1
|
Gao ZX, Wang H, Su AH, Li QY, Liang Z, Zhang YQ, Liu XY, Zhu MZ, Zhang HX, Hou YT, Li X, Sun LR, Li J, Xu ZJ, Lou HX. Asymmetric Synthesis and Biological Evaluation of Platensilin, Platensimycin, Platencin, and Their Analogs via a Bioinspired Skeletal Reconstruction Approach. J Am Chem Soc 2024; 146:18967-18978. [PMID: 38973592 DOI: 10.1021/jacs.4c02256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Platensilin, platensimycin, and platencin are potent inhibitors of β-ketoacyl-acyl carrier protein synthase (FabF) in the bacterial and mammalian fatty acid synthesis system, presenting promising drug leads for both antibacterial and antidiabetic therapies. Herein, a bioinspired skeleton reconstruction approach is reported, which enables the unified synthesis of these three natural FabF inhibitors and their skeletally diverse analogs, all stemming from a common ent-pimarane core. The synthesis features a diastereoselective biocatalytic reduction and an intermolecular Diels-Alder reaction to prepare the common ent-pimarane core. From this intermediate, stereoselective Mn-catalyzed hydrogen atom-transfer hydrogenation and subsequent Cu-catalyzed carbenoid C-H insertion afford platensilin. Furthermore, the intramolecular Diels-Alder reaction succeeded by regioselective ring opening of the newly formed cyclopropane enables the construction of the bicyclo[3.2.1]-octane and bicyclo[2.2.2]-octane ring systems of platensimycin and platencin, respectively. This skeletal reconstruction approach of the ent-pimarane core facilitates the preparation of analogs bearing different polycyclic scaffolds. Among these analogs, the previously unexplored cyclopropyl analog 47 exhibits improved antibacterial activity (MIC80 = 0.0625 μg/mL) against S. aureus compared to platensimycin.
Collapse
Affiliation(s)
- Zong-Xu Gao
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Hongliang Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery System, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Rd, Jinan 250117, P. R. China
| | - Ai-Hong Su
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Qian-Ying Li
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Zhen Liang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Yue-Qing Zhang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Xu-Yuan Liu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Ming-Zhu Zhu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Hai-Xia Zhang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Yue-Tong Hou
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Xin Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery System, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Rd, Jinan 250117, P. R. China
| | - Long-Ru Sun
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Jian Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, No. 429, Zhangheng Rd, Shanghai 200213, P. R. China
| | - Ze-Jun Xu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| | - Hong-Xiang Lou
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Rd, Jinan 250012, P. R. China
| |
Collapse
|
2
|
Usman FO, Gogoi AR, Mixdorf JC, Gutierrez O, Nguyen HM. Rhodium-Catalyzed Asymmetric Synthesis of 1,2-Disubstituted Allylic Fluorides. Angew Chem Int Ed Engl 2023; 62:e202314843. [PMID: 37856668 PMCID: PMC11069351 DOI: 10.1002/anie.202314843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Although there are many methods for the asymmetric synthesis of monosubstituted allylic fluorides, construction of enantioenriched 1,2-disubstituted allylic fluorides has not been reported. To address this gap, we report an enantioselective synthesis of 1,2-disubstituted allylic fluorides using chiral diene-ligated rhodium catalyst, Et3 N ⋅ 3HF as a source of fluoride, and Morita Baylis Hillman (MBH) trichloroacetimidates. Kinetic studies show that one enantiomer of racemic MBH substrate reacts faster than the other. Computational studies reveal that both syn and anti π-allyl complexes are formed upon ionization of allylic substrate, and the syn complexes are slightly energetically favorable. This is in contrast to our previous observation for formation of monosubstituted π-allyl intermediates, in which the syn π-allyl conformation is strongly preferred. In addition, the presence of an electron-withdrawing group at C2 position of racemic MBH substrate renders 1,2-disubstituted π-allyl intermediate formation endergonic and reversible. To compare, formation of monosubstituted π-allyl intermediates was exergonic and irreversible. DFT calculations and kinetic studies support a dynamic kinetic asymmetric transformation process wherein the rate of isomerization of the 1,2-disubstituted π-allylrhodium complexes is faster than that of fluoride addition onto the more reactive intermediate. The 1,2-disubstituted allylic fluorides were obtained in good yields, enantioselectivity, and branched selectivity.
Collapse
Affiliation(s)
- Fuad O Usman
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Achyut R Gogoi
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Jason C Mixdorf
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
3
|
Liu H, Ji DW, Min XT, Mei YK, Sun SH, Zhang G, Hu YC, Chen QA. Disproportionation-Inspired Construction of Highly Functionalized Bicyclo[3.2.1]octanes. Org Lett 2023; 25:1878-1882. [PMID: 36916741 DOI: 10.1021/acs.orglett.3c00397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The formation of one unavoidable byproduct in traditional disproportionation reactions limits their applications in synthesis. Inspired by convergent disproportionation, we develop an iodine-induced cyclization and oxidation of allylic alcohols to produce highly functionalized bicyclo[3.2.1]octanes through creation of six new bonds. Guided by the mechanism, we elaborated a variety of other bicyclo[3.2.1]octanes bearing distinct groups with presynthesized dienes and enones as the starting materials. This work provides a divergent access to bicyclo[3.2.1]octane frameworks.
Collapse
Affiliation(s)
- Heng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiang-Ting Min
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yong-Kang Mei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shao-Han Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gong Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wu T, Tang W. Construction of Bridged Polycyclic Skeletons via Transition-Metal Catalyzed Carbon-Carbon Bond-Forming Reactions. Chemistry 2021; 27:3944-3956. [PMID: 32918298 DOI: 10.1002/chem.202003863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Transition-metal catalysis has become one of most important methods for constructing molecules with diverse architectures. Bridged polycyclic skeletons are often considered one of most challenging structures in organic synthesis. This Minireview summarizes the recent progress on synthesis of bridged polycyclic skeletons by transition-metal-catalyzed carbon-carbon bond-forming reaction. Four main ring-forming strategies including connection via olefin or carbonyl functionality, enolate intermediacy, C-H functionality, and aryl functionality are detailed and some effective methods are discussed with particular emphasis on reaction design and mechanism.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,School of Chemistry and Materials Science Hangzhou Institute for, Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| |
Collapse
|
5
|
Heravi MM, Janati F, Zadsirjan V. Applications of Knoevenagel condensation reaction in the total synthesis of natural products. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02586-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Trajkovic M, Ferjancic Z, Saicic RN, Bihelovic F. Enantioselective Synthesis of the Platensimycin Core by Silver(I)‐Promoted Cyclization of Δ 6‐α‐Iodoketone. Chemistry 2019; 25:4340-4344. [DOI: 10.1002/chem.201900497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Milos Trajkovic
- Faculty of ChemistryUniversity of Belgrade Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
| | - Zorana Ferjancic
- Faculty of ChemistryUniversity of Belgrade Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
| | - Radomir N. Saicic
- Faculty of ChemistryUniversity of Belgrade Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
- Serbian Academy of Sciences and Arts Knez Mihailova 35 11000 Belgrade Serbia
| | - Filip Bihelovic
- Faculty of ChemistryUniversity of Belgrade Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
| |
Collapse
|
7
|
Guo C, Wang P, Lin X, Salendra L, Kong F, Liao S, Yang B, Zhou X, Wang J, Liu Y. Phloroglucinol heterodimers and bis-indolyl alkaloids from the sponge-derived fungus Aspergillus sp. SCSIO 41018. Org Chem Front 2019. [DOI: 10.1039/c9qo00351g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gilluones A–C (1–3), three new phloroglucinol heterodimers, asterriquinones I–K (4–6), three new bis-indolylquinones, and asterriquinols G–I (7–9), three new bis-indolylbenzenoids, were isolated from the sponge-derived fungus Aspergillus sp. SCSIO 41018.
Collapse
|
8
|
Defieber C, Mohr JT, Grabovyi GA, Stoltz BM. Short Enantioselective Formal Synthesis of (-)-Platencin. SYNTHESIS-STUTTGART 2018; 50:4359-4368. [PMID: 31061542 DOI: 10.1055/s-0037-1610437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A short enantioselective formal synthesis of the antibiotic natural product platencin is reported. Key steps in the synthesis include enantioselective decarboxylation alkylation, aldehyde/olefin radical cyclization, and regioselective aldol cyclization.
Collapse
Affiliation(s)
- Christian Defieber
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering California Institute of Technology, 1200 E California Blvd. MC 101-20, Pasadena, CA 91125, USA
| | - Justin T Mohr
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering California Institute of Technology, 1200 E California Blvd. MC 101-20, Pasadena, CA 91125, USA.,Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
| | - Gennadii A Grabovyi
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering California Institute of Technology, 1200 E California Blvd. MC 101-20, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Brill ZG, Condakes ML, Ting CP, Maimone TJ. Navigating the Chiral Pool in the Total Synthesis of Complex Terpene Natural Products. Chem Rev 2017; 117:11753-11795. [PMID: 28293944 PMCID: PMC5638449 DOI: 10.1021/acs.chemrev.6b00834] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pool of abundant chiral terpene building blocks (i.e., "chiral pool terpenes") has long served as a starting point for the chemical synthesis of complex natural products, including many terpenes themselves. As inexpensive and versatile starting materials, such compounds continue to influence modern synthetic chemistry. This review highlights 21st century terpene total syntheses which themselves use small, terpene-derived materials as building blocks. An outlook to the future of research in this area is highlighted as well.
Collapse
Affiliation(s)
- Zachary G. Brill
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Matthew L. Condakes
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Chi P. Ting
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Thomas J. Maimone
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
10
|
Subba Reddy BV, Nair PN, Antony A, Srivastava N. Recent Advances in Prins Spirocyclization. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700633] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- B. V. Subba Reddy
- Centre for Semio Chemicals; CSIR - Indian Institute of Chemical Technology; Hyderabad India
| | - Preethi Narayanan Nair
- Centre for Semio Chemicals; CSIR - Indian Institute of Chemical Technology; Hyderabad India
| | - Aneesh Antony
- Centre for Semio Chemicals; CSIR - Indian Institute of Chemical Technology; Hyderabad India
| | - Nikhil Srivastava
- Centre for Semio Chemicals; CSIR - Indian Institute of Chemical Technology; Hyderabad India
| |
Collapse
|
11
|
Liu L, Liu Y, Ling B, Bi S. Mechanistic investigation into Et3N C H activation and chemoselectivity by Pd-Catalyzed intramolecular heck reaction of N-Vinylacetamides. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2016.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Rudolf JD, Dong LB, Manoogian K, Shen B. Biosynthetic Origin of the Ether Ring in Platensimycin. J Am Chem Soc 2016; 138:16711-16721. [PMID: 27966343 PMCID: PMC5466352 DOI: 10.1021/jacs.6b09818] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Platensimycin (PTM) and platencin (PTN) are highly functionalized bacterial diterpenoid natural products that target bacterial and mammalian fatty acid synthases. PTM and PTN feature varying diterpene-derived ketolides that are linked to the same 3-amino-2,4-dihydroxybenzoic acid moiety. As a result, PTM is a selective inhibitor for FabF/FabB, while PTN is a dual inhibitor of FabF/FabB and FabH. We previously determined that the PTM cassette, consisting of five genes found in the ptm, but not ptn, gene cluster, partitions the biosynthesis of the PTM and PTN diterpene-derived ketolides. We now report investigation of the PTM cassette through the construction of diterpene production systems in E. coli and genetic manipulation in the PTM-PTN dual overproducer Streptomyces platensis SB12029, revealing two genes, ptmT3 and ptmO5, that are responsible for the biosynthetic divergence between the PTM and PTN diterpene-derived ketolides. PtmT3, a type I diterpene synthase, was determined to be a (16R)-ent-kauran-16-ol synthase, the first of its kind found in bacteria. PtmO5, a cytochrome P450 monooxygenase, is proposed to catalyze the formation of the characteristic 11S,16S-ether ring found in PTM. Inactivation of ptmO5 in SB12029 afforded the ΔptmO5 mutant SB12036 that accumulated nine PTM and PTN congeners, seven of which were new, including seven 11-deoxy-16R-hydroxy-PTM congeners. The two fully processed PTM analogues showed antibacterial activities, albeit lower than that of PTM, indicating that the ether ring, or minimally the stereochemistry of the hydroxyl group at C-16, is crucial for the activity of PTM.
Collapse
Affiliation(s)
- Jeffrey D. Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Liao-Bin Dong
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Karina Manoogian
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
13
|
Lepronier A, Achard T, Giordano L, Tenaglia A, Buono G, Clavier H. Palladium-Catalyzed [2+1] Cycloadditions Affording Vinylidenecyclopropanes as Precursors of 7-Membered Carbocycles. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201500971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Yang M, Li J, Li A. Total synthesis of clostrubin. Nat Commun 2015; 6:6445. [PMID: 25759087 PMCID: PMC4382683 DOI: 10.1038/ncomms7445] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/29/2015] [Indexed: 01/21/2023] Open
Abstract
Clostrubin is a potent antibiotic against methicillin- and vancomycin-resistant bacteria that was isolated from a strictly anaerobic bacterium Clostridium beijerinckii in 2014. This polyphenol possesses a fully substituted arene moiety on its pentacyclic scaffold, which poses a considerable challenge for chemical synthesis. Here we report the first total synthesis of clostrubin in nine steps (the longest linear sequence). A desymmetrization strategy is exploited based on the inherent structural feature of the natural product. Barton–Kellogg olefination forges the two segments together to form a tetrasubstituted alkene. A photo-induced 6π electrocyclization followed by spontaneous aromatization constructs the hexasubstituted B ring at a late stage. In total, 200 mg of clostrubin are delivered through this approach. Due to rising resistance, efficient routes to new antibiotics is a vital task for human health. Here, the authors report a short, convergent and elegant synthesis of a very recently reported antibiotic, successfully giving access to this material on scale.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jian Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
15
|
Maertens G, L'Homme C, Canesi S. Total synthesis of natural products using hypervalent iodine reagents. Front Chem 2015; 2:115. [PMID: 25601909 PMCID: PMC4283662 DOI: 10.3389/fchem.2014.00115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/10/2014] [Indexed: 12/16/2022] Open
Abstract
We present a review of natural product syntheses accomplished in our laboratory during the last 5 years. Each synthetic route features a phenol dearomatization promoted by an environmentally benign hypervalent iodine reagent. The dearomatizations demonstrate the "aromatic ring umpolung" concept, and involve stereoselective remodeling of the inert unsaturations of a phenol into a highly functionalized key intermediate that may contain a quaternary carbon center and a prochiral dienone system. Several new oxidative strategies were employed, including transpositions (1,3-alkyl shift and Prins-pinacol), a polycyclization, an ipso rearrangement, and direct nucleophilic additions at the phenol para position. Several alkaloids, heterocyclic compounds, and a polycyclic core have been achieved, including sceletenone (a serotonin reuptake inhibitor), acetylaspidoalbidine (an antitumor agent), fortucine (antiviral and antitumor), erysotramidine (curare-like effect), platensimycin (an antibiotic), and the main core of a kaurane diterpene (immunosuppressive agent and stimulator of apoptosis). These concise and in some cases enantioselective syntheses effectively demonstrate the importance of hypervalent iodine reagents in the total synthesis of bioactive natural products.
Collapse
Affiliation(s)
| | | | - Sylvain Canesi
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Département de Chimie, Université du Québec à MontréalMontréal, QC, Canada
| |
Collapse
|
16
|
Jiao ZW, Tu YQ, Zhang Q, Liu WX, Wang SH, Wang M. Formal synthesis of (−)-platensimycin. Org Chem Front 2015. [DOI: 10.1039/c5qo00109a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient formal synthesis of (−)-platensimycin was completed by using a tandem C–H oxidation/C–C coupling (cyclization)/rearrangement as the key step.
Collapse
Affiliation(s)
- Zhi-Wei Jiao
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry Lanzhou University
- Lanzhou
- P. R. China
| | - Yong-Qiang Tu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry Lanzhou University
- Lanzhou
- P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin
| | - Qing Zhang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry Lanzhou University
- Lanzhou
- P. R. China
| | - Wen-Xing Liu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry Lanzhou University
- Lanzhou
- P. R. China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry Lanzhou University
- Lanzhou
- P. R. China
| | - Min Wang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| |
Collapse
|
17
|
Zhu L, Huang SH, Yu J, Hong R. Constructive innovation of approaching bicyclo[3.2.1]octane in ent-kauranoids. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.11.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Chang EL, Schwartz BD, Draffan AG, Banwell MG, Willis AC. A Chemoenzymatic and Fully Stereocontrolled Total Synthesis of the Antibacterial Natural Product (−)-Platencin. Chem Asian J 2014; 10:427-39. [DOI: 10.1002/asia.201403069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Indexed: 12/25/2022]
|
19
|
Moustafa GAI, Saku Y, Aoyama H, Yoshimitsu T. A new route to platencin via decarboxylative radical cyclization. Chem Commun (Camb) 2014; 50:15706-9. [PMID: 25361063 DOI: 10.1039/c4cc07316a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new approach to platencin, a potent antibiotic isolated from Streptomyces platensis, has been established. The highly congested tricyclic core of the natural product was successfully constructed by decarboxylative radical cyclization of an alkynyl silyl ester with Pb(OAc)4 in the presence of pyridine in refluxing 1,4-dioxane. The key decarboxylation, which likely takes place via lead(IV) esterification followed by carbon-centered radical generation and subsequent capture of the radical with a triple bond, allows the rapid construction of the twisted polycyclic system.
Collapse
Affiliation(s)
- Gamal A I Moustafa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
20
|
Eey STC, Lear MJ. Total Synthesis of (−)-Platensimycin by Advancing Oxocarbenium- and Iminium-Mediated Catalytic Methods. Chemistry 2014; 20:11556-73. [DOI: 10.1002/chem.201400131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Indexed: 11/10/2022]
|
21
|
Yoshimitsu T. Endeavors to access molecular complexity: strategic use of free radicals in natural product synthesis. CHEM REC 2014; 14:268-79. [PMID: 24677484 DOI: 10.1002/tcr.201300024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Indexed: 01/16/2023]
Abstract
Free radicals, which in the past were considered unruly chemical species, have become manageable and indispensable for synthetic organic chemistry. The unique nature of free radicals has allowed practitioners in organic synthesis to design flexible approaches to produce various materials ranging from small molecules to polymers. The present Personal Account describes the author's endeavors to create molecular complexity by the strategic use of free radicals, with an emphasis on the synthesis of bioactive natural products.
Collapse
Affiliation(s)
- Takehiko Yoshimitsu
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
22
|
|
23
|
Wang LF, Shi ZF, Cao XP, Li BS, An P. Construction of fused- and spiro-oxa-[n.2.1] skeletons by a tandem epoxide rearrangement/intramolecular [3+2] cycloaddition of cyclopropanes with carbonyls. Chem Commun (Camb) 2014; 50:8061-4. [DOI: 10.1039/c4cc02641a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Woerly EM, Miller JE, Burke MD. (1-bromovinyl)-MIDA boronate: a readily accessible and highly versatile building block for small molecule synthesis. Tetrahedron 2013; 69. [PMID: 24347693 DOI: 10.1016/j.tet.2013.05.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Eric M Woerly
- Howard Hughes Medical Institute, Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Jonathan E Miller
- Howard Hughes Medical Institute, Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Martin D Burke
- Howard Hughes Medical Institute, Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
25
|
Zhu L, Zhou C, Yang W, He S, Cheng GJ, Zhang X, Lee CS. Formal Syntheses of (±)-Platensimycin and (±)-Platencin via a Dual-Mode Lewis Acid Induced Cascade Cyclization Approach. J Org Chem 2013; 78:7912-29. [DOI: 10.1021/jo401105q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lizhi Zhu
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Congshan Zhou
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
- College of Chemistry and Chemical
Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Wei Yang
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Shuzhong He
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Gui-Juan Cheng
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Xinhao Zhang
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| | - Chi-Sing Lee
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University
Town, Xili, Shenzhen 518055, China
| |
Collapse
|
26
|
Affiliation(s)
- J. S. Yadav
- Division of Natural Product Chemistry and Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | - Rajendar Goreti
- Division of Natural Product Chemistry and Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | - Srihari Pabbaraja
- Division of Natural Product Chemistry and Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | - B. Sridhar
- Division of Natural Product Chemistry and Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India
| |
Collapse
|
27
|
Horii S, Torihata M, Nagasawa T, Kuwahara S. Stereoselective Approach to the Racemic Oxatetracyclic Core of Platensimycin. J Org Chem 2013; 78:2798-801. [DOI: 10.1021/jo302813y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sakuya Horii
- Laboratory of Applied Bioorganic Chemistry, Graduate
School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Munefumi Torihata
- Laboratory of Applied Bioorganic Chemistry, Graduate
School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Tomohiro Nagasawa
- Laboratory of Applied Bioorganic Chemistry, Graduate
School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Shigefumi Kuwahara
- Laboratory of Applied Bioorganic Chemistry, Graduate
School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| |
Collapse
|
28
|
Zhu L, Han Y, Du G, Lee CS. A Bifunctional Lewis Acid Induced Cascade Cyclization to the Tricyclic Core of ent-Kaurenoids and Its Application to the Formal Synthesis of (±)-Platensimycin. Org Lett 2013; 15:524-7. [DOI: 10.1021/ol3033412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lizhi Zhu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Yejian Han
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Guangyan Du
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Chi-Sing Lee
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| |
Collapse
|
29
|
Yoshida M. Synthesis of Functionalized Cyclic Molecules by Palladium-Catalyzed Cyclization of Propargylic Esters with Bis-nucleophiles. HETEROCYCLES 2013. [DOI: 10.3987/rev-13-776] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Moulia A, Teo J, Johannes CW, Richard JA. Expedient synthesis of bicyclo[3.2.1]octanes and bicyclo[3.3.1]nonanes via the double Michael addition to cyclic dienones. RSC Adv 2013. [DOI: 10.1039/c3ra43923b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
31
|
Presset M, Coquerel Y, Rodriguez J. Syntheses and Applications of Functionalized Bicyclo[3.2.1]octanes: Thirteen Years of Progress. Chem Rev 2012; 113:525-95. [DOI: 10.1021/cr200364p] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Marc Presset
- Aix Marseille
Université, CNRS,
iSm2 UMR 7313, 13397 Marseille, France
| | - Yoann Coquerel
- Aix Marseille
Université, CNRS,
iSm2 UMR 7313, 13397 Marseille, France
| | - Jean Rodriguez
- Aix Marseille
Université, CNRS,
iSm2 UMR 7313, 13397 Marseille, France
| |
Collapse
|
32
|
Nicolaou KC, Hale CRH, Nilewski C, Ioannidou HA. Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance. Chem Soc Rev 2012; 41:5185-238. [PMID: 22743704 PMCID: PMC3426871 DOI: 10.1039/c2cs35116a] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The advent of organic synthesis and the understanding of the molecule as they occurred in the nineteenth century and were refined in the twentieth century constitute two of the most profound scientific developments of all time. These discoveries set in motion a revolution that shaped the landscape of the molecular sciences and changed the world. Organic synthesis played a major role in this revolution through its ability to construct the molecules of the living world and others like them whose primary element is carbon. Although the early beginnings of organic synthesis came about serendipitously, organic chemists quickly recognized its potential and moved decisively to advance and exploit it in myriad ways for the benefit of mankind. Indeed, from the early days of the synthesis of urea and the construction of the first carbon-carbon bond, the art of organic synthesis improved to impressively high levels of sophistication. Through its practice, today chemists can synthesize organic molecules--natural and designed--of all types of structural motifs and for all intents and purposes. The endeavor of constructing natural products--the organic molecules of nature--is justly called both a creative art and an exact science. Often called simply total synthesis, the replication of nature's molecules in the laboratory reflects and symbolizes the state of the art of synthesis in general. In the last few decades a surge in total synthesis endeavors around the world led to a remarkable collection of achievements that covers a wide ranging landscape of molecular complexity and diversity. In this article, we present highlights of some of our contributions in the field of total synthesis of natural products of biological and medicinal importance. For perspective, we also provide a listing of selected examples of additional natural products synthesized in other laboratories around the world over the last few years.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
33
|
Plesch E, Bracher F, Krauss J. Synthesis and Antimicrobial Evaluation of Novel Platensimycin Analogues. Arch Pharm (Weinheim) 2012; 345:657-62. [PMID: 22549797 DOI: 10.1002/ardp.201100455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Eva Plesch
- Center of Drug Research, Department of Pharmacy, Ludwig-Maximilians University, Munich, Germany
| | | | | |
Collapse
|
34
|
Yoshida M. Development of Palladium-Catalyzed Transformations Using Propargylic Compounds. Chem Pharm Bull (Tokyo) 2012; 60:285-99. [DOI: 10.1248/cpb.60.285] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Masahiro Yoshida
- Graduate School of Pharmaceutical Sciences, The University of Tokushima
| |
Collapse
|
35
|
Matsubara R, Gutierrez AC, Jamison TF. Nickel-catalyzed Heck-type reactions of benzyl chlorides and simple olefins. J Am Chem Soc 2011; 133:19020-3. [PMID: 22066899 DOI: 10.1021/ja209235d] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nickel-catalyzed intermolecular benzylation and heterobenzylation of unactivated alkenes to provide functionalized allylbenzene derivatives are described. A wide range of both the benzyl chloride and alkene coupling partners are tolerated. In contrast to analogous palladium-catalyzed variants of this process, all reactions described herein employ electronically unbiased aliphatic olefins (including ethylene), proceed at room temperature, and provide 1,1-disubstituted olefins over the more commonly observed 1,2-disubstituted olefins with very high selectivity.
Collapse
Affiliation(s)
- Ryosuke Matsubara
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
36
|
Beaulieu MA, Guérard KC, Maertens G, Sabot C, Canesi S. Oxidative Prins-Pinacol Tandem Process Mediated by a Hypervalent Iodine Reagent: Scope, Limitations, and Applications. J Org Chem 2011; 76:9460-71. [DOI: 10.1021/jo2019027] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marc-André Beaulieu
- Laboratoire de Méthodologie et Synthèse
de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville,
Montréal, H3C 3P8 Québec, Canada
| | - Kimiaka C. Guérard
- Laboratoire de Méthodologie et Synthèse
de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville,
Montréal, H3C 3P8 Québec, Canada
| | - Gaëtan Maertens
- Laboratoire de Méthodologie et Synthèse
de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville,
Montréal, H3C 3P8 Québec, Canada
| | - Cyrille Sabot
- Laboratoire de Méthodologie et Synthèse
de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville,
Montréal, H3C 3P8 Québec, Canada
| | - Sylvain Canesi
- Laboratoire de Méthodologie et Synthèse
de Produits Naturels, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville,
Montréal, H3C 3P8 Québec, Canada
| |
Collapse
|
37
|
Yoshimitsu T, Nojima S, Hashimoto M, Tanaka T. Total Synthesis of (±)-Platencin. Org Lett 2011; 13:3698-701. [DOI: 10.1021/ol2013439] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takehiko Yoshimitsu
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shoji Nojima
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masashi Hashimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuaki Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
38
|
Yoshida M, Sugimura C, Shishido K. Diastereoselective Construction of 7-Methylenebicyclo[3.2.1]oct-3-en-2-one Derivatives by Palladium-Catalyzed Cyclization of Propargylic Acetates with 2-Oxocyclohex-3-enecarboxylates. Org Lett 2011; 13:3482-5. [DOI: 10.1021/ol201243u] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masahiro Yoshida
- Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Sho-machi, Tokushima
| | - Chiyuki Sugimura
- Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Sho-machi, Tokushima
| | - Kozo Shishido
- Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Sho-machi, Tokushima
| |
Collapse
|
39
|
Oblak EZ, Wright DL. Highly Substituted Oxabicyclic Derivatives from Furan: Synthesis of (±)-Platensimycin. Org Lett 2011; 13:2263-5. [DOI: 10.1021/ol2005775] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E. Zachary Oblak
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Dennis L. Wright
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
40
|
Zheng JC, Yun SY, Sun C, Lee NK, Lee D. Selectivity Control in Alkylidene Carbene-Mediated C−H Insertion and Allene Formation. J Org Chem 2011; 76:1086-99. [PMID: 21244086 DOI: 10.1021/jo102180f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jun-Cheng Zheng
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Sang Young Yun
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Chunrui Sun
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Nam-Kyu Lee
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Daesung Lee
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
41
|
Hirai S, Nakada M. Enantioselective divergent approaches to both (−)-platensimycin and (−)-platencin. Tetrahedron 2011. [DOI: 10.1016/j.tet.2010.10.076] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Saleem M, Hussain H, Ahmed I, van Ree T, Krohn K. Platensimycin and its relatives: A recent story in the struggle to develop new naturally derived antibiotics. Nat Prod Rep 2011; 28:1534-79. [DOI: 10.1039/c1np00010a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Palanichamy K, Subrahmanyam AV, Kaliappan KP. A radical cyclization approach to the formal total syntheses of platencin. Org Biomol Chem 2011; 9:7877-86. [DOI: 10.1039/c1ob06155k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Tiefenbacher K, Gollner A, Mulzer J. Syntheses and antibacterial properties of iso-platencin, Cl-iso-platencin and Cl-platencin: identification of a new lead structure. Chemistry 2010; 16:9616-22. [PMID: 20486112 DOI: 10.1002/chem.201000706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Platencin is a novel antibiotic which is active against multiresistant pathogens. We describe efficient syntheses of three platencin analogues of varying activities which allow further conclusions about the pharmacophoric part of the molecule. The unnatural antibiotic iso-platencin, which is about as active as natural platencin, but much more selective, was identified as a new lead structure.
Collapse
Affiliation(s)
- Konrad Tiefenbacher
- University of Vienna, Institute of Organic Chemistry, Währingerstrasse 38, 1090 Wien, Austria
| | | | | |
Collapse
|
45
|
Eey STC, Lear MJ. A Bismuth(III)-Catalyzed Friedel−Crafts Cyclization and Stereocontrolled Organocatalytic Approach to (−)-Platensimycin. Org Lett 2010; 12:5510-3. [DOI: 10.1021/ol102390t] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stanley T.-C. Eey
- Department of Chemistry, Faculty of Science, and Medicinal Chemistry Program of the Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Martin J. Lear
- Department of Chemistry, Faculty of Science, and Medicinal Chemistry Program of the Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
46
|
Hirai S, Nakada M. An enantioselective approach to (−)-platencin via catalytic asymmetric intramolecular cyclopropanation. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.07.088] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Beaulieu MA, Sabot C, Achache N, Guérard KC, Canesi S. An Oxidative Prins-Pinacol Tandem Process and its Application to the synthesis of (−)-Platensimycin. Chemistry 2010; 16:11224-8. [DOI: 10.1002/chem.201001813] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Waalboer DCJ, Leenders SHAM, Schülin-Casonato T, van Delft FL, Rutjes FPJT. Total Synthesis and Antibiotic Activity of Dehydrohomoplatencin. Chemistry 2010; 16:11233-6. [DOI: 10.1002/chem.201001744] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Tiefenbacher K, Tröndlin L, Mulzer J, Pfaltz A. An expeditious asymmetric formal synthesis of the antibiotic platensimycin. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.04.098] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Palanichamy K, Kaliappan KP. Discovery and syntheses of "superbug challengers"-platensimycin and platencin. Chem Asian J 2010; 5:668-703. [PMID: 20209576 DOI: 10.1002/asia.200900423] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bacteria have developed resistance to almost all existing antibiotics known today and this has been a major issue over the last few decades. The search for a new class of antibiotics with a new mode of action to fight these multiply-drug-resistant strains, or "superbugs", allowed a team of scientists at Merck to discover two novel antibiotics, platensimycin and platencin using advanced screening strategies, as inhibitors of bacterial fatty acid biosynthesis, which is essential for the survival of bacteria. Though both these antibiotics are structurally related, they work by slightly different mechanisms and target different enzymes conserved in the bacterial fatty acid biosynthesis. This Focus Review summarizes the synthetic and biological aspects of these natural products and their analogues and congeners.
Collapse
Affiliation(s)
- Kalanidhi Palanichamy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India
| | | |
Collapse
|