1
|
Krul SE, Hoehn SJ, Feierabend KJ, Crespo-Hernández CE. Excited state dynamics of 7-deazaguanosine and guanosine 5'-monophosphate. J Chem Phys 2021; 154:075103. [PMID: 33607894 DOI: 10.1063/5.0038123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Minor structural modifications to the DNA and RNA nucleobases have a significant effect on their excited state dynamics and electronic relaxation pathways. In this study, the excited state dynamics of 7-deazaguanosine and guanosine 5'-monophosphate are investigated in aqueous solution and in a mixture of methanol and water using femtosecond broadband transient absorption spectroscopy following excitation at 267 nm. The transient spectra are collected using photon densities that ensure no parasitic multiphoton-induced signal from solvated electrons. The data can be fit satisfactorily using a two- or three-component kinetic model. By analyzing the results from steady-state, time-resolved, computational calculations, and the methanol-water mixture, the following general relaxation mechanism is proposed for both molecules, Lb → La → 1πσ*(ICT) → S0, where the 1πσ*(ICT) stands for an intramolecular charge transfer excited singlet state with significant πσ* character. In general, longer lifetimes for internal conversion are obtained for 7-deazaguanosine compared to guanosine 5'-monophosphate. Internal conversion of the 1πσ*(ICT) state to the ground state occurs on a similar time scale of a few picoseconds in both molecules. Collectively, the results demonstrate that substitution of a single nitrogen atom for a methine (C-H) group at position seven of the guanine moiety stabilizes the 1ππ* Lb and La states and alters the topology of their potential energy surfaces in such a way that the relaxation dynamics in 7-deazaguanosine are slowed down compared to those in guanosine 5'-monophosphate but not for the internal conversion of 1πσ*(ICT) state to the ground state.
Collapse
Affiliation(s)
- Sarah E Krul
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Sean J Hoehn
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Karl J Feierabend
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
2
|
Huang SR, Liu Y, Tureček F. UV–vis Photodissociation Action Spectroscopy Reveals Cytosine–Guanine Hydrogen Transfer in DNA Tetranucleotide Cation Radicals upon One-Electron Reduction. J Phys Chem B 2020; 124:3505-3517. [DOI: 10.1021/acs.jpcb.0c01693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shu R. Huang
- Department of Chemistry, Bagley Hall, Box
351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Yue Liu
- Department of Chemistry, Bagley Hall, Box
351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - František Tureček
- Department of Chemistry, Bagley Hall, Box
351700, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
3
|
Renaud N, Harris MA, Singh APN, Berlin YA, Ratner MA, Wasielewski MR, Lewis FD, Grozema FC. Deep-hole transfer leads to ultrafast charge migration in DNA hairpins. Nat Chem 2016; 8:1015-1021. [DOI: 10.1038/nchem.2590] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 07/05/2016] [Indexed: 12/31/2022]
|
4
|
Wohlgamuth CH, McWilliams MA, Slinker JD. DNA as a molecular wire: distance and sequence dependence. Anal Chem 2013; 85:8634-40. [PMID: 23964773 DOI: 10.1021/ac401229q] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functional nanowires and nanoelectronics are sought for their use in next generation integrated circuits, but several challenges limit the use of most nanoscale devices on large scales. DNA has great potential for use as a molecular wire due to high yield synthesis, near-unity purification, and nanoscale self-organization. Nonetheless, a thorough understanding of ground state DNA charge transport (CT) in electronic configurations under biologically relevant conditions, where the fully base-paired, double-helical structure is preserved, is lacking. Here, we explore the fundamentals of CT through double-stranded DNA monolayers on gold by assessing 17 base pair bridges at discrete points with a redox active probe conjugated to a modified thymine. This assessment is performed under temperature-controlled and biologically relevant conditions with cyclic and square wave voltammetry, and redox peaks are analyzed to assess transfer rate and yield. We demonstrate that the yield of transport is strongly tied to the stability of the duplex, linearly correlating with the melting temperature. Transfer rate is found to be temperature-activated and to follow an inverse distance dependence, consistent with a hopping mechanism of transport. These results establish the governing factors of charge transfer speed and throughput in DNA molecular wires for device configurations, guiding subsequent application for nanoscale electronics.
Collapse
Affiliation(s)
- Chris H Wohlgamuth
- Department of Physics, The University of Texas at Dallas , 800 W. Campbell Rd., EC 36, Richardson, Texas 75080, United States
| | | | | |
Collapse
|
5
|
Impact of a single base pair substitution on the charge transfer rate along short DNA hairpins. Proc Natl Acad Sci U S A 2013; 110:14867-71. [PMID: 23980166 DOI: 10.1073/pnas.1309139110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Numerical studies of hole migration along short DNA hairpins were performed with a particular emphasis on the variations of the rate and quantum yield of the charge separation process with the location of a single guanine:cytosine (G:C) base pair. Our calculations show that the hole arrival rate increases as the position of the guanine:cytosine base pair shifts from the beginning to the end of the sequence. Although these results are in agreement with recent experimental findings, the mechanism governing the charge migration along these sequences is revisited here. Instead of the phenomenological two-step hopping mechanism via the guanine base, the charge propagation occurs through a delocalization of the hole density along the base pair stack. Furthermore, the variations of the charge transfer with the position of the guanine base are explained by the impact of the base pair substitutions on the delocalized conduction channels.
Collapse
|
6
|
Dynamics and efficiency of photoinduced charge transport in DNA: Toward the elusive molecular wire. PURE APPL CHEM 2013. [DOI: 10.1351/pac-con-13-01-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Experimental investigations of photoinduced charge transport in synthetic DNA
capped hairpins possessing electron acceptor and donor stilbene chromophores at
either end have established the mechanism, dynamics, and efficiency of charge
transport in DNA. The mechanism for charge transport in repeating A-T base pairs
(A-tracts) was found to change from single-step superexchange at short distances
to multistep incoherent hole hopping at longer distances. The rate constants for
base-to-base hole hopping in longer A- and G-tract sequences are 1.2
× 109 s–1 and 4.3 × 109 s–1,
respectively, considerably slower than the rate constants associated with
molecular wires. Even slower rate constants are observed for alternating or
random base sequences such as those encountered in natural DNA. The efficiency
of charge separation in capped hairpins with A-tract sequences is also low as a
consequence of the competition of hole hopping with charge recombination.
Significantly higher efficiencies for charge separation are possible using
diblock purine base sequences consisting of two or three adenines followed by a
larger number of guanines. The short A-block serves as a molecular rectifier,
slowing down charge recombination. More efficient charge separation can also be
achieved using non-natural bases or by using the triplet acceptor anthraquinone
for hole injection.
Collapse
|
7
|
Renaud N, Berlin YA, Lewis FD, Ratner MA. Between superexchange and hopping: an intermediate charge-transfer mechanism in poly(A)-poly(T) DNA hairpins. J Am Chem Soc 2013; 135:3953-63. [PMID: 23402652 DOI: 10.1021/ja3113998] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We developed a model for hole migration along relatively short DNA hairpins with fewer that seven adenine (A):thymine (T) base pairs. The model was used to simulate hole migration along poly(A)-poly(T) sequences with a particular emphasis on the impact of partial hole localization on the different rate processes. The simulations, performed within the framework of the stochastic surrogate Hamiltonian approach, give values for the arrival rate in good agreement with experimental data. Theoretical results obtained for hairpins with fewer than three A:T base pairs suggest that hole transfer along short hairpins occurs via superexchange. This mechanism is characterized by the exponential distance dependence of the arrival rate on the donor/acceptor distance, k(a) ≃ e(-βR), with β = 0.9 Å(-1). For longer systems, up to six A:T pairs, the distance dependence follows a power law k(a) ≃ R(-η) with η = 2. Despite this seemingly clear signature of unbiased hopping, our simulations show the complete delocalization of the hole density along the entire hairpin. According to our analysis, the hole transfer along relatively long sequences may proceed through a mechanism which is distinct from both coherent single-step superexchange and incoherent multistep hopping. The criterion for the validity of this mechanism intermediate between superexchange and hopping is proposed. The impact of partial localization on the rate of hole transfer between neighboring A bases was also investigated.
Collapse
Affiliation(s)
- Nicolas Renaud
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | | | | | | |
Collapse
|
8
|
Wang M, Zhao J, Bu Y. Theoretical exploration of structures and electronic properties of double-electron oxidized guanine–cytosine base pairs with intriguing radical–radical interactions. Phys Chem Chem Phys 2013; 15:18453-63. [DOI: 10.1039/c3cp52745j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Fakhari F, Chen YYK, Rokita SE. Enhancing excess electron transport in DNA. Chem Commun (Camb) 2013; 49:7073-5. [DOI: 10.1039/c3cc43887b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Hihath J, Guo S, Zhang P, Tao N. Effects of cytosine methylation on DNA charge transport. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:164204. [PMID: 22466008 DOI: 10.1088/0953-8984/24/16/164204] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The methylation of cytosine bases in DNA commonly takes place in the human genome and its abnormality can be used as a biomarker in the diagnosis of genetic diseases. In this paper we explore the effects of cytosine methylation on the conductance of DNA. Although the methyl group is a small chemical modification, and has a van der Waals radius of only 2 Å, its presence significantly changes the duplex stability, and as such may also affect the conductance properties of DNA. To determine if charge transport through the DNA stack is sensitive to this important biological modification we perform multiple conductance measurements on a methylated DNA molecule with an alternating G:C sequence and its non-methylated counterpart. From these studies we find a measurable difference in the conductance between the two types of molecules, and demonstrate that this difference is statistically significant. The conductance values of these molecules are also compared with a similar sequence that has been previously studied to help elucidate the charge transport mechanisms involved in direct DNA conductance measurements.
Collapse
Affiliation(s)
- Joshua Hihath
- Center for Bioelectronics and Biosensors, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
11
|
Bacolla A, Wang G, Jain A, Chuzhanova NA, Cer RZ, Collins JR, Cooper DN, Bohr VA, Vasquez KM. Non-B DNA-forming sequences and WRN deficiency independently increase the frequency of base substitution in human cells. J Biol Chem 2011; 286:10017-26. [PMID: 21285356 PMCID: PMC3060453 DOI: 10.1074/jbc.m110.176636] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 01/31/2011] [Indexed: 01/01/2023] Open
Abstract
Although alternative DNA secondary structures (non-B DNA) can induce genomic rearrangements, their associated mutational spectra remain largely unknown. The helicase activity of WRN, which is absent in the human progeroid Werner syndrome, is thought to counteract this genomic instability. We determined non-B DNA-induced mutation frequencies and spectra in human U2OS osteosarcoma cells and assessed the role of WRN in isogenic knockdown (WRN-KD) cells using a supF gene mutation reporter system flanked by triplex- or Z-DNA-forming sequences. Although both non-B DNA and WRN-KD served to increase the mutation frequency, the increase afforded by WRN-KD was independent of DNA structure despite the fact that purified WRN helicase was found to resolve these structures in vitro. In U2OS cells, ∼70% of mutations comprised single-base substitutions, mostly at G·C base-pairs, with the remaining ∼30% being microdeletions. The number of mutations at G·C base-pairs in the context of NGNN/NNCN sequences correlated well with predicted free energies of base stacking and ionization potentials, suggesting a possible origin via oxidation reactions involving electron loss and subsequent electron transfer (hole migration) between neighboring bases. A set of ∼40,000 somatic mutations at G·C base pairs identified in a lung cancer genome exhibited similar correlations, implying that hole migration may also be involved. We conclude that alternative DNA conformations, WRN deficiency and lung tumorigenesis may all serve to increase the mutation rate by promoting, through diverse pathways, oxidation reactions that perturb the electron orbitals of neighboring bases. It follows that such "hole migration" is likely to play a much more widespread role in mutagenesis than previously anticipated.
Collapse
Affiliation(s)
- Albino Bacolla
- From the Department of Molecular Carcinogenesis, Science Park-Research Division, The University of Texas, M. D. Anderson Cancer Center, Smithville, Texas 78957
| | - Guliang Wang
- From the Department of Molecular Carcinogenesis, Science Park-Research Division, The University of Texas, M. D. Anderson Cancer Center, Smithville, Texas 78957
| | - Aklank Jain
- From the Department of Molecular Carcinogenesis, Science Park-Research Division, The University of Texas, M. D. Anderson Cancer Center, Smithville, Texas 78957
| | - Nadia A. Chuzhanova
- the School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom
| | - Regina Z. Cer
- the Advanced Biomedical Computing Center, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Jack R. Collins
- the Advanced Biomedical Computing Center, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - David N. Cooper
- the Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom, and
| | - Vilhelm A. Bohr
- the Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Karen M. Vasquez
- From the Department of Molecular Carcinogenesis, Science Park-Research Division, The University of Texas, M. D. Anderson Cancer Center, Smithville, Texas 78957
| |
Collapse
|
12
|
Wenninger M, Fazio D, Megerle U, Trindler C, Schiesser S, Riedle E, Carell T. Flavin-Induced DNA Photooxidation and Charge Movement Probed by Ultrafast Transient Absorption Spectroscopy. Chembiochem 2011; 12:703-6. [DOI: 10.1002/cbic.201000730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Indexed: 02/03/2023]
|
13
|
Venkatramani R, Davis KL, Wierzbinski E, Bezer S, Balaeff A, Keinan S, Paul A, Kocsis L, Beratan DN, Achim C, Waldeck DH. Evidence for a near-resonant charge transfer mechanism for double-stranded peptide nucleic acid. J Am Chem Soc 2010; 133:62-72. [PMID: 21141966 DOI: 10.1021/ja107622m] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present evidence for a near-resonant mechanism of charge transfer in short peptide nucleic acid (PNA) duplexes obtained through electrochemical, STM break junction (STM-BJ), and computational studies. A seven base pair (7-bp) PNA duplex with the sequence (TA)(3)-(XY)-(TA)(3) was studied, in which XY is a complementary nucleobase pair. The experiments showed that the heterogeneous charge transfer rate constant (k(0)) and the single-molecule conductance (σ) correlate with the oxidation potential of the purine base in the XY base pair. The electrochemical measurements showed that the enhancement of k(0) is independent, within experimental error, of which of the two PNA strands contains the purine base of the XY base pair. 7-bp PNA duplexes with one or two GC base pairs had similar measured k(0) and conductance values. While a simple superexchange model, previously used to rationalize charge transfer in single stranded PNA (Paul et al. J. Am. Chem. Soc. 2009, 131, 6498-6507), describes some of the experimental observations, the model does not explain the absence of an enhancement in the experimental k(0) and σ upon increasing the G content in the duplexes from one to two. Moreover, the superexchange model is not consistent with other studies (Paul et al. J. Phys. Chem. B 2010, 114, 14140), that showed a hopping charge transport mechanism is likely important for PNA duplexes longer than seven base pairs. A quantitative computational analysis shows that a near-resonant charge transfer regime, wherein a mix of superexchange and hopping mechanisms are expected to coexist, can rationalize all of the experimental results.
Collapse
|
14
|
Vura-Weis J, Wasielewski MR, Thazhathveetil AK, Lewis FD. Efficient charge transport in DNA diblock oligomers. J Am Chem Soc 2009; 131:9722-7. [PMID: 19558185 DOI: 10.1021/ja9015217] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The realization of highly efficient photoinduced charge separation across the pi-stacked base pairs in duplex DNA remains elusive. The low efficiencies (<5%) typically observed for charge separation over a dozen or more base pairs are a consequence of slow charge transport and rapid charge recombination. We report here a significant (5-fold or greater) enhancement in the efficiency of charge separation in diblock purine oligomers consisting of two or three adenines followed by several guanines, when compared to oligomers consisting of a single purine or alternating base sequences. This approach to wire-like behavior is attributed to both slower charge recombination and faster charge transport once the charge reaches the G-block in these diblock systems.
Collapse
Affiliation(s)
- Josh Vura-Weis
- Department of Chemistry and Argonne-Northwestern Solar Energy Research Center, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
15
|
Grozema FC, Tonzani S, Berlin YA, Schatz GC, Siebbeles LDA, Ratner MA. Effect of GC Base Pairs on Charge Transfer through DNA Hairpins: The Importance of Electrostatic Interactions. J Am Chem Soc 2009; 131:14204-5. [DOI: 10.1021/ja906863k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ferdinand C. Grozema
- Section Opto-electronic Materials, Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, and Center for Nanofabrication and Molecular Self-Assembly, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - Stefano Tonzani
- Section Opto-electronic Materials, Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, and Center for Nanofabrication and Molecular Self-Assembly, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - Yuri A. Berlin
- Section Opto-electronic Materials, Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, and Center for Nanofabrication and Molecular Self-Assembly, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - George C. Schatz
- Section Opto-electronic Materials, Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, and Center for Nanofabrication and Molecular Self-Assembly, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - Laurens D. A. Siebbeles
- Section Opto-electronic Materials, Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, and Center for Nanofabrication and Molecular Self-Assembly, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - Mark A. Ratner
- Section Opto-electronic Materials, Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, and Center for Nanofabrication and Molecular Self-Assembly, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| |
Collapse
|
16
|
Kumar A, Sevilla MD. Influence of hydration on proton transfer in the guanine-cytosine radical cation (G*+-C) base pair: a density functional theory study. J Phys Chem B 2009; 113:11359-61. [PMID: 19485319 PMCID: PMC2740929 DOI: 10.1021/jp903403d] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Upon one-electron oxidation, all molecules including DNA bases become more acidic in nature. For the GC base pair, experiments suggest that a facile proton transfer takes place in the G(*+)-C base pair from N(1) of G(*+) to N(3) of cytosine. This intrabase pair proton-transfer reaction has been extensively considered using theoretical methods for the gas phase, and it is predicted that the proton transfer is slightly unfavorable, in disagreement with experiment. In the present study, we consider the effect of the first hydration layer on the proton-transfer reaction in G(*+)-C by the use of density functional theory (DFT) using B3LYP/6-31+G** calculations of the G(*+)-C base pair in the presence of 6 and 11 water molecules. Under the influence of hydration of 11 waters, a facile proton transfer from N(1) of G(*+) to N(3) of C is predicted. The zero-point energy (ZPE)-corrected forward and backward energy barriers, for the proton transfer from N(1) of G(*+) to N(3) of C, was found to be 1.4 and 2.6 kcal/mol, respectively. The proton-transferred G(*)-(H(+))C + 11H(2)O was found to be 1.2 kcal/mol more stable than G(*+)-C + 11H(2)O, in agreement with experiment. The present calculation demonstrates that the inclusion of the first hydration shell around the G(*+)-C base pair has an important effect on the internal proton-transfer energetics.
Collapse
|