansu 730000 People's Republic of China
| | - Hongyan Jiang
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, College of Chemical Engineering, Northwest Minzu University Lanzhou Gansu 730030 People's Republic of China
| | - Qiong Su
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, College of Chemical Engineering, Northwest Minzu University Lanzhou Gansu 730030 People's Republic of China
| | - Yanbin Wang
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, College of Chemical Engineering, Northwest Minzu University Lanzhou Gansu 730030 People's Republic of China
| | - Jia Li
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, College of Chemical Engineering, Northwest Minzu University Lanzhou Gansu 730030 People's Republic of China
| | - Lan Wu
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, College of Chemical Engineering, Northwest Minzu University Lanzhou Gansu 730030 People's Republic of China
| | - Shang Wu
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, College of Chemical Engineering, Northwest Minzu University Lanzhou Gansu 730030 People's Republic of China
| |
Collapse
|
34
|
Patel TS, Bhatt JD, Dixit RB, Chudasama CJ, Patel BD, Dixit BC. Design and synthesis of leucine-linked quinazoline-4(3H)-one-sulphonamide molecules distorting malarial reductase activity in the folate pathway. Arch Pharm (Weinheim) 2019; 352:e1900099. [PMID: 31381192 DOI: 10.1002/ardp.201900099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 11/08/2022]
Abstract
Optimization of a modified Grimmel's method for N-heterocyclization of a leucine-linked sulfonamide side-arm at position 2 leading to 2,3-disustituted-4-quinazolin-(3H)-ones was accomplished. Further, 22 hybrid quinazolinone motifs (4a-v) were synthesized by N-heterocyclization reaction under microwave irradiation using the ionic liquid [Bmim][BF4 ]-H2 O as green solvent as well as the catalyst. The in vitro screening of the hybrid entities against the malarial species Plasmodium falciparum yielded five potent molecules 4l, 4n, 4o, 4t, and 4u owning antimalarial activity comparable to those of the reference drugs. In continuation, an in silico study was carried out to obtain a pharmacophoric model and quantitative structure-activity relationship. We also built a 3D-QSAR model to procure more information that could be applied to design new molecules with more potent Pf-DHFR inhibitory activity. The designed pharmacophore was recognized to be more potent for the selected molecules, exhibiting five pharmacophoric features. The active scaffolds were further evaluated for enzyme inhibition efficacy against alleged receptor Pf-DHFR computationally and in vitro, proving their candidature as lead dihydrofolate reductase inhibitors, and the selectivity of the test candidates was ascertained by toxicity study against Vero cells. Good oral bioavailability was also proved by studying pharmacokinetic properties.
Collapse
Affiliation(s)
- Tarosh S Patel
- Chemistry Department, V. P. & R. P. T. P Science College, Affiliated to Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Jaimin D Bhatt
- Industrial Chemistry Department, V. P. & R. P. T. P Science College, Affiliated to Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Ritu B Dixit
- Pharmaceutical Chemistry Department, Ashok & Rita Patel Institute of Integrated Studies and Research in Biotechnology and Allied Sciences, New Vallabh Vidyanagar, Gujarat, India
| | - Chaitanya J Chudasama
- Department of Biochemistry, Shree Alpesh N. Patel P. G. Institute, Affiliated to Sardar Patel University, Anand, Gujarat, India
| | - Bhavesh D Patel
- Microbiology Department, V. P. & R. P. T. P Science College, Affiliated to Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Bharat C Dixit
- Chemistry Department, V. P. & R. P. T. P Science College, Affiliated to Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
35
|
Patel TS, Bhatt JD, Dixit RB, Chudasama CJ, Patel BD, Dixit BC. Green synthesis, biological evaluation, molecular docking studies and 3D-QSAR analysis of novel phenylalanine linked quinazoline-4(3H)-one-sulphonamide hybrid entities distorting the malarial reductase activity in folate pathway. Bioorg Med Chem 2019; 27:3574-3586. [PMID: 31272837 DOI: 10.1016/j.bmc.2019.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022]
Abstract
A modified Grimmel's method for N-heterocyclization of phenylalanine linked sulphonamide side arm at position-2 was optimized leading to 2,3-disustituted-4-quinazolin-(3H)-ones. Further, [Bmim][BF4]-H2O (IL) was used as green solvent as well as catalyst for the synthesis of twenty two hybrid quinazolinone motifs (4a-4v) by N-heterocyclization reaction using microwave irradiation technique. The in vitro screening of the hybrid entities against the malarial species Plasmodium falciparum yielded five potent molecules 4l, 4n, 4r, 4t & 4u owing comparable antimalarial activity to the reference drugs. In continuation, anin silicostudy was carried out to obtain a pharmacophoric model and quantitative structure activity relationship. We also built a 3D-QSAR model to procure more information that could be applied to design new molecules with more potent Pf-DHFR inhibitory activity. The designed pharmacophore was recognized to be more potent for the selected molecules, exhibiting five pharmacophoric features. The active scaffolds were further evaluated for enzyme inhibition efficacy against alleged receptor Pf-DHFR computationally and in vitro, proving their candidature as lead dihydrofolate reductase inhibitors as well as the selectivity of the test candidates was ascertained by toxicity study against vero cells. The perception of good oral bioavailability was also proved by study of pharmacokinetic properties.
Collapse
Affiliation(s)
- Tarosh S Patel
- Chemistry Department, V. P. & R. P. T. P Science College, Affiliated to Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India.
| | - Jaimin D Bhatt
- Industrial Chemistry Department, V. P. & R. P. T. P Science College, Affiliated to Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India
| | - Ritu B Dixit
- Ashok & Rita Patel Institute of Integrated Studies and Research in Biotechnology and Allied Sciences, New Vallabh Vidyanagar, 388121, Gujarat, India
| | - Chaitanya J Chudasama
- Department of Biochemistry, Shree Alpesh N. Patel P. G. Institute, Affiliated to Sardar Patel University, Anand 388001, Gujarat, India
| | - Bhavesh D Patel
- Microbiology Department, V. P. & R. P. T. P Science College, Affiliated to Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India
| | - Bharat C Dixit
- Chemistry Department, V. P. & R. P. T. P Science College, Affiliated to Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India.
| |
Collapse
|
36
|
Yu T, Zheng Z, Sun W, Qiao Z. Direct C2‐Heteroarylation of Indoles by Rhodium‐Catalyzed C−C Bond Cleavage of Secondary Alcohols. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tian‐Yang Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Zhao‐Jing Zheng
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P. R. China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Zi‐Heng Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 P. R. China
| |
Collapse
|
37
|
Akasapu S, Hinds AB, Powell WC, Walczak MA. Total synthesis of micrococcin P1 and thiocillin I enabled by Mo(vi) catalyst. Chem Sci 2019; 10:1971-1975. [PMID: 30881626 PMCID: PMC6383332 DOI: 10.1039/c8sc04885a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/03/2018] [Indexed: 12/05/2022] Open
Abstract
Thiopeptides are a class of potent antibiotics with promising therapeutic potential. We developed a novel Mo(vi)-oxide/picolinic acid catalyst for the cyclodehydration of cysteine peptides to form thiazoline heterocycles. With this powerful tool in hand, we completed the total syntheses of two representative thiopeptide antibiotics: micrococcin P1 and thiocillin I. These two concise syntheses (15 steps, longest linear sequence) feature a C-H activation strategy to install the trisubstituted pyridine core and thiazole groups. The synthetic material displays promising antimicrobial properties measured against a series of Gram-positive bacteria.
Collapse
Affiliation(s)
- Siddhartha Akasapu
- Department of Chemistry , University of Colorado , Boulder , CO 80309 , USA .
| | - Aaron B Hinds
- Department of Chemistry , University of Colorado , Boulder , CO 80309 , USA .
| | - Wyatt C Powell
- Department of Chemistry , University of Colorado , Boulder , CO 80309 , USA .
| | - Maciej A Walczak
- Department of Chemistry , University of Colorado , Boulder , CO 80309 , USA .
| |
Collapse
|
38
|
Lassalas P, Berini C, Rouchet JBEY, Hédouin J, Marsais F, Schneider C, Baudequin C, Hoarau C. Miyaura borylation/Suzuki-Miyaura coupling (MBSC) sequence of 4-bromo-2,4'-bithiazoles with halides: straightforward access to a heterocylic cluster of d-series of thiopeptide GE2270. Org Biomol Chem 2019; 16:526-530. [PMID: 29292462 DOI: 10.1039/c7ob02866k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, palladium-catalyzed Miyaura borylation of 4-bromo-2,4'-bithiazoles followed by Suzuki-Miyaura cross-coupling reaction (named the MBSC process) with (hetero)aryl- and alkenyl halides is reported. This methodology offers rapid access to various 2',4-disubstituted 2,4'-bithiazole features including naturally-occurring 4-alkenylated and 4-pyridinylated 2,4'-bithiazoles. To prove its application, a concise approach for the synthesis of a heterocyclic cluster of the thiopeptide d-series antibiotic GE2270 is reported through a late-stage MBSC strategy.
Collapse
Affiliation(s)
- Pierrik Lassalas
- Normandie University, COBRA, UMR 6014 et FR 3038, University Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Balwe SG, Kim JS, Kim YI, Jeong YT. Diversity-oriented one-pot synthesis of furan based densely substituted biheteroaryls via isocyanide insertion. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Guo T, Wang CC, Fu XH, Liu Y, Zhang PK. Copper-catalyzed C–H/N–H cross-coupling reactions for the synthesis of 3-heteroaryl quinoxalin-2(1H)-ones. Org Biomol Chem 2019; 17:3333-3337. [DOI: 10.1039/c9ob00294d] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An effective copper-catalyzed C–H/N–H cross-coupling of quinoxalin-2(1H)-ones with diverse unprotected 2-quinoxalinones and 2-quinolinones was developed.
Collapse
Affiliation(s)
- Tao Guo
- College of Chemistry
- Chemical and Environmental Engineering
- Henan University of Technology
- Zhengzhou
- PR China
| | - Chuan-Chuan Wang
- Faculty of Science
- Henan University of Animal Husbandry and Economy
- Zhengzhou 450044
- PR China
| | - Xiang-Heng Fu
- College of Chemistry
- Chemical and Environmental Engineering
- Henan University of Technology
- Zhengzhou
- PR China
| | - Yu Liu
- College of Chemistry
- Chemical and Environmental Engineering
- Henan University of Technology
- Zhengzhou
- PR China
| | - Pan-Ke Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- PR China
| |
Collapse
|
41
|
Uygur M, García Mancheño O. Visible light-mediated organophotocatalyzed C-H bond functionalization reactions. Org Biomol Chem 2019; 17:5475-5489. [PMID: 31115431 DOI: 10.1039/c9ob00834a] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the last decade, a variety of methodologies for the direct functionalization of C-H bonds have been developed. Among others, visible light photoredox reactions have recently emerged as one of the most efficient and highly selective processes for the direct introduction of a functionality into organic molecules. Easy reaction setups, as well as mild reaction conditions, make this approach superior to other methodologies applying transition metals or strong oxidants, in terms of both costs and substrate and functional group tolerance. In this review, the recent developments in organophotocatalyzed C-H bond functionalization reactions are presented.
Collapse
Affiliation(s)
- Mustafa Uygur
- Organic Chemistry Institute, Münster University, Corrensstr. 40, 48149 Münster, Germany.
| | | |
Collapse
|
42
|
Huang H, Qu Z, Ji X, Deng GJ. Three-component bis-heterocycliation for synthesis of 2-aminobenzo[4,5]thieno[3,2-d]thiazoles. Org Chem Front 2019. [DOI: 10.1039/c8qo01365a] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A cooperative base system has been developed for the novel three-component synthesis of 2-aminobenzo[4,5]thieno[3,2-d]thiazoles via bis-heterocyclization of methylketoxime acetates.
Collapse
Affiliation(s)
- Huawen Huang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Zhonghua Qu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Xiaochen Ji
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| |
Collapse
|
43
|
Wang B, Li P, Miao T, Zou L, Wang L. Visible-light induced decarboxylative C2-alkylation of benzothiazoles with carboxylic acids under metal-free conditions. Org Biomol Chem 2019; 17:115-121. [DOI: 10.1039/c8ob02476f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A photoredox catalyzed C2-alkylation of benzothiazoles with carboxylic acids was developed by using an acridinium salt as a photocatalyst and air as an oxidant.
Collapse
Affiliation(s)
- Bin Wang
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Pinhua Li
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Tao Miao
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Long Zou
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Lei Wang
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
44
|
Liu S, Huang W, Wang D, Wei P, Shen Q. Cobalt-catalyzed cross-coupling of lithium (hetero)aryl zincates with heteroaryl chlorides and bromides. Org Chem Front 2019. [DOI: 10.1039/c9qo00551j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A mild, efficient and practical Co-catalyzed cross coupling reaction of a variety of activated heteroaryl chlorides and bromides with lithium aryl zincates that were in situ generated from lithium aryl boronates with ZnBr2 was described.
Collapse
Affiliation(s)
- Shuanshuan Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- People's Republic of China
| | - Weichen Huang
- Key Laboratory of Organofluorine Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Decai Wang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- People's Republic of China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- People's Republic of China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
45
|
An H, Mai S, Xuan Q, Zhou Y, Song Q. Gold-Catalyzed Radical-Involved Intramolecular Cyclization of Internal N-Propargylamides for the Construction of 5-Oxazole Ketones. J Org Chem 2018; 84:401-408. [DOI: 10.1021/acs.joc.8b02334] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hejun An
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, People’s Republic of China
| | - Shaoyu Mai
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, People’s Republic of China
| | - Qingqing Xuan
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, People’s Republic of China
| | - Yao Zhou
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, People’s Republic of China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, People’s Republic of China
- Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People’s Republic of China
| |
Collapse
|
46
|
Xu F, Li Y, Huang X, Fang X, Li Z, Jiang H, Qiao J, Chu W, Sun Z. Hypervalent Iodine(III)‐Mediated Regioselective Cyanation of Quinoline
N
‐Oxides with Trimethylsilyl Cyanide. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Feng Xu
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Yuqin Li
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Xin Huang
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Xinjie Fang
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Zhuofei Li
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Hongshuo Jiang
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Jingyi Qiao
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Wenyi Chu
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Zhizhong Sun
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| |
Collapse
|
47
|
Shao LY, Xing LH, Guo Y, Yu KK, Wang W, Liu HW, Liao DH, Ji YF. Catalytic Cascade Access to Biaryl-2-Methyl Acetates from PyruvateO-Arylmethyl Ketoximesviathe Palladium-Catalyzed C(sp2)H Bond Arylation and C−O Bond Solvolysis. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ling-Yan Shao
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Li-Hao Xing
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Ying Guo
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Kun-Kun Yu
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Wei Wang
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 People's Republic of China
- Department of Chemistry & Chemical Biology; University of New Mexico; MSC03 2060 Albuquerque NM 87131-0001 USA
| | - Hong-Wei Liu
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Dao-Hua Liao
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Ya-Fei Ji
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 People's Republic of China
| |
Collapse
|
48
|
Xie S, Savchenko AI, Krenske EH, Grange RL, Gahan LR, Williams CM. Developing Cyclic Peptide Heteroatom Interchange: Synthesis and DFT Modelling of a HI‐Ascidiacyclamide Isomer. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sida Xie
- School of Chemistry and Molecular Biosciences University of Queensland 4072 Brisbane Australia
- Southwest Forestry University 650224 Kunming P. R. China
| | - Andrei I. Savchenko
- School of Chemistry and Molecular Biosciences University of Queensland 4072 Brisbane Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences University of Queensland 4072 Brisbane Australia
| | - Rebecca L. Grange
- School of Chemistry and Molecular Biosciences University of Queensland 4072 Brisbane Australia
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences University of Queensland 4072 Brisbane Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences University of Queensland 4072 Brisbane Australia
| |
Collapse
|
49
|
Soor HS, Appavoo SD, Yudin AK. Heterocycles: Versatile control elements in bioactive macrocycles. Bioorg Med Chem 2018; 26:2774-2779. [DOI: 10.1016/j.bmc.2017.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
|
50
|
Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg Med Chem 2018; 26:2766-2773. [DOI: 10.1016/j.bmc.2017.08.031] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023]
|