1
|
Huang J, Li Y, You Y, He X, Wang X, Yuan K. Pd II/Cu I-Cocatalyzed Radical Arylation of gem-Difluoroalkenes Using Arylsulfonyl Chlorides. J Org Chem 2024. [PMID: 39514978 DOI: 10.1021/acs.joc.4c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A PdII/CuI-cocatalyzed arylation of gem-difluoroalkenes with arylsulfonyl chlorides, affording various defluorinative arylation/1,2-difunctionalized products, was developed. The interception of aryl radicals generated from the reduction of arylsulfonyl chlorides delivers some hypervalent Pd species, which present high reactivities and chemoselectivities toward the defluorinative arylation product formation. Besides, the nature of the electron-deficient Pd metal center is more prone to reductive elimination under acidic conditions, providing an opportunity to explore new reactivates of fluorinated alkenes into more elaborate substructures.
Collapse
Affiliation(s)
- Jiahui Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yixiao Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuantao You
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xingying He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaozhen Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Kedong Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
2
|
Banerjee S, Punniyamurthy T. Palladium-Catalyzed Weak-Chelation-Assisted C4-Nitration of Indoles with tert-Butyl Nitrite: Formal Access to Aminated Indoles. Org Lett 2024; 26:988-993. [PMID: 38277494 DOI: 10.1021/acs.orglett.3c03921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Palladium-catalyzed weak-chelation-assisted C4-selective nitration of indoles has been accomplished employing tert-butyl nitrite in the presence of oxone under molecular oxygen at a moderate temperature. Aerobic conditions, C4-selectivity, substrate scope, conversion to valuable aminated indoles, and late-stage natural product modifications are the important practical features.
Collapse
Affiliation(s)
- Sonbidya Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
3
|
Kumar R. Transition-Metal-Catalyzed 1,2-Diaminations of Olefins: Synthetic Methodologies and Mechanistic Studies. Chem Asian J 2024; 19:e202300705. [PMID: 37743249 DOI: 10.1002/asia.202300705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
1,2-Diamines are synthetically important motifs in organo-catalysis, natural products, and drug research. Continuous utilization of transition-metal based catalyst in direct 1,2-diamination of olefines, in contrast to metal-free transformations, with numerous impressive advances made in recent years (2015-2023). This review summarized contemporary research on the transition-metal catalyzed/mediated [e. g., Cu(II), Pd(II), Fe(II), Rh(III), Ir(III), and Co(II)] 1,2-diamination (asymmetric and non-asymmetric) especially emphasizing the recent synthetic methodologies and mechanistic understandings. Moreover, up-to-date discussion on (i) paramount role of oxidant and catalyst (ii) key achievements (iii) generality and uniqueness, (iv) synthetic limitations or future challenges, and (v) future opportunities are summarized related to this potential area.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana, INDIA
| |
Collapse
|
4
|
Westawker LP, Khusnutdinova JK, Wallick RF, Mirica LM. Palladium K-edge X-ray Absorption Spectroscopy Studies on Controlled Ligand Systems. Inorg Chem 2023; 62:21128-21137. [PMID: 38039413 DOI: 10.1021/acs.inorgchem.3c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
X-ray absorption spectroscopy (XAS) is widely used across the life and physical sciences to identify the electronic properties and structure surrounding a specific element. XAS is less often used for the characterization of organometallic compounds, especially for sensitive and highly reactive species. In this study, we used solid- and solution-phase XAS to compare a series of 25 palladium complexes in controlled ligand environments. The compounds include palladium centers in the formal I, II, III, and IV oxidation states, supported by tridentate and tetradentate macrocyclic ligands, with different halide and methyl ligand combinations. The Pd K-edge energies increased not only upon oxidizing the metal center but also upon increasing the denticity of the ligand framework, substituting sigma-donating methyl groups with chlorides, and increasing the charge of the overall metal complex by replacing charged ligands with neutral ligands. These trends were then applied to characterize compounds whose oxidation states were otherwise unconfirmed.
Collapse
Affiliation(s)
- Luke P Westawker
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Julia K Khusnutdinova
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Rachel F Wallick
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Liu SC, Fang DC. DFT Studies on the Mechanisms of Carboamination/Diamination of Unactivated Alkenes Mediated by Pd(IV) Intermediates. J Org Chem 2023; 88:14540-14549. [PMID: 37773964 DOI: 10.1021/acs.joc.3c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Density functional theory (DFT) calculations have been employed to investigate the mechanism of carboamination and diamination of unactivated alkenes mediated by Pd(IV) intermediates. Both reactions share a common Pd(IV) intermediate, serving as the starting point for either the carboamination or the diamination pathway. The formation of this Pd(IV) intermediate encompasses a transition state that substantially impacts the turnover frequency (TOF) of catalytic cycles, with an apparent activation free-energy barrier of 26.1 kcal mol-1. Carboamination of unactivated alkenes proceeds through the coordination of a toluene molecule, C-H activation, inner reductive elimination, and the separation of the carboamination product from this intermediate, while diamination of unactivated alkenes involves the formation of the ion nucleophile, SN2 attack, and the separation of the diamination product. A comparison of the free-energy profiles for carboamination and diamination of unactivated alkenes can elucidate the origin of the chemoselectivity, and Bader's atoms in molecules (AIM) wave function analyses have been performed to analyze the contributions of the outer C-N bonding in the diamination process.
Collapse
Affiliation(s)
- Si-Cong Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Singh S, Shinde VN, Kumar S, Meena N, Bhuvanesh N, Rangan K, Kumar A, Joshi H. Mono and Dinuclear Palladium Pincer Complexes of NNSe Ligand as a Catalyst for Decarboxylative Direct C-H Heteroarylation of (Hetero)arenes. Chem Asian J 2023; 18:e202300628. [PMID: 37602812 DOI: 10.1002/asia.202300628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
This report describes the synthesis of a new NNSe pincer ligand and its mono- and dinuclear palladium(II) pincer complexes. In the absence of a base, a dinuclear palladium pincer complex (C1) was isolated, while in the presence of Et3 N base a mononuclear palladium pincer complex (C2) was obtained. The new ligand and complexes were characterized using techniques like 1 H, 13 C{1 H} nuclear magnetic resonance (NMR), fourier transform infrared (FTIR), high-resolution mass spectrometry (HRMS), ultraviolet-visible (UV-Visible), and cyclic voltammetry. Both the complexes showed pincer coordination mode with a distorted square planar geometry. The complex C1 has two pincer ligands attached through a Pd-Pd bond in a dinuclear pincer fashion. The air and moisture-insensitive, thermally robust palladium pincer complexes were used as the catalyst for decarboxylative direct C-H heteroarylation of (hetero)arenes. Among the complexes, dinuclear pincer complex C1 showed better catalytic activity. A variety of (hetero)arenes were successfully activated (43-87 % yield) using only 2.5 mol % of catalyst loading under mild reaction conditions. The PPh3 and Hg poisoning experiments suggested a homogeneous nature of catalysis. A plausible reaction pathway was proposed for the dinuclear palladium pincer complex catalyzed decarboxylative C-H bond activation reaction of (hetero)arenes.
Collapse
Affiliation(s)
- Sohan Singh
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Vikki N Shinde
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, 333031, India
| | - Sunil Kumar
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Neha Meena
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, 333031, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas, 77842-3012, USA
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana, 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, 333031, India
| | - Hemant Joshi
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| |
Collapse
|
7
|
Zhang S, Yang L, Fu J, Tan Q, Liu K, Huang T, Li C, Liu L, Chen T. Palladium-catalyzed and norbornene-mediated C-H amination and C-O alkenylation of aryl triflates. Org Biomol Chem 2023; 21:4398-4403. [PMID: 37161968 DOI: 10.1039/d3ob00260h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The C-H amination and C-O alkenylation of aryl triflates was achieved through Pd/norbornene (NBE) cooperative catalysis. By this strategy, various ortho-alkenyl tertiary anilines including those bearing functional groups were produced in good to excellent yields. This reaction represents a new conversion model for phenoxides. It expands the scope of Catellani-type reactions and the application of phenoxides in organic synthesis.
Collapse
Affiliation(s)
- Shuo Zhang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab. of Fine Chem., Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Lei Yang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab. of Fine Chem., Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Jianbin Fu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab. of Fine Chem., Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Qihang Tan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab. of Fine Chem., Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Kuan Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab. of Fine Chem., Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab. of Fine Chem., Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Chunya Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab. of Fine Chem., Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab. of Fine Chem., Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab. of Fine Chem., Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
8
|
Najera D, Espinosa Martinez G, Fout AR. Synthesis and Characterization of Palladium Pincer Bis(carbene) CCC Complexes. Organometallics 2023; 42:832-837. [PMID: 38357387 PMCID: PMC10863395 DOI: 10.1021/acs.organomet.3c00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 02/16/2024]
Abstract
The metalation of the DIPPCCC (DIPPCCC = bis(diisopropylphenyl-imidazol-2-ylidene)phenyl) ligand platform with Pd was achieved under mild conditions by reacting [H3(DIPPCCC)]Cl2 with Pd(OAc)2 at room temperature in the presence of 3.1 equiv of LiN(SiMe3)2. The resulting complexes (DIPPCCC)PdX (X = Cl or Br) were oxidized by two-electron oxidants PhICl2, Br2, and BTMABr3. All the complexes were crystallographically characterized, and analysis of structural parameters around the ligand scaffold show no evidence of a ligand-centered radical, rendering the metal center in the oxidized species, (DIPPCCC)PdX3 (X = Cl or Br), a formal PdIV oxidation state. Unlike their NiIV analogues, these PdIV complexes are stable to air and moisture. The addition of styrene to (DIPPCCC)PdBr3 resulted in the clean reduction of PdIV to PdII, along with the formation of the halogenated alkane. The oxidation to PdIV and subsequent return to PdII upon reduction, as opposed to formation of PdIII species, showcases the accessibility of high-valent palladium DIPPCCC complexes.
Collapse
Affiliation(s)
- Daniel
C. Najera
- School
of Chemical Sciences, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gabriel Espinosa Martinez
- School
of Chemical Sciences, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alison R. Fout
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
9
|
Qi L, Dong M, Qian J, Yu S, Tong X. Pd 0 -Catalyzed Asymmetric Carbonitratation Reaction Featuring an H-Bonding-Driven Alkyl-Pd II -ONO 2 Reductive Elimination. Angew Chem Int Ed Engl 2023; 62:e202215397. [PMID: 36420824 DOI: 10.1002/anie.202215397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Reductive elimination of alkyl-PdII -O is a synthetically useful yet underdeveloped elementary reaction. Here we report that the combination of an H-bonding donor [PyH][BF4 ] and AgNO3 additive under toluene/H2 O biphasic system can enable such elementary step to form alkyl nitrate. This results in the Pd0 -catalyzed asymmetric carbonitratations of (Z)-1-iodo-1,6-dienes with (R)-BINAP as the chiral ligand, affording alkyl nitrates up to 96 % ee. Mechanistic studies disclose that the reaction consists of oxidative addition of Pd0 catalyst to vinyl iodide, anion ligand exchange between I- and NO3 - , alkene insertion and SN 2-type alkyl-PdII -ONO2 reductive elimination. Evidences suggest that H-bonding interaction of PyH⋅⋅⋅ONO2 can facilitate dissociation of O2 NO- ligand from the alkyl-PdII -ONO2 species, thus enabling the challenging alkyl-PdII -ONO2 reductive elimination to be feasible.
Collapse
Affiliation(s)
- Linjun Qi
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Ming Dong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Jinlong Qian
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Shuling Yu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| |
Collapse
|
10
|
Aloia A, Casiello M, D'Accolti L, Fusco C, Nacci A, Monopoli A. Direct Synthesis of 3-Aryl Substituted Isocoumarins and Phthalides through Palladium Acetate Catalyzed C(sp 2 )-H Activation in Ionic Liquids. Chemistry 2022; 28:e202202350. [PMID: 35997238 PMCID: PMC9826210 DOI: 10.1002/chem.202202350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/11/2023]
Abstract
A novel Pd-catalysed oxidative coupling between benzoic acids and vinylarenes or acrylates to furnish isocoumarins and phthalides is reported. The reaction proceeds smoothly in molten tetrabutylammonium acetate via a selective C-H bond activation, with very low percentage of ligand-free palladium acetate as the catalyst, under atmospheric pressure of oxygen. Sub-stoichiometric amount of copper acetate is also required as a reoxidant for the palladium.
Collapse
Affiliation(s)
- Andrea Aloia
- Chemistry DepartmentUniversità degli Studi di Bari Aldo MoroVia Orabona 470126BariItaly
| | - Michele Casiello
- Chemistry DepartmentUniversità degli Studi di Bari Aldo MoroVia Orabona 470126BariItaly
| | - Lucia D'Accolti
- Chemistry DepartmentUniversità degli Studi di Bari Aldo MoroVia Orabona 470126BariItaly
- CNR – Istituto di Chimica dei Composti Organometallici (ICCOM) Bari SectionConsiglio Nazionale delle RicercheVia Orabona 470126BariItaly
| | - Caterina Fusco
- CNR – Istituto di Chimica dei Composti Organometallici (ICCOM) Bari SectionConsiglio Nazionale delle RicercheVia Orabona 470126BariItaly
| | - Angelo Nacci
- Chemistry DepartmentUniversità degli Studi di Bari Aldo MoroVia Orabona 470126BariItaly
- CNR – Istituto di Chimica dei Composti Organometallici (ICCOM) Bari SectionConsiglio Nazionale delle RicercheVia Orabona 470126BariItaly
| | - Antonio Monopoli
- Chemistry DepartmentUniversità degli Studi di Bari Aldo MoroVia Orabona 470126BariItaly
- CNR – Istituto di Chimica dei Composti Organometallici (ICCOM) Bari SectionConsiglio Nazionale delle RicercheVia Orabona 470126BariItaly
| |
Collapse
|
11
|
Phosphine oxide directing-group-enabled atroposelective C–H bond acyloxylation via an eight-membered palladacycle intermediate. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Saha PS, Gopinath P. Dual Palladium‐Photoredox catalyzed C‐H functionalization. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Purushothaman Gopinath
- Indian Institute of Science Education and Research Tirupati Chemistry Karkambadi Road 517507 Tirupati INDIA
| |
Collapse
|
13
|
Ballav T, Chakrabortty R, Das A, Ghosh S, Ganesh V. Palladium‐Catalyzed Dual Catalytic Synthesis of Heterocycles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tamal Ballav
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | | | - Aniruddha Das
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | - Suman Ghosh
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | - Venkataraman Ganesh
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry Department of Chemistry,Indian Institute Technology Kharagpur 721302 Kharagpur INDIA
| |
Collapse
|
14
|
Wang YC, Rath NP, Mirica LM. Allylic Amination of Pd(II)-Allyl Complexes via High-Valent Pd Intermediates. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yung-Ching Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nigam P. Rath
- Department of Chemistry and Biochemistry, University of Missouri − St. Louis, One University Boulevard, St. Louis, Missouri 63121-4400, United States
| | - Liviu M. Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Rossolini T, Das A, Nicolai S, Waser J. Pd(II)-Catalyzed Aminoacetoxylation of Alkenes Via Tether Formation. Org Lett 2022; 24:5068-5072. [PMID: 35816449 PMCID: PMC9490825 DOI: 10.1021/acs.orglett.2c01838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A Pd-catalyzed method based on the use of a molecular
tether is
described for olefin difunctionalization. Enabled by an easily introduced
trifluoroacetaldehyde-derived tether, a simultaneous introduction
of oxygen and nitrogen heteroatoms across unsaturated carbon–carbon
bonds was achieved under oxidative conditions, most probably via high-valent
Pd intermediates. Good yields and high diastereoselectivity were obtained
with aryl-substituted alkenes, whereas nonterminal alkyl-substituted
olefins gave aza-Heck products. Tether cleavage under mild conditions
provided fast access to functionalized β-amino alcohols.
Collapse
Affiliation(s)
- Thomas Rossolini
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| | - Ashis Das
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| | - Stefano Nicolai
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Canty AJ, Ariafard A, Malinakova HC. DFT characterisation of a Pd II → I III adduct, and a Pd II complex formed after oxidative alkenylation of Pd II by [Ph(alkenyl)I III] +, in Pd-mediated synthesis of benzofurans involving Pd IV, annulation and chain-walking. Dalton Trans 2022; 51:9377-9384. [PMID: 35674152 DOI: 10.1039/d2dt00759b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of benzofurans by the reaction of the palladium(II) complex Pd{1-C6H4-2-OCH(CO2Et)-C,C}(bipy) (bipy = 2,2'-bipyridine) with hypervalent iodine(III) reagents [Ph(CHCHR)I]+ has been examined by Density Functional Theory. Results highlight the role of oxidative alkenylation to form PdIV intermediates and the role of initial adduct formation in this process, an annulation process facilitated by PdII, and the role of 'chain-walking' at PdII centres to allow formation of the lowest energy product. Computation (R = Me) allows assignment of an initially formed adduct with a 'PdII → IIII' interaction at -50 °C, and, after oxidative alkenylation of PdII and reductive elimination from a PdIV centre via Ar⋯Alkenyl coupling, formation of a second intermediate with a structure consistent with NMR detection (R = n-hexyl) at -30 °C is obtained. This PdII complex, containing a coordinated alkene group in Pd{1-(RHCγCβ)C6H4-2-OCαH(CO2Et)-η2-CαCβ,C}(bipy), undergoes a 5-exo-trig annulation by forming a Cα-Cβ bond to give a complex with a bicyclic carbon skeleton suitable for subsequent formation of benzofurans. A series of facile rearrangements including chain-walking results in formation of a lowest energy complex of three feasible hydrido(alkene)palladium(II) species, leading to decomposition and release of the observed benzofuran isomer isolated under synthesis conditions. The computational study allows reinterpretation of the NMR data reported previously, in particular the determination of barriers in the reaction pathway allowing assignment of structure for key intermediates.
Collapse
Affiliation(s)
- Allan J Canty
- School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75. Hobart, Tasmania 7001, Australia.
| | - Alireza Ariafard
- School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75. Hobart, Tasmania 7001, Australia.
| | - Helena C Malinakova
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582, USA
| |
Collapse
|
17
|
Wang K, Fan R, Wei X, Fang W. Palladacyclic N-heterocyclic carbene precatalysts for transition metal catalysis. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
18
|
Wang Y, Wang H, Yang Q, Xie S, Zhu H. Quinazoline‐Assisted ortho‐Halogenation with N‐Halosuccinimides through Pa(II)‐Catalyzed C(sp2)‐H Activation. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yong Wang
- Nanjing Tech University College of Chemistry and Molecular Engineering Nanjing CHINA
| | - Hui Wang
- Nanjing Tech University College of Chemistry and Molecular Engineering Nanjing CHINA
| | - Qifan Yang
- Nanjing Tech University College of Chemistry and Molecular Engineering Nanjing CHINA
| | - Shihua Xie
- Nanjing Tech University College of Chemistry and Molecular Engineering Nanjing CHINA
| | - Hongjun Zhu
- Nanjing Tech University Department of Applied Chemistry, College of Science No 30, South Puzhu 211816 Nanjing CHINA
| |
Collapse
|
19
|
Martínez-Flores S, Mujica-Martinez CA, Polindara-García LA. Pd(II)‐Catalyzed C(sp2/sp3)‐H Arylation of Aryl‐glycinamide Derivatives Using Picolinamide as Directing Group. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sebastián Martínez-Flores
- Universidad Nacional Autónoma de México: Universidad Nacional Autonoma de Mexico Instituto de Química Ciudad Universitaria 04310 Ciudad de Mexico MEXICO
| | | | - Luis Angel Polindara-García
- Universidad Nacional Autonoma de Mexico Chemistry Institute Ciudad Universitaria 04510 Ciudad de Mexico MEXICO
| |
Collapse
|
20
|
Cheng H, Yang T, Edwards M, Tang S, Xu S, Yan X. Picomole-Scale Transition Metal Electrocatalysis Screening Platform for Discovery of Mild C-C Coupling and C-H Arylation through in Situ Anodically Generated Cationic Pd. J Am Chem Soc 2022; 144:1306-1312. [PMID: 35015550 DOI: 10.1021/jacs.1c11179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Development of new transition-metal-catalyzed electrochemistry promises to improve overall synthetic efficiency. Here, we describe the first integrated platform for online screening of electrochemical transition-metal catalysis. It utilizes the intrinsic electrochemical capabilities of nanoelectrospray ionization mass spectrometry (nano-ESI-MS) and picomole-scale anodic corrosion of a Pd electrode to generate and evaluate highly efficient cationic catalysts for mild electrocatalysis. We demonstrate the power of the novel electrocatalysis platform by (1) identifying electrolytic Pd-catalyzed Suzuki coupling at room temperature, (2) discovering Pd-catalyzed electrochemical C-H arylation in the absence of external oxidant or additive, (3) developing electrolyzed Suzuki coupling/C-H arylation cascades, and (4) achieving late-stage functionalization of two drug molecules by the newly developed mild electrocatalytic C-H arylation. More importantly, the scale-up reactions confirm that new electrochemical pathways discovered by nano-ESI can be implemented under the conventional electrolytic reaction conditions. This approach enables in situ mechanistic studies by capturing various intermediates including transient transition metal species by MS, and thus uncovering the critical role of anodically generated cationic Pd catalyst in promoting otherwise sluggish transmetalation in C-H arylation. The anodically generated cationic Pd with superior catalytic efficiency and novel online electrochemical screening platform hold great potential for discovering mild transition-metal-catalyzed reactions.
Collapse
Affiliation(s)
- Heyong Cheng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Tingyuan Yang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Madison Edwards
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shuli Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shiqing Xu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
21
|
Pounder A, Tam W. Iron-catalyzed domino coupling reactions of π-systems. Beilstein J Org Chem 2021; 17:2848-2893. [PMID: 34956407 PMCID: PMC8685557 DOI: 10.3762/bjoc.17.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022] Open
Abstract
The development of environmentally benign, inexpensive, and earth-abundant metal catalysts is desirable from both an ecological and economic standpoint. Certainly, in the past couple decades, iron has become a key player in the development of sustainable coupling chemistry and has become an indispensable tool in organic synthesis. Over the last ten years, organic chemistry has witnessed substantial improvements in efficient synthesis because of domino reactions. These protocols are more atom-economic, produce less waste, and demand less time compared to a classical stepwise reaction. Although iron-catalyzed domino reactions require a mindset that differs from the more routine noble-metal, homogenous iron catalysis they bear the chance to enable coupling reactions that rival that of noble-metal-catalysis. This review provides an overview of iron-catalyzed domino coupling reactions of π-systems. The classifications and reactivity paradigms examined should assist readers and provide guidance for the design of novel domino reactions.
Collapse
Affiliation(s)
- Austin Pounder
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - William Tam
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
22
|
Higuchi K, Matsumura K, Arai T, Ito M, Sugiyama S. Intramolecular Aminolactonization for Synthesis of Furoindolin-2-One. Molecules 2021; 27:molecules27010102. [PMID: 35011332 PMCID: PMC8746550 DOI: 10.3390/molecules27010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022] Open
Abstract
Propellanes are polycyclic compounds in which tricyclic systems share one carbon–carbon single bond. Propellane frameworks that consist of larger sized rings are found in a variety of natural products. As an approach to the stereoselective synthesis of the propellane framework, one of the efficient methods is forming several rings in a single operation. Lapidilectine B (1) is composed of a propellane framework and was synthesized through the oxidative cyclization of trisubstituted alkenes. When the alkene with an ester moiety was treated with N-iodosuccinimide (NIS), iodocyclization proceeded to give the cyclic carbamate. On the other hand, when PhI(OAc)2 was allowed to react in the carboxyl form, a furoindolin-2-one structure corresponding to the A-B-C ring of lapidilectine B (1) was produced. Furthermore, when Pd(OAc)2 catalyst was used for cyclization under oxidative conditions, the product yield was improved.
Collapse
|
23
|
Liu B, Romine AM, Rubel CZ, Engle KM, Shi BF. Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp 3)-H Bonds. Chem Rev 2021; 121:14957-15074. [PMID: 34714620 PMCID: PMC8968411 DOI: 10.1021/acs.chemrev.1c00519] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transition-metal-catalyzed, coordination-assisted C(sp3)-H functionalization has revolutionized synthetic planning over the past few decades as the use of these directing groups has allowed for increased access to many strategic positions in organic molecules. Nonetheless, several challenges remain preeminent, such as the requirement for high temperatures, the difficulty in removing or converting directing groups, and, although many metals provide some reactivity, the difficulty in employing metals outside of palladium. This review aims to give a comprehensive overview of coordination-assisted, transition-metal-catalyzed, direct functionalization of nonactivated C(sp3)-H bonds by covering the literature since 2004 in order to demonstrate the current state-of-the-art methods as well as the current limitations. For clarity, this review has been divided into nine sections by the transition metal catalyst with subdivisions by the type of bond formation. Synthetic applications and reaction mechanism are discussed where appropriate.
Collapse
Affiliation(s)
- Bin Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Andrew M. Romine
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Camille Z. Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States.,Corresponding Author- (K. M. E.); (B.-F. S.)
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China,Corresponding Author- (K. M. E.); (B.-F. S.)
| |
Collapse
|
24
|
Cheng J, Zhang H, Lv J, Zheng J. Palladium‐Catalyzed Intermolecular Dicarbofunctionalization of Unactivated Alkenes: Synthesis of Fluoroalkylated Heterocycles with All‐Carbon Quaternary Centers. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jiajia Cheng
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou 350116 People's Republic of China
| | - Huali Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou 350116 People's Republic of China
| | - Jinliang Lv
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou 350116 People's Republic of China
| | - Jinhua Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou 350116 People's Republic of China
| |
Collapse
|
25
|
Patel M, Desai B, Sheth A, Dholakiya BZ, Naveen T. Recent Advances in Mono‐ and Difunctionalization of Unactivated Olefins. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Monak Patel
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bhargav Desai
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Aakash Sheth
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bharatkumar Z. Dholakiya
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Togati Naveen
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| |
Collapse
|
26
|
Lubov DP, Bryliakova AA, Samsonenko DG, Sheven DG, Talsi EP, Bryliakov KP. Palladium‐Aminopyridine Catalyzed C−H Oxygenation: Probing the Nature of Metal Based Oxidant. ChemCatChem 2021. [DOI: 10.1002/cctc.202101345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dmitry P. Lubov
- Boreskov Institute of Catalysis Lavrentieva 5 Novosibirsk 630090 Russia
| | - Anna A. Bryliakova
- Novosibirsk State University Pirogova 1 Novosibirsk 630090 Russia
- Novosibirsk R&D Center Inzhenernaya 20 Novosibirsk 630090 Russia
| | - Denis G. Samsonenko
- Nikolaev Institute of Inorganic Chemistry Pr. Lavrentieva 3 Novosibirsk 630090 Russia
| | - Dmitriy G. Sheven
- Nikolaev Institute of Inorganic Chemistry Pr. Lavrentieva 3 Novosibirsk 630090 Russia
| | - Evgenii P. Talsi
- Boreskov Institute of Catalysis Lavrentieva 5 Novosibirsk 630090 Russia
| | | |
Collapse
|
27
|
Wang J, Sun X, Hu D, Shi Y. Pd-Catalyzed Indole Synthesis via C-H Activation and Bisamination Sequence with Diaziridinone. Org Lett 2021; 23:7561-7565. [PMID: 34523937 DOI: 10.1021/acs.orglett.1c02757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This work describes an efficient Pd-catalyzed indole synthesis. A wide variety of indoles can be obtained in good yields from readily available vinyl bromides. The reaction likely proceeds through a sequential aryl C-H activation and bisamination of a resulting pallada(II)cycle with diaziridinone.
Collapse
Affiliation(s)
- Jianjun Wang
- Institute of Natural and Sythetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Xiaofeng Sun
- Institute of Natural and Sythetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Daguo Hu
- Institute of Natural and Sythetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Institute of Natural and Sythetic Organic Chemistry, Changzhou University, Changzhou 213164, China.,Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
28
|
Bhattacharya T, Dutta S, Maiti D. Deciphering the Role of Silver in Palladium-Catalyzed C–H Functionalizations. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02552] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Trisha Bhattacharya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Subhabrata Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
29
|
Du J, Wang X, Wang H, Wei J, Huang X, Song J, Zhang J. Photoinduced Palladium-Catalyzed Intermolecular Radical Cascade Cyclization of N-Arylacrylamides with Unactivated Alkyl Bromides. Org Lett 2021; 23:5631-5635. [PMID: 34236201 DOI: 10.1021/acs.orglett.1c01698] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A mild visible-light-induced Pd-catalyzed intermolecular radical cascade reaction of N-arylacrylamides with unactivated alkyl bromides is disclosed. Photoexcited Pd complexes transfer a single electron in this protocol, and hybrid alkyl Pd-radical species are involved as the key reaction intermediates. Sophisticated bioactive oxindole derivatives bearing various substituents and substitution patterns can be efficiently afforded through this approach.
Collapse
Affiliation(s)
- Juan Du
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xing Wang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Hongling Wang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Jinhu Wei
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xuan Huang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Jun Song
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Junmin Zhang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
30
|
Papa Spadafora B, Moreira Ribeiro FW, Matsushima JE, Ariga EM, Omari I, Soares PMA, de Oliveira-Silva D, Vinhato E, McIndoe JS, Carita Correra T, Rodrigues A. Regio- and diastereoselective Pd-catalyzed aminochlorocyclization of allylic carbamates: scope, derivatization, and mechanism. Org Biomol Chem 2021; 19:5595-5606. [PMID: 34096563 DOI: 10.1039/d1ob00670c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regio- and diastereoselective synthesis of oxazolidinones via a Pd-catalyzed vicinal C-N/C-Cl bond-forming reaction from internal alkenes of allylic carbamates is reported. The oxazolidinones are obtained in yields of 44 to 95% with high to excellent diastereoselectivities (from 6 : 1 to >20 : 1 dr) from readily available precursors. This process is scalable, and the products are suitable for the synthesis of useful amino alcohols. A detailed theoretical and experimental mechanistic study was carried out to describe that the reaction proceeds through an anti-aminopalladation of the alkene followed by an oxidative C-Pd(ii) cleavage with retention of the carbon stereochemistry to yield the major diastereomer. The role of Cu(ii) in a C-Cl bond-forming mechanism step has also been proposed.
Collapse
Affiliation(s)
- Bruna Papa Spadafora
- Department of Chemistry, Federal University of Sao Paulo, UNIFESP. Prof. Artur Riedel Street 275, lab 10, 09972-270, Diadema, SP, Brazil.
| | - Francisco Wanderson Moreira Ribeiro
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, Sao Paulo, SP, Brazil and Department of Chemistry, University of Victoria, P. O. Box 3065, Victoria, BC V8W 3V6, Canada
| | - Jullyane Emi Matsushima
- Department of Chemistry, Federal University of Sao Paulo, UNIFESP. Prof. Artur Riedel Street 275, lab 10, 09972-270, Diadema, SP, Brazil.
| | - Elaine Miho Ariga
- Department of Chemistry, Federal University of Sao Paulo, UNIFESP. Prof. Artur Riedel Street 275, lab 10, 09972-270, Diadema, SP, Brazil.
| | - Isaac Omari
- Department of Chemistry, University of Victoria, P. O. Box 3065, Victoria, BC V8W 3V6, Canada
| | - Priscila Machado Arruda Soares
- Department of Chemistry, Federal University of Sao Paulo, UNIFESP. Prof. Artur Riedel Street 275, lab 10, 09972-270, Diadema, SP, Brazil.
| | - Diogo de Oliveira-Silva
- Department of Chemistry, Federal University of Sao Paulo, UNIFESP. Prof. Artur Riedel Street 275, lab 10, 09972-270, Diadema, SP, Brazil.
| | - Elisângela Vinhato
- Department of Chemistry, Federal University of Sao Paulo, UNIFESP. Prof. Artur Riedel Street 275, lab 10, 09972-270, Diadema, SP, Brazil.
| | - J Scott McIndoe
- Department of Chemistry, University of Victoria, P. O. Box 3065, Victoria, BC V8W 3V6, Canada
| | - Thiago Carita Correra
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, Sao Paulo, SP, Brazil
| | - Alessandro Rodrigues
- Department of Chemistry, Federal University of Sao Paulo, UNIFESP. Prof. Artur Riedel Street 275, lab 10, 09972-270, Diadema, SP, Brazil.
| |
Collapse
|
31
|
Lai X, Li Y. DFT Study on Dinuclear Palladium Complex Catalyzed Pyrrole Formation From
tert
‐Butyl Isocyanide and Alkynes. ChemCatChem 2021. [DOI: 10.1002/cctc.202100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xiaoling Lai
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
- School of Chemical Engineering Dalian University of Technology Panjin 124221 P. R. China
| | - Yang Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
- School of Chemical Engineering Dalian University of Technology Panjin 124221 P. R. China
| |
Collapse
|
32
|
Li J, Chen J, Wang L, Shi Y. Palladium-Catalyzed Sequential C-H Activation/Amination with Diaziridinone: An Approach to Indoles. Org Lett 2021; 23:3646-3651. [PMID: 33861616 DOI: 10.1021/acs.orglett.1c01043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Indoles are an important class of molecules. This paper describes an efficient palladium-catalyzed synthesis of indoles from 2-iodostyrenes and di-t-butyldiaziridinone with a simultaneous installation of two C-N bonds. The reaction process likely proceeds through the oxidative insertion of Pd to aryl iodide and subsequent vinyl C-H activation to from a pallada(II)cycle intermediate, which is bisaminated by di-t-butyldiaziridinone to give the indole product.
Collapse
Affiliation(s)
- Jing Li
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Jinhua Chen
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Luying Wang
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China.,Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| |
Collapse
|
33
|
Debnath S, Liang L, Lu M, Shi Y. Domino C-N Bond Formation via a Palladacycle with Diaziridinone. An Approach to Indolo[3,2- b]indoles. Org Lett 2021; 23:3237-3242. [PMID: 33886335 DOI: 10.1021/acs.orglett.1c00466] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Palladium-catalyzed C-N bond formation is one of the widely used transformations for the synthesis of structurally diverse N-heterocycles. This work describes an efficient palladium-catalyzed multiple-C-N bond formation reaction for the synthesis of highly π-conjugated N-heterocycles, indolo[3,2-b]indoles with di-tert-butyldiaziridinone. The reaction likely proceeds through the initial formation of an indole-fused palladacycle by nucleophilic aminopalladation and subsequent bisamination to give indolo[3,2-b]indoles.
Collapse
Affiliation(s)
- Sudarshan Debnath
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Lingli Liang
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Mei Lu
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China.,Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
34
|
Liao Y, Zhou Y, Zhang Z, Fan J, Liu F, Shi Z. Intramolecular Oxidative Coupling between Unactivated Aliphatic C-H and Aryl C-H Bonds. Org Lett 2021; 23:1251-1257. [PMID: 33555883 DOI: 10.1021/acs.orglett.0c04239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Direct oxidative coupling of different inert C-H bonds is the most straightforward and environmentally benign method to construct C-C bonds. In this paper, we developed a Pd-catalyzed intramolecular oxidative coupling between unactivated aliphatic and aryl C-H bonds. This chemistry showed great potential to build up fused cyclic scaffolds from linear substrates through oxidative couplings. Privileged chromane and tetralin scaffolds were constructed from readily available linear starting materials in the absence of any organohalides and organometallic partners.
Collapse
Affiliation(s)
- Yang Liao
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yi Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhen Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Junzhen Fan
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Feng Liu
- Department of Chemistry, Fudan University, Shanghai 200438, China.,School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhangjie Shi
- Department of Chemistry, Fudan University, Shanghai 200438, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| |
Collapse
|
35
|
Sun X, Dong X, Liu H, Liu Y. Recent Progress in Palladium‐Catalyzed Radical Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001315] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xi Sun
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Xu Dong
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Hui Liu
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Yuying Liu
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| |
Collapse
|
36
|
Kouno M, Kuwamura N, Konno T. Interconversion between square-planar palladium(ii) and octahedral palladium(iv) centres in a sulfur-bridged trinuclear structure. Chem Commun (Camb) 2021; 57:1336-1339. [DOI: 10.1039/d0cc07490j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coordination of six thiolato groups from two RhIII metalloligands stabilizes an octahedral PdIV centre, which is interconvertible with a square-planar PdII centre retaining the RhPdRh trinuclear structure.
Collapse
Affiliation(s)
- Masahiro Kouno
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Naoto Kuwamura
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Takumi Konno
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|
37
|
Chen X, Xiao F, He WM. Recent developments in the difunctionalization of alkenes with C–N bond formation. Org Chem Front 2021. [DOI: 10.1039/d1qo00375e] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various alkene difunctionalization reactions involving nitridization, diamination, azidation, oxyamination, carboamination, aminohalogenation, and nitration are introduced in this review.
Collapse
Affiliation(s)
- Xiang Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Fang Xiao
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
38
|
Erchinger JE, Gemmeren M. Electrochemical Methods for Pd‐catalyzed C−H Functionalization. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Johannes E. Erchinger
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Manuel Gemmeren
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
39
|
Yuan K, Feoktistova T, Cheong PHY, Altman RA. Arylation of gem-difluoroalkenes using a Pd/Cu Co-catalytic system that avoids β-fluoride elimination. Chem Sci 2020; 12:1363-1367. [PMID: 34163899 PMCID: PMC8179108 DOI: 10.1039/d0sc05192f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PdII/CuI co-catalyze an arylation reaction of gem-difluoroalkenes using arylsulfonyl chlorides to deliver α,α-difluorobenzyl products. The reaction proceeds through a β,β-difluoroalkyl-Pd intermediate that typically undergoes unimolecular β-F elimination to deliver monofluorinated alkene products in a net C-F functionalization reaction. However to avoid β-F elimination, we offer the β,β-difluoroalkyl-Pd intermediate an alternate low-energy route involving β-H elimination to ultimately deliver difluorinated products in a net arylation/isomerization sequence. Overall, this reaction enables exploration of new reactivities of unstable fluorinated alkyl-metal species, while also providing new opportunities for transforming readily available fluorinated alkenes into more elaborate substructures.
Collapse
Affiliation(s)
- Kedong Yuan
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 P. R. China
| | - Taisiia Feoktistova
- Department of Chemistry, Oregon State University 153 Gilbert Hall Corvallis OR USA
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University 153 Gilbert Hall Corvallis OR USA
| | - Ryan A Altman
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
40
|
Lin X, Vigalok A, Vedernikov AN. Aryl C(sp 2)-X Coupling (X = C, N, O, Cl) and Facile Control of N-Mono- and N,N-Diarylation of Primary Alkylamines at a Pt(IV) Center. J Am Chem Soc 2020; 142:20725-20734. [PMID: 33226792 PMCID: PMC7884019 DOI: 10.1021/jacs.0c09452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We
present the first example of an unprecedented and fast aryl
C(sp2)–X reductive elimination from a series of
isolated Pt(IV) aryl complexes (Ar = p-FC6H4) LPtIVF(py)(Ar)X (X = CN, Cl, 4-OC6H4NO2) and LPtIVF2(Ar)(HX)
(X = NHAlk; Alk = n-Bu, PhCH2, cyclo-C6H11, t-Bu, cyclopropylmethyl)
bearing a bulky bidentate 2-[bis(adamant-1-yl)phosphino]phenoxide
ligand (L). The C(sp2)–X reductive elimination reactions
of all isolated Pt(IV) complexes follow first-order kinetics and were
modeled using density functional theory (DFT) calculations. When a
difluoro complex LPtIVF2(Ar)(py) is treated
with TMS–X (TMS = trimethylsilyl; X= NMe2, SPh,
OPh, CCPh) it also gives the corresponding products of the Ar–X
coupling but without observable LPtIVF(py)(Ar)X intermediates.
Remarkably, the LPtIVF2(Ar)(HX) complexes with
alkylamine ligands (HX = NH2Alk) form selectively either
mono- (ArNHAlk) or diarylated (Ar2NAlk) products in the
presence or absence of an added Et3N, respectively. This
method allows for a one-pot preparation of diarylalkylamine bearing
different aryl groups. These findings were also applied in unprecedented
mono- and di-N-arylation of amino acid derivatives (lysine and tryptophan)
under very mild conditions.
Collapse
Affiliation(s)
- Xiaoxi Lin
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Arkadi Vigalok
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrei N Vedernikov
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
41
|
Quadruple C-H activation coupled to hydrofunctionalization and C-H silylation/borylation enabled by weakly coordinated palladium catalyst. Nat Commun 2020; 11:5662. [PMID: 33168832 PMCID: PMC7652853 DOI: 10.1038/s41467-020-19508-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/16/2020] [Indexed: 12/02/2022] Open
Abstract
Unlike the well-reported 1,2-difunctionalization of alkenes that is directed by classic pyridine and imine-containing directing groups, oxo-palladacycle intermediates featuring weak Pd-O coordination have been less demonstrated in C-H activated cascade transformations. Here we report a quadruple C-H activation cascade as well as hydro-functionalization, C-H silylation/borylation sequence based on weakly coordinated palladium catalyst. The hydroxyl group modulates the intrinsic direction of the Heck reaction, and then acts as an interrupter that biases the reaction away from the classic β-H elimination and toward C-H functionalization. Mechanistically, density functional theory calculation provides important insights into the key six-membered oxo-palladacycle intermediates, and indicates that the β-H elimination is unfavorable both thermodynamically and kinetically. In this article, we focus on the versatility of this approach, which is a strategic expansion of the Heck reaction. Combining the Heck reaction with other transformations provides a powerful strategy to access diverse, complex compounds. Here, the authors report a weak coordination dominated Pd(0)-catalyzed quadruple C-H activation followed by hydro-functionalization, C-H silylation, and C-H borylation.
Collapse
|
42
|
Luo J, Tran GN, Rath NP, Mirica LM. Detection and Characterization of Mononuclear Pd(I) Complexes Supported by N2S2 and N4 Tetradentate Ligands. Inorg Chem 2020; 59:15659-15669. [PMID: 33058678 DOI: 10.1021/acs.inorgchem.0c01938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Palladium is a versatile transition metal used to catalyze a large number of chemical transformations, largely due to its ability to access various oxidation states (0, I, II, III, and IV). Among these oxidation states, Pd(I) is arguably the least studied, and while dinuclear Pd(I) complexes are more common, mononuclear Pd(I) species are very rare. Reported herein are spectroscopic studies of a series of Pd(I) intermediates generated by the chemical reduction at low temperatures of Pd(II) precursors supported by the tetradentate ligands 2,11-dithia[3.3](2,6)pyridinophane (N2S2) and N,N'-di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophane (tBuN4): [(N2S2)PdII(MeCN)]2(OTf)4 (1), [(N2S2)PdIIMe]2(OTf)2 (2), [(N2S2)PdIICl](OTf) (3), [(N2S2)PdIIX](OTf)2 (X = tBuNC 4, PPh3 5), [(N2S2)PdIIMe(PPh3)](OTf) (6), and [(tBuN4)PdIIX2](OTf)2 (X = MeCN 8, tBuNC 9). In addition, a stable Pd(I) dinuclear species, [(N2S2)PdI(μ-tBuNC)]2(ClO4)2 (7), was isolated upon the electrochemical reduction of 4 and structurally characterized. Moreover, the (tBuN4)PdI intermediates, formed from the chemical reduction of [(tBuN4)PdIIX2](OTf)2 (X = MeCN 8, tBuNC 9) complexes, were investigated by EPR spectroscopy, X-ray absorption spectroscopy (XAS), and DFT calculations and compared with the analogous (N2S2)PdI systems. Upon probing the stability of Pd(I) species under different ligand environments, it is apparent that the presence of soft ligands such as tBuNC and PPh3 significantly improves the stability of Pd(I) species, which should make the isolation of mononuclear Pd(I) species possible.
Collapse
Affiliation(s)
- Jia Luo
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Giang N Tran
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nigam P Rath
- Department of Chemistry and Biochemistry, University of Missouri, One University Boulevard, St. Louis, Missouri 63121-4400, United States
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
Mandal K, Gu Y, Westendorff KS, Li S, Pihl JA, Grabow LC, Epling WS, Paolucci C. Condition-Dependent Pd Speciation and NO Adsorption in Pd/Zeolites. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03585] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Keka Mandal
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Yuntao Gu
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Karl S. Westendorff
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Sichi Li
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Josh A. Pihl
- Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Lars C. Grabow
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - William S. Epling
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Christopher Paolucci
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
44
|
Yang W, Li Y, Zhu J, Liu W, Ke J, He C. Lewis acid-assisted Ir(iii) reductive elimination enables construction of seven-membered-ring sulfoxides. Chem Sci 2020; 11:10149-10158. [PMID: 34094278 PMCID: PMC8162422 DOI: 10.1039/d0sc04180g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Iridium has played an important role in the evolution of C-H activation chemistry over the last half century owing to its high reactivity towards stoichiometric C-H bond cleavage; however, the use of Ir(iii) complexes in catalytic C-H functionalization/C-C bond formation appears to have fallen off significantly. The main problem lies in the reductive elimination step, as iridium has a tendency to form stable and catalytically inactive Ir(iii) species. Herein, with a rationally designed Lewis acid assisted oxidatively induced strategy, the sluggish Ir(iii) reductive elimination is successfully facilitated, enabling the facile C-C bond formation. The X-ray crystal structure of a silver salt adduct of iridacycle and DFT calculations demonstrate that the sulfoxide group acts as a key bridge connecting the Ir(iii) metal centre with the silver Lewis acid, which facilitates the reductive elimination of the Ir(iii) metallacycle. Further identification of oxidants was carried out by performing stoichiometric reactions, which enables the development of catalytic construction of various highly functionalized seven-membered-ring sulfoxides, that are of great interest in medicinal chemistry and materials science.
Collapse
Affiliation(s)
- Wu Yang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong China http://faculty.sustech.edu.cn/hec/en/
| | - Yingzi Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong China http://faculty.sustech.edu.cn/hec/en/
| | - Jiefeng Zhu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong China http://faculty.sustech.edu.cn/hec/en/
| | - Wentan Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong China http://faculty.sustech.edu.cn/hec/en/
| | - Jie Ke
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong China http://faculty.sustech.edu.cn/hec/en/
| | - Chuan He
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong China http://faculty.sustech.edu.cn/hec/en/
| |
Collapse
|
45
|
Whitehurst WG, Gaunt MJ. Synthesis and Reactivity of Stable Alkyl-Pd(IV) Complexes Relevant to Monodentate N-Directed C(sp 3)-H Functionalization Processes. J Am Chem Soc 2020; 142:14169-14177. [PMID: 32697079 DOI: 10.1021/jacs.0c04732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Alkyl-Pd(IV) complexes are frequently invoked in the proposed mechanisms of Pd-catalyzed C(sp3)-H functionalization reactions, though few examples of Pd(IV) complexes containing cyclopalladated substrates have been isolated due to the instability of the high-valent Pd(IV) center. Herein, we report the synthesis of stable and isolable OCO pincer-supported alkyl-Pd(IV) complexes containing cyclopalladated alkylamine and oxime frameworks, which represent the first examples of alkyl-Pd(IV) complexes derived from the oxidation of cyclopalladated monodentate N-donor substrates. The aminoalkyl-Pd(IV) complexes reacted efficiently with O- and N-nucleophiles to afford γ-functionalized alkylamine products. A mechanistic study of the nucleophile-mediated reductive elimination was conducted using an oxime-derived Pd(IV) complex, which revealed the intermediacy of a previously unexplored anionic Pd(IV) species.
Collapse
Affiliation(s)
- William G Whitehurst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
46
|
Zhang B, Yan X, Guo S. Synthesis of Well-Defined High-Valent Palladium Complexes by Oxidation of Their Palladium(II) Precursors. Chemistry 2020; 26:9430-9444. [PMID: 32227537 DOI: 10.1002/chem.202001074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/27/2020] [Indexed: 12/24/2022]
Abstract
The last decade has witnessed the rapid development of high-valent Pd-involved organic transformations. This has also led to a steadily growing number of publications concerning the preparation of isolable and characterizable palladium(III) and palladium(IV) complexes. A variety of one-electron and two-electron oxidants have been employed to give access to high-oxidation-state Pd compounds. Undoubtedly, the study of these stoichiometric reactions has great implications for relevant Pd-mediated catalysis. In this minireview, the focus is on the synthetic approaches to structurally determined PdIII/IV complexes starting from their PdII precursors, and the advances in this research area from early 2010 to late 2019 will be highlighted. Chemical oxidations exploiting various oxidizing agents including 1) hypervalent iodine reagents; 2) halogens; 3) electrophilic fluorination reagents; 4) alkyl/aryl halides; 5) ferrocenium salts; 6) peroxides/O2 ; 7) sulfonyl chlorides; and 8) others are covered. A "greener" electrooxidation manner has also been reviewed.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, P.R. China
| | - Xuechao Yan
- Department of Chemistry, Capital Normal University, Beijing, 100048, P.R. China
| | - Shuai Guo
- Department of Chemistry, Capital Normal University, Beijing, 100048, P.R. China
| |
Collapse
|
47
|
Zhou X, Ding Y, Huang H. Palladium‐Catalyzed Carbonylative Difunctionalization of C=N Bond of Azaarenes or Imines to Quinazolinones. Chem Asian J 2020; 15:1678-1682. [DOI: 10.1002/asia.202000359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/01/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Xibing Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular SynthesisChinese Academy of SciencesUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Yongzheng Ding
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular SynthesisChinese Academy of SciencesUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular SynthesisChinese Academy of SciencesUniversity of Science and Technology of China Hefei 230026 P. R. China
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
48
|
Chen C, Hou C, Chen P, Liu G. Palladium(II)‐Catalyzed Aminotrifluoromethoxylation of Alkenes: Mechanistic Insight into the Effect of
N
‐Protecting Groups. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chaohuang Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Chuanqi Hou
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
- Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
49
|
Winter A, Schubert US. Metal‐Terpyridine Complexes in Catalytic Application – A Spotlight on the Last Decade. ChemCatChem 2020. [DOI: 10.1002/cctc.201902290] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Philosophenweg 7a 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Philosophenweg 7a 07743 Jena Germany
| |
Collapse
|
50
|
Maust MC, Croft ZL, Sullivan MW, Dove RL, Hardy EE, Brenzovich W. Aromatic substituent effects in palladium-catalyzed intramolecular olefin oxyarylation reactions. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|