1
|
Xu N, Chen J, Sun K, Han W. Ligand-Free Iron-Catalyzed Carbonylation of Aryl Iodides with Alkenyl Boronic Acids: Access to α,β-Unsaturated Ketones. Org Lett 2024. [PMID: 39471048 DOI: 10.1021/acs.orglett.4c03376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The application of earth-abundant and low-toxicity iron catalysts as replacements for palladium in carbonylative coupling reactions remains challenging and largely unexplored. Reported here is a highly efficient iron-catalyzed carbonylation of aryl iodides with alkenyl boronic acids under ligand-free conditions, enabling the synthesis of α,β-unsaturated ketones even at atmospheric CO pressure. The broad applicability, including its effectiveness with α-branched enones and biologically active molecules, along with high yields and selectivity, underlines the general applicability of this catalytic system.
Collapse
Affiliation(s)
- Ning Xu
- Inner Mongolia Key Laboratory of the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry, and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Junjie Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Kangkang Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wei Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Cai Y, Zhang Y, Song X, Feng S, Yuan Q, Li X, Qiao P, Li B, Mu J, Yan L, Wu XF, Ding Y. Single-Pd-Site Catalyst Induced by Different Dimensional Nitrogen of N-Doping Carbon for Efficient Hydroaminocarbonylation of Alkynes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401103. [PMID: 38709231 DOI: 10.1002/smll.202401103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Indexed: 05/07/2024]
Abstract
The unsaturated amides are traditionally synthesized by acylation of carboxylic acids or hydration of nitrile compounds but are rarely investigated by hydroaminocarbonylation of alkynes using heterogeneous single-metal-site catalysts (HSMSCs). Herein, single-Pd-site catalysts supported on N-doping carbon (NC) with different nitrogen dimensions inherited from corresponding metal-organic-framework precursors are successfully synthesized. 2D NC-supported single-Pd-site (Pd1/NC-2D) exhibited the best performance with near 100% selectivity and 76% yield of acrylamide for acetylene hydroaminocarbonylation with better stability, superior to those of Pd1/NC-3D, single-metal-site/nanoparticle coexisting catalyst, and nanoparticle catalyst. The coordination environment and molecular evolution of the single-Pd-site during the process of acetylene hydroaminocarbonylation on Pd1/NC-2D are detailly illuminated by various characterizations and density functional theoretical calculations (DFT). DFT also showed the energy barrier of rate-determining step on Pd1/NC-2D is lower than that of Pd1/NC-3D. Furthermore, Pd1/NC-2D catalyst illustrated the general applicability of the hydroaminocarbonylation for various alkynes.
Collapse
Affiliation(s)
- Yutong Cai
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xiangen Song
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Siquan Feng
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Qiao Yuan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingju Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Panzhe Qiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Bin Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiali Mu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Li Yan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059, Rostock, Germany
| | - Yunjie Ding
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| |
Collapse
|
3
|
Liu D, Bauer N, Lu W, Yang X, Wang B. On the Question of Uncatalyzed CO Insertion into a Hydrazone Double Bond: A Comparative Study Using Different CO Sources and Substrates. J Org Chem 2024; 89:9551-9556. [PMID: 38888488 PMCID: PMC11232009 DOI: 10.1021/acs.joc.4c00936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Because of endogenous signaling roles of carbon monoxide (CO) and its demonstrated pharmacological effects, there has been extensive interests in developing fluorescent CO probes. Palladium-mediated CO insertion has been successfully used for such applications. However, recent years have seen many publications of using uncatalyzed CO insertion into a hydrazone double bond as a way to sense CO. Such chemistry has no precedents otherwise. Further, the rigor of the CO-sensing work was largely based on using ruthenium-carbonyl complexes such as CORM-3 as CO surrogates, which have been reported to have extensive chemical reactivity and to release largely CO2 instead of CO unless in the presence of a strong nucleophile such as dithionite. For all of these, it is important to reassess the feasibility of such a CO-insertion reaction. By studying two of the reported "CO probes" using CO gas, this study finds no evidence of CO insertion into a hydrazone double bond. Further, the chemical reaction between CO gas and a series of eight hydrazone compounds was conducted, leading to the same conclusion. Such findings are consistent with the state-of-the-art knowledge of carbonylation chemistry and do not support uncatalyzed CO insertion as a mechanism for developing fluorescent CO probes.
Collapse
Affiliation(s)
- Dongning Liu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Nicola Bauer
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
4
|
Sun NX, Wang LC, Fang Z, Wang CS, Guo K, Wu XF. Iron-Catalyzed Aminoalkylative Carbonylative Cyclization of Alkenes toward α-Tetralones. Org Lett 2024; 26:3140-3144. [PMID: 38563571 DOI: 10.1021/acs.orglett.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Carbonylative multifunctionalization of alkenes is an efficient approach to introduce multiple functional groups into one molecule from easily available materials. Herein, we developed an iron-catalyzed radical relay carbonylative cyclization of alkenes with acetamides. Various α-tetralones can be constructed in moderate yields from readily available substrates with an earth-abundant iron salt as the catalyst.
Collapse
Affiliation(s)
- Nai-Xian Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning China
| | - Le-Cheng Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning China
- Leibniz-Institut für Katalyse e.V., 18059, Rostock, Germany
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chang-Sheng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning China
- Leibniz-Institut für Katalyse e.V., 18059, Rostock, Germany
| |
Collapse
|
5
|
Zeng C, Su S, Fang S, Jiang H, Yang S, Wu W. Palladium-Catalyzed Tandem Cyclization of Bromoalkynes, Anilines and CO: Access to 1,3-Substituted Maleimides. Chem Asian J 2023:e202300880. [PMID: 37983560 DOI: 10.1002/asia.202300880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/28/2023] [Indexed: 11/22/2023]
Abstract
A novel palladium-catalyzed three-component carbonylation reaction for the assembly of various 1,3-substituted maleimide derivatives from haloalkynes and simple anilines. The nucleophilic addition reaction of haloalkynes, anilines and CO, and insertion of carbonyl have been achieved sequentially in this reaction. The high chemo- and regioselectivities, as well as no need of expensive ligands or additives further illustrate the synthetic value of this approach.
Collapse
Affiliation(s)
- Caijin Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Shaoting Su
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Songjia Fang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Huangfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Shaorong Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
6
|
Sarkar P, Saha P, Ghosh P, Mukhopadhyay C. Metal-free, I 2-promoted direct synthesis of 2-cyano-substituted maleimides via a unique 3,3-dicyano-2-arylacrylic acid intermediate. Org Biomol Chem 2023; 21:789-796. [PMID: 36594563 DOI: 10.1039/d2ob01725c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A robust, I2-mediated cyclization reaction was developed for the synthesis of 2-cyano-substituted maleimides from arylethylidene malononitriles and amines via unique a 3,3-dicyano-2-arylacrylic acid intermediate. The reaction duration was short and devoid of an expensive transition-metal catalyst, ligands or toxic carbon monoxide. We executed an I2/DMSO-mediated desirable oxidation of the C(sp3)-H bond of the carbonyl precursor followed by the formation of a 3,3-dicyano-2-arylacrylic acid intermediate. Use of readily available starting materials under mild and operationally simple reaction conditions are the major advantages of this strategy.
Collapse
Affiliation(s)
- Prabhat Sarkar
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Pinaki Saha
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-700103, India
| | - Prasanta Ghosh
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-700103, India
| | - Chhanda Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| |
Collapse
|
7
|
Zhao KC, Zhuang YY, Jing TH, Shi GH, Guo L, Zhao XL, Lu Y, Liu Y. Pd-catalyzed tandem bis-hydroaminocarbonylation of terminal alkynes for synthesis of N-aryl substituted succinimides with involvement of ionic P, O-hybrid ligand. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Sharma D, Tomar V, Sharma C, Nemiwal M, Joshi RK. Direct amidation of ferrocenyl/ phenyl β-chlorocinnamaldehyde assisted by chalcogenide metal carbonyl cluster. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Ai H, Leidecker BN, Dam P, Kubis C, Rabeah J, Wu X. Iron‐Catalyzed Alkoxycarbonylation of Alkyl Bromides via a Two‐Electron Transfer Process. Angew Chem Int Ed Engl 2022; 61:e202211939. [DOI: 10.1002/anie.202211939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Han‐Jun Ai
- Leibniz-Institut fur Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | | | - Phong Dam
- Leibniz-Institut fur Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Christoph Kubis
- Leibniz-Institut fur Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Jabor Rabeah
- Leibniz-Institut fur Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao‐Feng Wu
- Leibniz-Institut fur Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Institution 116023 Dalian Liaoning China
| |
Collapse
|
10
|
Iron‐catalyzed alkoxycarbonylation of alkyl bromides via a two‐electron transfer process. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Sharma D, Tomar V, Sharma C, Nemiwal M, Joshi RK. Direct Amidation of Ferrocenyl/ Phenyl β- Chlorocinnamaldehyde Assisted by Chalcogenide Metal Carbonyl Cluster. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Ji X, Shen C, Tian X, Zhang H, Ren X, Dong K. Asymmetric Double Hydroxycarbonylation of Alkynes to Chiral Succinic Acids Enabled by Palladium Relay Catalysis. Angew Chem Int Ed Engl 2022; 61:e202204156. [DOI: 10.1002/anie.202204156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaolei Ji
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Chaoren Shen
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Xinxin Tian
- Institute of Molecular Science Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province Shanxi University Taiyuan 030006 P. R. China
| | - Hongru Zhang
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Xinyi Ren
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Kaiwu Dong
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| |
Collapse
|
13
|
Yin Z, Shi W, Wu XF. Transition-Metal-Catalyzed Carbonylative Multifunctionalization of Alkynes. J Org Chem 2022; 88:4975-4994. [PMID: 35709530 DOI: 10.1021/acs.joc.2c00655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, the construction of new carbon-carbon bonds and value-added structures in an atom- and step economical manner has become a continuous pursuit in the synthetic chemistry community. Since the first transition-metal-catalyzed hydroformylation of ethylene was reported by Otto Roelen in the 1930s, impressive progress has been achieved in the carbonylative functionalization of unsaturated C-C bonds. In contrast to alkenes, the carbonylative functionalization of alkynes offers tremendous potential for the construction of multisubstituted carbonyl-containing derivatives because of their two independently addressable π-systems. This review provides a timely and necessary investigation of transition-metal-catalyzed carbonylative mutifunctionalization of alkynes with the exclusion of carbonylative hydrofunctionalizations. Different transition metals including palladium, rhodium, iridium, ruthenium, iron, copper, etc. were applied to the development of novel carbonylative transformation. Various C-C, C-N, C-O, C-S, C-B, C-Si, and carbon-halogen bonds were formed efficiently and give the corresponding tri- or tetrasubstituted α,β-unsaturated ketones, diesters, and heterocycles.
Collapse
Affiliation(s)
- Zhiping Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, Liaoning, China.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
14
|
Ji X, Shen C, Tian X, Zhang H, Ren X, Dong K. Asymmetric Double Hydroxycarbonylation of Alkynes to Chiral Succinic Acids Enabled by Palladium Relay Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaolei Ji
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Chaoren Shen
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xinin Tian
- Shanxi University Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province CHINA
| | - Hongru Zhang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xinyi Ren
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Kaiwu Dong
- East China Normal University Shanghai Key Laboratory of Green Chenistry and Chemical Process 500 Dongchuan Rd 200241 Shanghai CHINA
| |
Collapse
|
15
|
Antioxidant Molecules Isolated from Edible Prostrate Knotweed: Rational Derivatization to Produce More Potent Molecules. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3127480. [PMID: 35464762 PMCID: PMC9020998 DOI: 10.1155/2022/3127480] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Prostrate knotweed also called Polygonum aviculare is an important edible plant. The polygonum is majorly known for the phenolics and antioxidants. The antioxidants combat the excessive free radicals within the body. The excessive free radicals are implicated in various other diseases like diabetes, Alzheimer's, and inflammation. This study was aimed at exploring the antioxidant bioactives and their derivatizations to produce new molecules with advanced pharmacological features. We have isolated six compounds (1–6) from Polygonum aviculare. Furthermore, rational-based chemical derivatives for compound 5 have been formed for the management of diabetes, Alzheimer's, and inflammation. In preliminary antioxidant studies, all the isolated compounds (1–6) showed potential results against DPPH and ABTS free radicals. Based on the IC50 and chemical nature of the compounds, compound 5 was subjected to derivatization. Keeping the phenolic part of compound 5 unaffected, hydroxy succinimide (5A) and thiazolidinedione (5B) were synthesized. The compound 5A was found to be a potent inhibitor of AChE, BChE, COX-1, COX-2, 5-LOX, and DPPH giving IC50 values of 10.60, 15.10, 13.91, 1.08, 0.71, and 1.05 μM, respectively. The COX-2 selectivity of compound 5A was found at 12.9. The compound 5B was found to be a potent multitarget antidiabetic agent giving IC50 values of 15.34, 21.83, 53.28, and 1.94 μM against α-glucosidase, α-amylase, protein tyrosine phosphatase 1B, and DPPH. Docking studies were performed to manipulate the binding interactions. The docking pose of all the tested compounds was found to have increased binding affinity against all tested targets that supported the in vitro results. Our results showed that Polygonum aviculare is a rich source of antioxidant compounds. The two new derivatives have enhanced pharmacological features to treat diabetes, inflammation, and Alzheimer's disease.
Collapse
|
16
|
Huang Z, Tang J, Jiang X, Xie T, Zhang M, Lan D, Pi S, Tan Z, Yi B, Li Y. Iron-catalyzed hydroaminocarbonylation of alkynes: Selective and efficient synthesis of primary α,β-unsaturated amides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Zhao X, Feng X, Chen F, Zhu S, Qing F, Chu L. Divergent Aminocarbonylations of Alkynes Enabled by Photoredox/Nickel Dual Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Xian Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Xiaoliang Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Fan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Feng‐Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| |
Collapse
|
18
|
Zhao X, Feng X, Chen F, Zhu S, Qing FL, Chu L. Divergent Aminocarbonylations of Alkynes Enabled by Photoredox/Nickel Dual Catalysis. Angew Chem Int Ed Engl 2021; 60:26511-26517. [PMID: 34651398 DOI: 10.1002/anie.202111061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/11/2021] [Indexed: 12/17/2022]
Abstract
A metallaphotoredox-catalyzed strategy for the selective and divergent aminocarbonylation of alkynes with amines and 1 atm of CO is reported. This synergistic protocol not only enables the Markovnikov-selective hydroaminocarbonylation of alkynes to afford α,β-unsaturated amides, but also facilitates a sequential four-component hydroaminocarbonylation/radical alkylation in the presence of tertiary and secondary alkyl boronate esters, which allows for straightforward conversion of alkynes into corresponding amides. Preliminary mechanistic studies disclose that a photoinduced oxidative insertion of aniline and CO into nickel followed by a migratory insertion of (carbamoyl)nickel species could be involved.
Collapse
Affiliation(s)
- Xian Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Xiaoliang Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Fan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Feng-Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
19
|
Huang Z, Tang C, Chen Z, Pi S, Tan Z, Deng J, Li Y. Iron-catalyzed hydroaminocarbonylation of alkynes to produce succinimides with NH4HCO3. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Ge Y, Ye F, Yang J, Spannenberg A, Jackstell R, Beller M. Palladium-Catalyzed Domino Aminocarbonylation of Alkynols: Direct and Selective Synthesis of Itaconimides. JACS AU 2021; 1:1257-1265. [PMID: 34467363 PMCID: PMC8397365 DOI: 10.1021/jacsau.1c00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 06/13/2023]
Abstract
The first direct and selective synthesis of substituted itaconimdes by palladium-catalyzed aminocarbonylation of alkynols is reported. Key to the success of this transformation is the use of a novel catalyst system involving ligand L11 and appropriate reaction conditions. In the protocol here presented, easily available propargylic alcohols react with N-nucleophiles including aryl- and alkylamines as well as aryl hydrazines to provide a broad variety of interesting heterocycles with high catalyst activity and excellent selectivity. The synthetic utility of the protocol is demonstrated in the synthesis of natural product 11 with aminocarbonylation as the key step. Mechanistic studies and control experiments reveal the crucial role of the hydroxyl group in the substrate for the control of selectivity.
Collapse
Affiliation(s)
- Yao Ge
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock 18059, Germany
| | - Fei Ye
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock 18059, Germany
- Key
Laboratory of Organosilicon Chemistry and Material Technology of Ministry
of Education, Key Laboratory of Organosilicon Material Technology
of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, 311121 Hangzhou, P. R. China
| | - Ji Yang
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock 18059, Germany
| | - Anke Spannenberg
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock 18059, Germany
| | - Ralf Jackstell
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock 18059, Germany
| |
Collapse
|
21
|
Wang Y, Zhang C, Li S, Liu L. Iron‐Catalyzed Synthesis of Pyrrole Derivatives and Related Five‐Membered Azacycles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yeming Wang
- Institute of Chemical and Industrial Bioengineering Jilin Engineering Normal University Kaixuan Road, No. 3050 Changchun 130052 China
| | - Chaoqun Zhang
- Institute of Chemical and Industrial Bioengineering Jilin Engineering Normal University Kaixuan Road, No. 3050 Changchun 130052 China
| | - Shizhe Li
- Institute of Chemical and Industrial Bioengineering Jilin Engineering Normal University Kaixuan Road, No. 3050 Changchun 130052 China
| | - Lihui Liu
- Institute of Chemical and Industrial Bioengineering Jilin Engineering Normal University Kaixuan Road, No. 3050 Changchun 130052 China
| |
Collapse
|
22
|
Peddinti RK, Gairola D. Methanesulfonic Acid Catalyzed Friedel–Crafts Reaction of Electron-Rich Arenes with N-Arylmaleimides: A Highly Efficient Metal-Free Route To Access 3-Arylsuccinimides. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractFriedel–Crafts reaction is widely used for the C–C bond forming reaction to enable the direct connection of electron-rich arenes to electron-deficient olefins with high regioselectivity. Herein, a highly efficient, metal-free, and environmentally benign F–C strategy of electron-rich arenes with N-arylmaleimides has been developed for the construction of 3-arylsuccinimides in the presence of a green reagent methanesulfonic acid under mild reaction conditions. This highly facile and high-yielding protocol has compatibility with different electron-rich arenes.
Collapse
|
23
|
Chen X, Lu Y, Guan Z, Gu L, Chen C, Zhu H, Luo Z, Zhang Y. Synthesis of Succinimides via Intramolecular Alder-Ene Reaction of 1,6-Enynes. Org Lett 2021; 23:3173-3178. [PMID: 33797270 DOI: 10.1021/acs.orglett.1c00888] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel and convenient method has been developed for the facile synthesis of functionalized succinimide derivatives via intramolecular Alder-ene reaction of 1,6-enynes. This reaction features mild and metal-free reaction conditions, which offers a green and efficient entry to synthetically important succinimide scaffolds. Preliminary mechanistic studies suggest that a diradical intermediate might be involved in this transformation.
Collapse
Affiliation(s)
- Xia Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuling Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenhua Guan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
24
|
Wen X, Liu X, Yang Z, Xie M, Liu Y, Long L, Chen Z. "On water" nano-Cu 2O-catalyzed CO-free one-pot multicomponent cascade cyanation-annulation-aminolysis reaction toward phthalimides. Org Biomol Chem 2021; 19:1738-1743. [PMID: 33543173 DOI: 10.1039/d1ob00073j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An efficient nano-Cu2O-catalyzed cascade multicomponent reaction of 2-halobenzoic acids and trimethylsilyl cyanide with diverse amines was developed using water as a solvent, affording versatile N-substituted phthalimide derivatives in moderate to excellent yields. This novel strategy features carbon monoxide gas-free, environmentally benign, one-pot multistep transformation, commercially available reagents, a cheap catalyst without any additives, wide functional group tolerance, and operational convenience.
Collapse
Affiliation(s)
- Xiaowei Wen
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Xiaojuan Liu
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Zhiqi Yang
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Menglan Xie
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Yuxi Liu
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Lipeng Long
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Zhengwang Chen
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
25
|
Lawrenson SB, Pearce AK, Hart S, Whitwood AC, O’Reilly RK, North M. Synthesis of cytotoxic spirocyclic imides from a biomass-derived oxanorbornene. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
27
|
Zhang S, Neumann H, Beller M. Synthesis of α,β-unsaturated carbonyl compounds by carbonylation reactions. Chem Soc Rev 2020; 49:3187-3210. [DOI: 10.1039/c9cs00615j] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carbonylation reactions represent one of the most important tool box for the synthesis of α,β-unsaturated carbonyl compounds which are key building blocks in organic chemistry. This paper summarizes the most important advances in this field.
Collapse
Affiliation(s)
- Shaoke Zhang
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
| | | | | |
Collapse
|
28
|
Liu Z, Wang P, Ou H, Yan Z, Chen S, Tan X, Yu D, Zhao X, Mu T. Preparation of cyclic imides from alkene-tethered amides: application of homogeneous Cu( ii) catalytic systems. RSC Adv 2020; 10:7698-7707. [PMID: 35492186 PMCID: PMC9049870 DOI: 10.1039/c9ra10422d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/05/2020] [Indexed: 01/03/2023] Open
Abstract
A Cu-based homogeneous catalytic system was proposed for the preparation of imides from alkene-tethered amides. Here, O2 acted as a terminal oxidant and a cheap and easily available oxygen source. The cleavage of C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bonds and the formation of C–N bonds were catalyzed by Cu(ii) salts with proper nitrogen-containing ligands under 100 °C. The synthesis approach has potential applications in pharmaceutical syntheses. Moreover, scaled-up experiments confirmed the practical applicability. A catalytic system comprising Cu(ii) and a nitrogen-based ligand for the oxygenation and cyclization of alkene-tethered amides.![]()
Collapse
Affiliation(s)
- Zhenghui Liu
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- Taizhou 318000
- China
| | - Peng Wang
- Beijing National Laboratory for Molecular Sciences
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Hualin Ou
- Beijing National Laboratory for Molecular Sciences
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Zhenzhong Yan
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- Taizhou 318000
- China
| | - Suqing Chen
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- Taizhou 318000
- China
| | - Xingxing Tan
- Beijing National Laboratory for Molecular Sciences
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Dongkun Yu
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Xinhui Zhao
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Tiancheng Mu
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| |
Collapse
|
29
|
Schilling W, Zhang Y, Riemer D, Das S. Visible-Light-Mediated Dearomatisation of Indoles and Pyrroles to Pharmaceuticals and Pesticides. Chemistry 2019; 26:390-395. [PMID: 31596010 PMCID: PMC6973285 DOI: 10.1002/chem.201904168] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/02/2019] [Indexed: 12/22/2022]
Abstract
Dearomatisation of indole derivatives to the corresponding isatin derivatives has been achieved with the aid of visible light and oxygen. It should be noted that isatin derivatives are highly important for the synthesis of pharmaceuticals and bioactive compounds. Notably, this chemistry works excellently with N-protected and protection-free indoles. Additionally, this methodology can also be applied to dearomatise pyrrole derivatives to generate cyclic imides in a single step. Later this methodology was applied for the synthesis of four pharmaceuticals and a pesticide called dianthalexin B. Detailed mechanistic studies revealed the actual role of oxygen and photocatalyst.
Collapse
Affiliation(s)
- Waldemar Schilling
- Institut für Biomolekulare und Organische Chemie, Georg-August-Universität Göttingen, Tammannstraße, 37077, Göttingen, Germany
| | - Yu Zhang
- Institut für Biomolekulare und Organische Chemie, Georg-August-Universität Göttingen, Tammannstraße, 37077, Göttingen, Germany
| | - Daniel Riemer
- Institut für Biomolekulare und Organische Chemie, Georg-August-Universität Göttingen, Tammannstraße, 37077, Göttingen, Germany
| | - Shoubhik Das
- Institut für Biomolekulare und Organische Chemie, Georg-August-Universität Göttingen, Tammannstraße, 37077, Göttingen, Germany
| |
Collapse
|
30
|
Zhang X, Cao WB, Li HY, Xu XP, Ji SJ. Synthesis of Polysubstituted Maleimides via Metal-Free Cascade Reaction of Isocyanides and α-Diazoketones. J Org Chem 2019; 84:16237-16244. [DOI: 10.1021/acs.joc.9b02830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Huang Z, Dong Y, Li Y, Makha M, Li Y. Enhancing Ligand‐Free Fe‐Catalyzed Aminocarbonylation of Alkynes by ZrF
4. ChemCatChem 2019. [DOI: 10.1002/cctc.201900995] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zijun Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanan Dong
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yudong Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Mohamed Makha
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Yuehui Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
32
|
|
33
|
Li J, Wei J, Zhu B, Wang T, Jiao N. Cu-catalyzed oxygenation of alkene-tethered amides with O 2 via unactivated C[double bond, length as m-dash]C bond cleavage: a direct approach to cyclic imides. Chem Sci 2019; 10:9099-9103. [PMID: 31827752 PMCID: PMC6889834 DOI: 10.1039/c9sc03175h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022] Open
Abstract
An efficient aerobic unactivated C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond cleavage process was achieved, in which the succinimide or glutarimide derivatives could be prepared directly from alkenyl amides.
The transformations of unactivated alkenes through C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond double cleavage are always attractive but very challenging. We report herein a chemoselective approach to valuable cyclic imides by a novel Cu-catalyzed geminal amino-oxygenation of unactivated C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bonds. O2 was successfully employed as the oxidant as well as the O-source and was incorporated into alkenyl amides via C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond cleavage for the efficient preparation of succinimide or glutarimide derivatives. Moreover, the present strategy under simple conditions can be used in the late-stage modification of biologically active compounds and the synthesis of pharmaceuticals, which demonstrated the potential application.
Collapse
Affiliation(s)
- Junhua Li
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China .
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China .
| | - Bencong Zhu
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China .
| | - Teng Wang
- School of Chemistry , Beihang University , Xue Yuan Road 37 , Beijing , 100191 , China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China . .,State Key Laboratory of Organometallic Chemistry , Chinese Academy of Sciences , Shanghai 200032 , China
| |
Collapse
|
34
|
Nasr Allah T, Savourey S, Berthet JC, Nicolas E, Cantat T. Carbonylation of C-N Bonds in Tertiary Amines Catalyzed by Low-Valent Iron Catalysts. Angew Chem Int Ed Engl 2019; 58:10884-10887. [PMID: 31150564 DOI: 10.1002/anie.201903740] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 12/30/2022]
Abstract
The first iron catalysts able to promote the formal insertion of CO into the C-N bond of amines are reported. Using low-valent iron complexes, including K2 [Fe(CO)4 ], amides are formed from aromatic and aliphatic amines, in the presence of an iodoalkane promoter. Inorganic Lewis acids, such as AlCl3 and Nd(OTf)3 , have a positive influence on the catalytic activity of the iron salts, enabling the carbonylation at a low pressure of CO (6 to 8 bars).
Collapse
Affiliation(s)
- Tawfiq Nasr Allah
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette cedex, France
| | - Solène Savourey
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette cedex, France
| | - Jean-Claude Berthet
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette cedex, France
| | - Emmanuel Nicolas
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette cedex, France
| | - Thibault Cantat
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette cedex, France
| |
Collapse
|
35
|
Nielsen MT, Padilla R, Nielsen M. Homogeneous Catalysis by Organometallic Polynuclear Clusters. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01635-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Nasr Allah T, Savourey S, Berthet J, Nicolas E, Cantat T. Carbonylation of C−N Bonds in Tertiary Amines Catalyzed by Low‐Valent Iron Catalysts. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tawfiq Nasr Allah
- NIMBECEA, CNRS, Université Paris-SaclayCEA Saclay 91191 Gif-sur-Yvette cedex France
| | - Solène Savourey
- NIMBECEA, CNRS, Université Paris-SaclayCEA Saclay 91191 Gif-sur-Yvette cedex France
| | - Jean‐Claude Berthet
- NIMBECEA, CNRS, Université Paris-SaclayCEA Saclay 91191 Gif-sur-Yvette cedex France
| | - Emmanuel Nicolas
- NIMBECEA, CNRS, Université Paris-SaclayCEA Saclay 91191 Gif-sur-Yvette cedex France
| | - Thibault Cantat
- NIMBECEA, CNRS, Université Paris-SaclayCEA Saclay 91191 Gif-sur-Yvette cedex France
| |
Collapse
|
37
|
Peng JB, Geng HQ, Wu FP, Li D, Wu XF. Selectivity controllable divergent synthesis of α,β-unsaturated amides and maleimides from alkynes and nitroarenes via palladium-catalyzed carbonylation. J Catal 2019. [DOI: 10.1016/j.jcat.2019.05.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Liang YX, Meng XH, Yang M, Mehfooz H, Zhao YL. Zn(OAc)2-catalyzed tandem cyclization of isocyanides, α-diazoketones, and anhydrides: a general route to polysubstituted maleimides. Chem Commun (Camb) 2019; 55:12519-12522. [DOI: 10.1039/c9cc05802h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A zinc-catalyzed three-component reaction of isocyanides, α-diazoketones, and anhydrides has been realized as a novel and efficient method for the synthesis of polysubstituted maleimides.
Collapse
Affiliation(s)
- Yong-Xin Liang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| | - Xiang-He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| | - Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| | - Haroon Mehfooz
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
39
|
Liu J, Dong K, Franke R, Neumann H, Jackstell R, Beller M. Selective Palladium-Catalyzed Carbonylation of Alkynes: An Atom-Economic Synthesis of 1,4-Dicarboxylic Acid Diesters. J Am Chem Soc 2018; 140:10282-10288. [DOI: 10.1021/jacs.8b05852] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiawang Liu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, Rostock, 18059, Germany
| | - Kaiwu Dong
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, Rostock, 18059, Germany
| | - Robert Franke
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Evonik Performance Materials GmbH, Paul-Baumann-Str. 1, 45772 Marl, Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, Rostock, 18059, Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, Rostock, 18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, Rostock, 18059, Germany
| |
Collapse
|
40
|
Xu JX, Wu XF. Palladium-Catalyzed Carbonylative Cyclization of Terminal Alkynes and Anilines to 3-Substituted Maleimides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jian-Xing Xu
- Leibniz-Institut für Katalyse an der Universität Rostock e. V.; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse an der Universität Rostock e. V.; Albert-Einstein-Straße 29a 18059 Rostock Germany
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 People's Republic of China
| |
Collapse
|
41
|
Ji X, Gao B, Zhou X, Liu Z, Huang H. Palladium-Catalyzed Regioselective Hydroaminocarbonylation of Alkynes to α,β-Unsaturated Primary Amides with Ammonium Chloride. J Org Chem 2018; 83:10134-10141. [DOI: 10.1021/acs.joc.8b01405] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaolei Ji
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310024, China
| | - Bao Gao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Xibing Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Zongjian Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310024, China
| | - Hanmin Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310024, China
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| |
Collapse
|
42
|
Petricci E, Santillo N, Castagnolo D, Cini E, Taddei M. Iron-Catalyzed Reductive Amination of Aldehydes in Isopropyl Alcohol/Water Media as Hydrogen Sources. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Elena Petricci
- Dipartimento di Biotecnologie, Chimica e Farmacia; Università degli Studi di Siena; Via A. Moro 2 53100 Siena Italy
| | - Niccolò Santillo
- Dipartimento di Biotecnologie, Chimica e Farmacia; Università degli Studi di Siena; Via A. Moro 2 53100 Siena Italy
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical Sciences; King's College London; 150 Stamford Street SE1 9NH London UK
| | - Elena Cini
- Dipartimento di Biotecnologie, Chimica e Farmacia; Università degli Studi di Siena; Via A. Moro 2 53100 Siena Italy
| | - Maurizio Taddei
- Dipartimento di Biotecnologie, Chimica e Farmacia; Università degli Studi di Siena; Via A. Moro 2 53100 Siena Italy
| |
Collapse
|
43
|
Peng JB, Wu FP, Wu XF. First-Row Transition-Metal-Catalyzed Carbonylative Transformations of Carbon Electrophiles. Chem Rev 2018; 119:2090-2127. [DOI: 10.1021/acs.chemrev.8b00068] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jin-Bao Peng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Fu-Peng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
44
|
Abstract
The main achievements on non-noble metal (Mn, Fe, Cu, Co, Ni) catalysed carbonylative transformations have been summarized and discussed.
Collapse
Affiliation(s)
- Yahui Li
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Yuya Hu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rostock
- Germany
| |
Collapse
|
45
|
Yang J, Liu J, Jackstell R, Beller M. Palladium-catalyzed aerobic oxidative carbonylation of alkynes with amines: a general access to substituted maleimides. Chem Commun (Camb) 2018; 54:10710-10713. [DOI: 10.1039/c8cc05802d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A catalytic oxidative carbonylation reaction was developed for the synthesis of polysubstituted maleimides from alkynes and amines with air as a green oxidant.
Collapse
Affiliation(s)
- Ji Yang
- Leibniz-Institut für Katalyse an der Universität Rostock
- 18059 Rostock
- Germany
| | - Jiawang Liu
- Leibniz-Institut für Katalyse an der Universität Rostock
- 18059 Rostock
- Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse an der Universität Rostock
- 18059 Rostock
- Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse an der Universität Rostock
- 18059 Rostock
- Germany
| |
Collapse
|
46
|
Huang Z, Cheng Y, Chen X, Wang HF, Du CX, Li Y. Regioselectivity inversion tuned by iron(iii) salts in palladium-catalyzed carbonylations. Chem Commun (Camb) 2018; 54:3967-3970. [DOI: 10.1039/c8cc01190g] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We disclose the Pd-catalyzed carbonylation of alkenes and alcohols, with the regioselectivity tuned by the anion of Fe(iii) salts.
Collapse
Affiliation(s)
- Zijun Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Yazhe Cheng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Xipeng Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Hui-Fang Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Chen-Xia Du
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yuehui Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| |
Collapse
|
47
|
Gao B, Zhang G, Zhou X, Huang H. Palladium-catalyzed regiodivergent hydroaminocarbonylation of alkenes to primary amides with ammonium chloride. Chem Sci 2017; 9:380-386. [PMID: 29629107 PMCID: PMC5868317 DOI: 10.1039/c7sc04054g] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/23/2017] [Indexed: 12/24/2022] Open
Abstract
A new and efficient process for transferring NH4Cl to both linear and branched primary amides has been achieved via palladium-catalyzed hydroaminocarbonylation of alkenes.
Palladium-catalyzed hydroaminocarbonylation of alkenes for the synthesis of primary amides has long been an elusive aim. Here, we report an efficient catalytic system which enables inexpensive NH4Cl to be utilized as a practical alternative to gaseous ammonia for the palladium-catalyzed alkene-hydroaminocarbonylation reaction. Through appropriate choice of the palladium precursors and ligands, either branched or linear primary amides can be obtained in good yields with good to excellent regioselectivities. Primary mechanistic studies were conducted and disclosed that electrophilic acylpalladium species were capable of capturing the NH2-moiety from ammonium salts to form amides in the presence of CO with NMP as a base.
Collapse
Affiliation(s)
- Bao Gao
- Department of Chemistry , Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei , 230026 , P. R. China .
| | - Guoying Zhang
- Department of Chemistry , Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei , 230026 , P. R. China .
| | - Xibing Zhou
- Department of Chemistry , Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei , 230026 , P. R. China .
| | - Hanmin Huang
- Department of Chemistry , Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei , 230026 , P. R. China . .,State Key Laboratory for Oxo Synthesis and Selective Oxidation , Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , P. R. China
| |
Collapse
|
48
|
Raghuvanshi A, Singh AK, Mobin SM, Mathur P. Fe(CO)5Catalyzed [2+2+1] Cycloaddition of Alkyne, Carbodiimide and CO for the Synthesis of 5-Iminopyrrolones. ChemistrySelect 2017. [DOI: 10.1002/slct.201701625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abhinav Raghuvanshi
- Discipline of Chemistry; Indian Institute of Technology; Khandwa road, Simrol Indore- 453552, M.P. India
| | - Amrendra K. Singh
- Discipline of Chemistry; Indian Institute of Technology; Khandwa road, Simrol Indore- 453552, M.P. India
| | - Shaikh M. Mobin
- Discipline of Chemistry; Indian Institute of Technology; Khandwa road, Simrol Indore- 453552, M.P. India
- Sophisticated Instrument Centre; Indian Institute of Technology; Khandwa road, Simrol Indore- 453552, M.P. India
| | - Pradeep Mathur
- Discipline of Chemistry; Indian Institute of Technology; Khandwa road, Simrol Indore- 453552, M.P. India
| |
Collapse
|
49
|
Espinosa-Jalapa NA, Kumar A, Leitus G, Diskin-Posner Y, Milstein D. Synthesis of Cyclic Imides by Acceptorless Dehydrogenative Coupling of Diols and Amines Catalyzed by a Manganese Pincer Complex. J Am Chem Soc 2017; 139:11722-11725. [DOI: 10.1021/jacs.7b08341] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Noel Angel Espinosa-Jalapa
- Department
of Organic Chemistry and §Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Amit Kumar
- Department
of Organic Chemistry and §Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gregory Leitus
- Department
of Organic Chemistry and §Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Department
of Organic Chemistry and §Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Milstein
- Department
of Organic Chemistry and §Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
50
|
One pot synthesis of important retinoid synthon by the catalytic regioselective bi-functionalization of acetylenes, alcohol and carbon monoxide. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|