1
|
Substrate-Driven Atomic Layer Deposition of High-κ Dielectrics on 2D Materials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112211052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atomic layer deposition (ALD) of high-κ dielectrics on two-dimensional (2D) materials (including graphene and transition metal dichalcogenides) still represents a challenge due to the lack of out-of-plane bonds on the pristine surfaces of 2D materials, thus making the nucleation process highly disadvantaged. The typical methods to promote the nucleation (i.e., the predeposition of seed layers or the surface activation via chemical treatments) certainly improve the ALD growth but can affect, to some extent, the electronic properties of 2D materials and the interface with high-κ dielectrics. Hence, direct ALD on 2D materials without seed and functionalization layers remains highly desirable. In this context, a crucial role can be played by the interaction with the substrate supporting the 2D membrane. In particular, metallic substrates such as copper or gold have been found to enhance the ALD nucleation of Al2O3 and HfO2 both on monolayer (1 L) graphene and MoS2. Similarly, uniform ALD growth of Al2O3 on the surface of 1 L epitaxial graphene (EG) on SiC (0001) has been ascribed to the peculiar EG/SiC interface properties. This review provides a detailed discussion of the substrate-driven ALD growth of high-κ dielectrics on 2D materials, mainly on graphene and MoS2. The nucleation mechanism and the influence of the ALD parameters (namely the ALD temperature and cycle number) on the coverage as well as the structural and electrical properties of the deposited high-κ thin films are described. Finally, the open challenges for applications are discussed.
Collapse
|
2
|
Rodríguez LM, Gómez P, Más-Montoya M, Abad J, Tárraga A, Cerdá JI, Méndez J, Curiel D. Synthesis and Two-Dimensional Chiral Surface Self-Assembly of a π-Conjugated System with Three-Fold Symmetry: Benzotri(7-Azaindole). Angew Chem Int Ed Engl 2021; 60:1782-1788. [PMID: 33146444 DOI: 10.1002/anie.202012100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 11/06/2022]
Abstract
The synthesis of a novel expanded π-conjugated system, namely benzotri(7-azaindole), BTAI, is reported. Its C3h symmetry along with the integration of six complementary donor and acceptor N-H⋅⋅⋅N hydrogen bonds in the conjugated structure promote the 2D self-assembly on Au(111) over extended areas. Besides, a perfect commensurability with the gold lattice endows the physisorbed molecular film with a remarkable stability. The structural features of BTAI result in two levels of surface chirality: Firstly, the molecules become chiral upon adsorption on the surface. Then, due to the favorable N-H⋅⋅⋅N hydrogen bond-directed self-assembly, along with the relative molecular rotation with respect to the substrate, supramolecular chirality manifests in two mirror enantiomorphous domains. Thus, the system undergoes spontaneous chiral resolution. LEED and STM assisted by theoretical simulations have been employed to characterize in detail these novel 2D conglomerates with relevant chiral properties for systems with C3h symmetry.
Collapse
Affiliation(s)
- Luis M Rodríguez
- Department of Surfaces and Coatings, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049-, Madrid, Spain
| | - Paula Gómez
- Department of Organic Chemistry, University of Murcia, Campus of Espinardo, 30100-, Murcia, Spain
| | - Miriam Más-Montoya
- Department of Organic Chemistry, University of Murcia, Campus of Espinardo, 30100-, Murcia, Spain
| | - José Abad
- Department of Applied Physics and Naval Technology, Technical University of Cartagena, Campus Muralla del Mar, 30203-, Cartagena, Spain
| | - Alberto Tárraga
- Department of Organic Chemistry, University of Murcia, Campus of Espinardo, 30100-, Murcia, Spain
| | - Jorge I Cerdá
- Department of Interfaces and Nanostructures, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049-, Madrid, Spain
| | - Javier Méndez
- Department of Surfaces and Coatings, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049-, Madrid, Spain
| | - David Curiel
- Department of Organic Chemistry, University of Murcia, Campus of Espinardo, 30100-, Murcia, Spain
| |
Collapse
|
3
|
Synthesis and Two‐Dimensional Chiral Surface Self‐Assembly of a π‐Conjugated System with Three‐Fold Symmetry: Benzotri(7‐Azaindole). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Liebl S, Werner D, Apaydin DH, Wielend D, Geistlinger K, Portenkirchner E. Perylenetetracarboxylic Diimide as Diffusion-Less Electrode Material for High-Rate Organic Na-Ion Batteries. Chemistry 2020; 26:17559-17566. [PMID: 32767398 PMCID: PMC7839514 DOI: 10.1002/chem.202003624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 01/17/2023]
Abstract
In this work 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) is investigated as electrode material for organic Na-ion batteries. Since PTCDI is a widely used industrial pigment, it may turn out to be a cost-effective, abundant, and environmentally benign cathode material for secondary Na-ion batteries. Among other carbonyl pigments, PTCDI is especially interesting due to its high Na-storage capacity in combination with remarkable high rate capabilities. The detailed analysis of cyclic voltammetry measurements reveals a diffusion-less mechanism, suggesting that Na-ion storage in the PTCDI film allows for exceptionally fast charging/discharging rates. This finding is further corroborated by galvanostatic sodiation measurements at high rates of 17 C (2.3 A g-1 ), showing that 57 % of the theoretically possible capacity of PTCDI, or 78 mAh g-1 , are attained in only 3.5 min charging time.
Collapse
Affiliation(s)
- Sebastian Liebl
- Institute of Physical ChemistryUniversity of Innsbruck6020InnsbruckAustria
| | - Daniel Werner
- Institute of Physical ChemistryUniversity of Innsbruck6020InnsbruckAustria
| | - Dogukan H. Apaydin
- Institute of Materials ChemistryVienna University of Technology1060ViennaAustria
- Linz Institute for Organic Solar Cell (LIOS)Institute of Physical ChemistryJohannes Kepler University Linz4040LinzAustria
| | - Dominik Wielend
- Linz Institute for Organic Solar Cell (LIOS)Institute of Physical ChemistryJohannes Kepler University Linz4040LinzAustria
| | - Katharina Geistlinger
- Institute for Ion Physics and Applied PhysicsUniversity of Innsbruck6020InnsbruckAustria
| | | |
Collapse
|
5
|
Whang DR. Immobilization of molecular catalysts for artificial photosynthesis. NANO CONVERGENCE 2020; 7:37. [PMID: 33252707 PMCID: PMC7704885 DOI: 10.1186/s40580-020-00248-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 05/08/2023]
Abstract
Artificial photosynthesis offers a way of producing fuels or high-value chemicals using a limitless energy source of sunlight and abundant resources such as water, CO2, and/or O2. Inspired by the strategies in natural photosynthesis, researchers have developed a number of homogeneous molecular systems for photocatalytic, photoelectrocatalytic, and electrocatalytic artificial photosynthesis. However, their photochemical instability in homogeneous solution are hurdles for scaled application in real life. Immobilization of molecular catalysts in solid supports support provides a fine blueprint to tackle this issue. This review highlights the recent developments in (i) techniques for immobilizing molecular catalysts in solid supports and (ii) catalytic water splitting, CO2 reduction, and O2 reduction with the support-immobilized molecular catalysts. Remaining challenges for molecular catalyst-based devices for artificial photosynthesis are discussed in the end of this review.
Collapse
Affiliation(s)
- Dong Ryeol Whang
- Department of Advanced Materials, Hannam University, 34054, Daejeon, Republic of Korea.
| |
Collapse
|
6
|
|
7
|
John AS, Roth MW, Firlej L, Kuchta B, Charra F, Wexler C. Self-Assembled Two-Dimensional Nanoporous Crystals as Molecular Sieves: Molecular Dynamics Studies of 1,3,5-Tristyrilbenzene-C n Superstructures. J Chem Inf Model 2020; 60:2155-2168. [PMID: 32155335 DOI: 10.1021/acs.jcim.0c00015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Due to their unique geometry complex, self-assembled nanoporous 2D molecular crystals offer a broad landscape of potential applications, ranging from adsorption and catalysis to optoelectronics, substrate processes, and future nanomachine applications. Here we report and discuss the results of extensive all-atom Molecular Dynamics (MD) investigations of self-assembled organic monolayers (SAOM) of interdigitated 1,3,5-tristyrilbenzene (TSB) molecules terminated by alkoxy peripheral chains Cn containing n carbon atoms (TSB3,5-Cn) deposited onto highly ordered pyrolytic graphite (HOPG). In vacuo structural and electronic properties of the TSB3,5-Cn molecules were initially determined using ab initio second order Møller-Plesset (MP2) calculations. The MD simulations were then used to analyze the behavior of the self-assembled superlattices, including relaxed lattice geometry (in good agreement with experimental results) and stability at ambient temperatures. We show that the intermolecular disordering of the TSB3,5-Cn monolayers arises from competition between decreased rigidity of the alkoxy chains (loss of intramolecular order) and increased stabilization with increasing chain length (afforded by interdigitation). We show that the inclusion of guest organic molecules (e.g., benzene, pyrene, coronene, hexabenzocoronene) into the nanopores (voids formed by interdigitated alkoxy chains) of the TSB3,5-Cn superlattices stabilizes the superstructure, and we highlight the importance of alkoxy chain mobility and available pore space in the dynamics of the systems and their potential application in selective adsorption.
Collapse
Affiliation(s)
- Alexander St John
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Michael W Roth
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States.,Physics Department, Waldorf University, Forest City, Iowa 50436, United States
| | - Lucyna Firlej
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States.,Laboratoire Charles Coulomb, CNRS-Université de Montpellier, 34090 Montpellier, France
| | - Bogdan Kuchta
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States.,Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.,Laboratoire MADRIEL, Aix-Marseille Université-CNRS, 13007 Marseille, France
| | - Fabrice Charra
- Service de Physique de l'État Condensé (SPEC), Université Paris Saclay, CEA CNRS UMR-3680 CEA Saclay F-91191 Gif-sur-Yvette, France
| | - Carlos Wexler
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
8
|
St John A, Roth MW, Firlej L, Kuchta B, Charra F, Wexler C. Computer modeling of 2D supramolecular nanoporous monolayers self-assembled on graphite. NANOSCALE 2019; 11:21284-21290. [PMID: 31667485 DOI: 10.1039/c9nr05710b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nano-porous two-dimensional molecular crystals, self-assembled on atomically flat host surfaces offer a broad range of possible applications, from molecular electronics to future nano-machines. Computer-assisted designing of such complex structures requires numerically intensive modeling methods. Here we present the results of extensive, fully atomistic simulations of self-assembled monolayers of interdigitated molecules of 1,3,5-tristyrilbenzene substituted by C6 alkoxy peripheral chains (TSB3,5-C6), deposited onto highly-ordered pyrolytic graphite. Structural and electronic properties of the TSB3,5-C6 molecules were determined from ab initio calculations, then used in Molecular Dynamics simulations to analyze the mechanism of formation, epitaxy, and stability of the TSB3,5-C6 nanoporous superlattice. We show that the monolayer disordering results from the competition between flexibility of the C6 chains and their stabilization by interdigitation. The inclusion of guest molecules (benzene and pyrene) into superlattice nanopores stabilizes the monolayer. The alkoxy chain mobility and available pore space defines the systems dynamics, essential for potential application.
Collapse
Affiliation(s)
- Alexander St John
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
| | - Michael W Roth
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA. and Physics Department, Waldorf University, Forest City, IA 50436, USA
| | - Lucyna Firlej
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA. and Laboratoire Charles Coulomb, CNRS-Université de Montpellier, Montpellier, France
| | - Bogdan Kuchta
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA. and Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland and Laboratoire MADRIEL, Aix-Marseille Université-CNRS, Marseille, France
| | - Fabrice Charra
- Service de Physique de l'État Condensé (SPEC), CEA CNRS UMR-3680, Université Paris Saclay, CEA Saclay F-91191 Gif-sur-Yvette, France
| | - Carlos Wexler
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
9
|
Pankova AS, Shestakov AN, Kuznetsov MA. Cyclization of ortho-ethynylbiaryls as an emerging versatile tool for the construction of polycyclic arenes. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cyclization and cycloisomerization of ortho-aryl(ethynyl)arenes provide an easy direct access to fused polycyclic aromatic carbo- and heterocycles. This methodology has demonstrated an impressive progress in the recent years. The goal of this review is to give a comprehensive outlook on the synthetic potential, scope, limitations, and mechanistic aspects of the cyclization reactions. The material is arranged according to the activation method that can be used to induce cyclization: pyrolysis, metal catalysis, electrophilic activation, radical induction, base catalysis. Particular attention is paid to the specificity of ortho-ethynylbiaryls with a heterocyclic central core.
The bibliography includes 257 references.
Collapse
|
10
|
Pigot C, Noirbent G, Bui TT, Péralta S, Gigmes D, Nechab M, Dumur F. Push-Pull Chromophores Based on the Naphthalene Scaffold: Potential Candidates for Optoelectronic Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1342. [PMID: 31022992 PMCID: PMC6515425 DOI: 10.3390/ma12081342] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 11/16/2022]
Abstract
A series of ten push-pull chromophores comprising 1H-cyclopenta[b]naphthalene-1,3(2H)-dione as the electron-withdrawing group have been designed, synthesized, and characterized by UV-visible absorption and fluorescence spectroscopy, cyclic voltammetry and theoretical calculations. The solvatochromic behavior of the different dyes has been examined in 23 solvents and a positive solvatochromism has been found for all dyes using the Kamlet-Taft solvatochromic relationship, demonstrating the polar form to be stabilized in polar solvents. To establish the interest of this polyaromatic electron acceptor only synthesizable in a multistep procedure, a comparison with the analog series based on the benchmark indane-1,3-dione (1H-indene-1,3(2H)-dione) has been done. A significant red-shift of the intramolecular charge transfer band has been found for all dyes, at a comparable electron-donating group. Parallel to the examination of the photophysical properties of the different chromophores, a major improvement of the synthetic procedure giving access to 1H-cyclopenta[b]naphthalene-1,3(2H)-dione has been achieved.
Collapse
Affiliation(s)
- Corentin Pigot
- Aix Marseille Univ, CNRS, ICR UMR7273, F-13397 Marseille, France.
| | | | - Thanh-Tuân Bui
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI), Université de Cergy Pontoise, 5 mail Gay Lussac, F-95000 Neuville-sur-Oise, France.
| | - Sébastien Péralta
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI), Université de Cergy Pontoise, 5 mail Gay Lussac, F-95000 Neuville-sur-Oise, France.
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, ICR UMR7273, F-13397 Marseille, France.
| | - Malek Nechab
- Aix Marseille Univ, CNRS, ICR UMR7273, F-13397 Marseille, France.
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR UMR7273, F-13397 Marseille, France.
| |
Collapse
|
11
|
Ren L, Wang M, Lu S, Pan L, Xiong Z, Zhang Z, Peng Q, Li Y, Yu J. Tailoring Thermal Transport Properties of Graphene Paper by Structural Engineering. Sci Rep 2019; 9:4549. [PMID: 30872590 PMCID: PMC6418276 DOI: 10.1038/s41598-018-38106-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
As a two-dimensional material, graphene has attracted increasing attention as heat dissipation material owing to its excellent thermal transport property. In this work, we fabricated sisal nanocrystalline cellulose/functionalized graphene papers (NPGs) with high thermal conductivity by vacuum-assisted self-assembly method. The papers exhibit in-plane thermal conductivity as high as 21.05 W m−1 K−1 with a thermal conductivity enhancement of 403% from the pure cellulose paper. The good thermal transport properties of NPGs are attributed to the strong hydrogen-bonding interaction between nanocrystalline cellulose and functionalized graphene and the well alignment structure of NPGs.
Collapse
Affiliation(s)
- Li Ren
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Mengjie Wang
- Key Laboratory of Marine Materials and Relater Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| | - Lulu Pan
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Zhongqiang Xiong
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Zuocai Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Qingyuan Peng
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yuqi Li
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Relater Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| |
Collapse
|
12
|
Halle J, Néel N, Kröger J. Tailoring Intercalant Assemblies at the Graphene-Metal Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2554-2560. [PMID: 30665296 DOI: 10.1021/acs.langmuir.8b03879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The influence of graphene on the assembly of intercalated material is studied using low-temperature scanning tunneling microscopy. Intercalation of Pt under monolayer graphene on Pt(111) induces a substrate reconstruction that is qualitatively different from the lattice rearrangement induced by metal deposition on Pt(111) and, specifically, the homoepitaxy of Pt. Alkali metals Cs and Li are used as intercalants for monolayer and bilayer graphene on Ru(0001). Atomically resolved topographic data reveal that at elevated alkali metal coverage (2 × 2)Cs and (1 × 1)Li intercalant structures form with respect to the graphene lattice.
Collapse
Affiliation(s)
- Johannes Halle
- Institut für Physik , Technische Universität Ilmenau , D-98693 Ilmenau , Germany
| | - Nicolas Néel
- Institut für Physik , Technische Universität Ilmenau , D-98693 Ilmenau , Germany
| | - Jörg Kröger
- Institut für Physik , Technische Universität Ilmenau , D-98693 Ilmenau , Germany
| |
Collapse
|
13
|
Mehler A, Néel N, Bocquet ML, Kröger J. Exciting vibrons in both frontier orbitals of a single hydrocarbon molecule on graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:065001. [PMID: 30523960 DOI: 10.1088/1361-648x/aaf54c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vibronic excitations in molecules are key to the fundamental understanding of the interaction between vibrational and electronic degrees of freedom. In order to probe the genuine vibronic properties of a molecule even after its adsorption on a surface appropriate buffer layers are of paramount importance. Here, vibrational progression in both molecular frontier orbitals is observed with submolecular resolution on a graphene-covered metal surface using scanning tunnelling spectroscopy. Accompanying calculations demonstrate that the vibrational modes that cause the orbital replica in the progression share the same symmetry as the electronic states they couple to. In addition, the vibrational progression is more pronounced for separated molecules than for molecules embedded in molecular assemblies. The entire vibronic spectra of these molecular species are moreover rigidly shifted with respect to each other. This work unravels intramolecular changes in the vibronic and electronic structure owing to the efficient reduction of the molecule-metal hybridization by graphene.
Collapse
Affiliation(s)
- A Mehler
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | | | | | | |
Collapse
|
14
|
Emanuelsson C, Johansson LSO, Zhang HM. Delicate interactions of PTCDI molecules on Ag/Si(111)-3×3. J Chem Phys 2018; 149:164707. [DOI: 10.1063/1.5053606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- C. Emanuelsson
- Department of Engineering and Physics, Karlstad University, SE-651 88 Karlstad, Sweden
| | - L. S. O. Johansson
- Department of Engineering and Physics, Karlstad University, SE-651 88 Karlstad, Sweden
| | - H. M. Zhang
- Department of Engineering and Physics, Karlstad University, SE-651 88 Karlstad, Sweden
| |
Collapse
|
15
|
Artaud A, Magaud L, Ratter K, Gilles B, Guisset V, David P, Martinez JI, Martin-Gago JA, Chapelier C, Coraux J. Size-Selective Carbon Clusters as Obstacles to Graphene Growth on a Metal. NANO LETTERS 2018; 18:4812-4820. [PMID: 29975539 DOI: 10.1021/acs.nanolett.8b01379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chemical vapor deposition (CVD) on metals is so far the best suited method to produce high-quality, large-area graphene. We discovered an unprecedentedly large family of small size-selective carbon clusters that form together with graphene during CVD. Using scanning tunneling microscopy (STM) and density functional theory (DFT), we unambiguously determine their atomic structure. For that purpose, we use grids based on a graphene moiré and a dilute atomic lattice that unambiguously reveal the binding geometry of the clusters. We find that the observed clusters bind in metastable configurations on the substrate, while the thermodynamically stable configurations are not observed. We argue that the clusters are formed under kinetic control and establish that the evolution of the smallest clusters is blocked. They are hence products of surface reactions in competition with graphene growth, rather than intermediary species to the formation of extended graphene, as often assumed in the literature. We expect such obstacles to the synthesis of perfect graphene to be ubiquitous on a variety of metallic surfaces.
Collapse
Affiliation(s)
- Alexandre Artaud
- Univ. Grenoble Alpes, CEA, INAC, PHELIQS , 38000 Grenoble , France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL , 38000 Grenoble , France
| | - Laurence Magaud
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL , 38000 Grenoble , France
| | - Kitti Ratter
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL , 38000 Grenoble , France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAP , 38000 Grenoble , France
| | - Bruno Gilles
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL , 38000 Grenoble , France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAP , 38000 Grenoble , France
| | - Valérie Guisset
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL , 38000 Grenoble , France
| | - Philippe David
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL , 38000 Grenoble , France
| | - Jose Ignacio Martinez
- Materials Science Factory , Instituto de Ciencia de Materiales de Madrid-CSIC , C/Sor Juana Inés de la Cruz 3 , Madrid 28049 , Spain
| | - Jose Angel Martin-Gago
- Materials Science Factory , Instituto de Ciencia de Materiales de Madrid-CSIC , C/Sor Juana Inés de la Cruz 3 , Madrid 28049 , Spain
| | - Claude Chapelier
- Univ. Grenoble Alpes, CEA, INAC, PHELIQS , 38000 Grenoble , France
| | - Johann Coraux
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL , 38000 Grenoble , France
| |
Collapse
|
16
|
Tuning the optical and electronic properties of perylene diimides through transversal core extension. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2205-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Tian T, Shih CJ. Molecular Epitaxy on Two-Dimensional Materials: The Interplay between Interactions. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02669] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tian Tian
- Institute for Chemical and
Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Chih-Jen Shih
- Institute for Chemical and
Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| |
Collapse
|
18
|
Laker ZPL, Marsden AJ, De Luca O, Pia AD, Perdigão LMA, Costantini G, Wilson NR. Monolayer-to-thin-film transition in supramolecular assemblies: the role of topological protection. NANOSCALE 2017; 9:11959-11968. [PMID: 28792033 PMCID: PMC5778949 DOI: 10.1039/c7nr03588h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
The ability to control the transition from a two-dimensional (2D) monolayer to the three-dimensional (3D) molecular structure in the growth of organic layers on surfaces is essential for the production of functional thin films and devices. This has, however, proved to be extremely challenging, starting from the currently limited ability to attain a molecular scale characterization of this transition. Here, through innovative application of low-dose electron diffraction and aberration-corrected transmission electron microscopy (acTEM), combined with scanning tunneling microscopy (STM), we reveal the structural changes occurring as film thickness is increased from monolayer to tens of nanometers for supramolecular assembly of two prototypical benzenecarboxylic acids - terephthalic acid (TPA) and trimesic acid (TMA) - on graphene. The intermolecular hydrogen bonding in these molecules is similar and both form well-ordered monolayers on graphene, but their structural transitions with film thickness are very different. While the structure of TPA thin films varies continuously towards the 3D lattice, TMA retains its planar monolayer structure up to a critical thickness, after which a transition to a polycrystalline film occurs. These distinctive structural evolutions can be rationalized in terms of the topological differences in the 3D crystallography of the two molecules. The templated 2D structure of TPA can smoothly map to its 3D structure through continuous molecular tilting within the unit cell, whilst the 3D structure of TMA is topologically distinct from its 2D form, so that only an abrupt transition is possible. The concept of topological protection of the 2D structure gives a new tool for the molecular design of nanostructured films.
Collapse
Affiliation(s)
- Zachary P L Laker
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| | - Alexander J Marsden
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK. and National Graphene Institute, School of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Oreste De Luca
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. and Dipartimento di Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Ada Della Pia
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Luís M A Perdigão
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | | | - Neil R Wilson
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
19
|
Template Effect of the Graphene Moiré Lattice on Phthalocyanine Assembly. Molecules 2017; 22:molecules22050731. [PMID: 28467367 PMCID: PMC6154495 DOI: 10.3390/molecules22050731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 11/17/2022] Open
Abstract
Superstructures of metal-free phthalocyanine (2H-Pc) molecules on graphene-covered Ir(111) have been explored by scanning tunnelling microscopy. Depending on the sub-monolayer coverage different molecular assemblies form at the surface. They reflect the transition from a graphene template effect on the 2H-Pc arrangement to molecular superstructures that are mainly governed by the intermolecular coupling.
Collapse
|
20
|
Lee EK, Park CH, Lee J, Lee HR, Yang C, Oh JH. Chemically Robust Ambipolar Organic Transistor Array Directly Patterned by Photolithography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605282. [PMID: 28054398 DOI: 10.1002/adma.201605282] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Organic ambipolar transistor arrays for chemical sensors are prepared on a flexible plastic substrate with a bottom-gate bottom-contact configuration to minimize the damage to the organic semiconductors, for the first time, using a photolithographically patternable polymer semiconductor. Well-balanced ambipolar charge transport is achieved by introducing graphene electrodes because of the reduced contact resistance and energetic barrier for electron transport.
Collapse
Affiliation(s)
- Eun Kwang Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Cheol Hee Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Junghoon Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Hae Rang Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Joon Hak Oh
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
21
|
Guo Z, Wang K, Yu P, Zhang S, Sun K, Li Z. Role of intrinsic hydrogen bonds in the assembly of perylene imide derivatives in solution and at the liquid–solid interface. Phys Chem Chem Phys 2017; 19:23007-23014. [DOI: 10.1039/c7cp04928e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The impact of hydrogen bond formation on the supramolecular assembly of two perylene imide-based derivatives was systematically investigated.
Collapse
Affiliation(s)
- Zongxia Guo
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology (QUST)
- Qingdao 266042
| | - Kun Wang
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology (QUST)
- Qingdao 266042
| | - Ping Yu
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology (QUST)
- Qingdao 266042
| | - Shengyue Zhang
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology (QUST)
- Qingdao 266042
| | - Kai Sun
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology (QUST)
- Qingdao 266042
| |
Collapse
|
22
|
Godel F, Mouafo LDN, Froehlicher G, Doudin B, Berciaud S, Henry Y, Dayen JF, Halley D. Conductance Oscillations in a Graphene/Nanocluster Hybrid Material: Toward Large-Area Single-Electron Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604837. [PMID: 27869338 DOI: 10.1002/adma.201604837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/05/2016] [Indexed: 06/06/2023]
Abstract
Large assemblies of self-organized aluminum nanoclusters embedded in an oxide layer are formed on graphene templates and used to build tunnel-junction devices. Unexpectedly, single-electron-transport behavior with well-defined Coulomb oscillations is observed for a record junction area of up to 100 µm2 containing millions of metal islands. Such graphene-metal nanocluster hybrid materials offer new prospects for single-electron electronics.
Collapse
Affiliation(s)
- Florian Godel
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, F-67034, Strasbourg Cedex 2, France
| | - Louis Donald Notemgnou Mouafo
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, F-67034, Strasbourg Cedex 2, France
| | - Guillaume Froehlicher
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, F-67034, Strasbourg Cedex 2, France
| | - Bernard Doudin
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, F-67034, Strasbourg Cedex 2, France
| | - Stéphane Berciaud
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, F-67034, Strasbourg Cedex 2, France
| | - Yves Henry
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, F-67034, Strasbourg Cedex 2, France
| | - Jean-François Dayen
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, F-67034, Strasbourg Cedex 2, France
| | - David Halley
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, F-67034, Strasbourg Cedex 2, France
| |
Collapse
|
23
|
Tobe Y, Tahara K, De Feyter S. Adaptive Building Blocks Consisting of Rigid Triangular Core and Flexible Alkoxy Chains for Self-Assembly at Liquid/Solid Interfaces. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160214] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Li J, Gottardi S, Solianyk L, Moreno-López JC, Stöhr M. 1,3,5-Benzenetribenzoic Acid on Cu(111) and Graphene/Cu(111): A Comparative STM Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:18093-18098. [PMID: 27588158 PMCID: PMC5002934 DOI: 10.1021/acs.jpcc.6b05541] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/19/2016] [Indexed: 05/30/2023]
Abstract
The self-assembly of 1,3,5-benzenetribenzoic acid (BTB) molecules on both Cu(111) and epitaxial graphene grown on Cu(111) were studied by scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) under ultrahigh vacuum conditions. On Cu(111), the BTB molecules were found to mainly arrange in close-packed structures through H-bonding between the (partially) deprotonated carboxylic acid groups. In addition, porous structures formed by intact BTB molecules-and also based on H-bonding-were observed. On graphene grown on Cu(111) the BTB molecules mainly form porous structures accompanied by small patches of disordered close-packed structures. Upon annealing, BTB adsorbed on Cu(111) is fully deprotonated and arranges in the close-packed structure while in contrast on graphene/Cu(111) the porous network is exclusively formed. This shows that the molecular self-assembly behavior is highly dependent on the first substrate layer: one graphene layer is sufficient to considerably alter the interplay of molecule substrate and intermolecular interactions in favor of the latter interactions.
Collapse
|
25
|
Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem Rev 2016; 116:5464-519. [DOI: 10.1021/acs.chemrev.5b00620] [Citation(s) in RCA: 1608] [Impact Index Per Article: 178.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Jitendra N. Tiwari
- Center
for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - K. Christian Kemp
- Center
for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Jason A. Perman
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University in Olomouc, 17 Listopadu
1192/12, 771 46 Olomouc, Czech Republic
| | - Athanasios B. Bourlinos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University in Olomouc, 17 Listopadu
1192/12, 771 46 Olomouc, Czech Republic
| | - Kwang S. Kim
- Center
for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Radek Zboril
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University in Olomouc, 17 Listopadu
1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
26
|
Jiang Y, Yang L, Guo Z, Lei S. The Assembling of Poly (3-Octyl-Thiophene) on CVD Grown Single Layer Graphene. Sci Rep 2015; 5:17720. [PMID: 26634648 PMCID: PMC4669485 DOI: 10.1038/srep17720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 11/03/2015] [Indexed: 01/06/2023] Open
Abstract
The interface between organic semiconductor and graphene electrode, especially the structure of the first few molecular layers at the interface, is crucial for the device properties such as the charge transport in organic field effect transistors. In this work, we have used scanning tunneling microscopy to investigate the poly (3-octyl-thiophene) (P3OT)-graphene interface. Our results reveal the dynamic assembling of P3OT on single layer graphene. As on other substrates the epitaxial effect plays a role in determining the orientation of the P3OT assembling, however, the inter-thiophene distance along the backbone is consistent with that optimized in vaccum, no compression was observed. Adsorption of P3OT on ripples is weaker due to local curvature, which has been verified both by scanning tunneling microscopy and density functional theory simulation. Scanning tunneling microscopy also reveals that P3OT tends to form hairpin folds when meets a ripple.
Collapse
Affiliation(s)
- Yanqiu Jiang
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Ling Yang
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Zongxia Guo
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Shengbin Lei
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| |
Collapse
|
27
|
Monazami E, Bignardi L, Rudolf P, Reinke P. Strain Lattice Imprinting in Graphene by C60 Intercalation at the Graphene/Cu Interface. NANO LETTERS 2015; 15:7421-7430. [PMID: 26426671 DOI: 10.1021/acs.nanolett.5b02851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Intercalation of C60 molecules at the graphene-substrate interface by annealing leads to amorphous and crystalline structures. A comparison of topography and electronic structure with wrinkles and moiré patterns confirms intercalation. The intercalated molecules imprint a local strain/deformation on the graphene layer whose magnitude is controlled by the intermolecular distance. The crystalline intercalated structure exhibits a superlattice peak in the local density of states. This work provides control of local strain in graphene.
Collapse
Affiliation(s)
- E Monazami
- University of Virginia , 395 McCormick Road, P.O. Box 400745, Charlottesville, Virginia 22904-4745, United States
| | - L Bignardi
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, NL-9747AG Groningen, The Netherlands
| | - P Rudolf
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, NL-9747AG Groningen, The Netherlands
| | - P Reinke
- University of Virginia , 395 McCormick Road, P.O. Box 400745, Charlottesville, Virginia 22904-4745, United States
| |
Collapse
|
28
|
Korolkov VV, Svatek SA, Summerfield A, Kerfoot J, Yang L, Taniguchi T, Watanabe K, Champness NR, Besley NA, Beton PH. van der Waals-Induced Chromatic Shifts in Hydrogen-Bonded Two-Dimensional Porphyrin Arrays on Boron Nitride. ACS NANO 2015; 9:10347-10355. [PMID: 26348583 DOI: 10.1021/acsnano.5b04443] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The fluorescence of a two-dimensional supramolecular network of 5,10,15,20-tetrakis(4-carboxylphenyl)porphyrin (TCPP) adsorbed on hexagonal boron nitride (hBN) is red-shifted due to, primarily, adsorbate-substrate van der Waals interactions. TCPP is deposited from solution on hBN and forms faceted islands with typical dimensions of 100 nm and either square or hexagonal symmetry. The molecular arrangement is stabilized by in-plane hydrogen bonding as determined by a combination of molecular-resolution atomic force microscopy performed under ambient conditions and density functional theory; a similar structure is observed on MoS2 and graphite. The fluorescence spectra of submonolayers of TCPP on hBN are red-shifted by ∼30 nm due to the distortion of the molecule arising from van der Waals interactions, in agreement with time-dependent density functional theory calculations. Fluorescence intensity variations are observed due to coherent partial reflections at the hBN interface, implying that such hybrid structures have potential in photonic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Takashi Taniguchi
- The National Institute for Materials Science, Advanced Materials Laboratory , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kenji Watanabe
- The National Institute for Materials Science, Advanced Materials Laboratory , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | | | | |
Collapse
|
29
|
Berner NC, Winters S, Backes C, Yim C, Dümbgen KC, Kaminska I, Mackowski S, Cafolla AA, Hirsch A, Duesberg GS. Understanding and optimising the packing density of perylene bisimide layers on CVD-grown graphene. NANOSCALE 2015; 7:16337-16342. [PMID: 26382882 DOI: 10.1039/c5nr04772b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The non-covalent functionalisation of graphene is an attractive strategy to alter the surface chemistry of graphene without damaging its superior electrical and mechanical properties. Using the facile method of aqueous-phase functionalisation on large-scale CVD-grown graphene, we investigated the formation of different packing densities in self-assembled monolayers (SAMs) of perylene bisimide derivatives and related this to the amount of substrate contamination. We were able to directly observe wet-chemically deposited SAMs in scanning tunnelling microscopy (STM) on transferred CVD graphene and revealed that the densely packed perylene ad-layers adsorb with the conjugated π-system of the core perpendicular to the graphene substrate. This elucidation of the non-covalent functionalisation of graphene has major implications on controlling its surface chemistry and opens new pathways for adaptable functionalisation in ambient conditions and on the large scale.
Collapse
Affiliation(s)
- Nina C Berner
- Centre for the Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yang J, Yan D, Jones TS. Molecular Template Growth and Its Applications in Organic Electronics and Optoelectronics. Chem Rev 2015; 115:5570-603. [DOI: 10.1021/acs.chemrev.5b00142] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Donghang Yan
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People’s Republic of China
| | - Tim S. Jones
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
31
|
Nguyen NN, Jo SB, Lee SK, Sin DH, Kang B, Kim HH, Lee H, Cho K. Atomically thin epitaxial template for organic crystal growth using graphene with controlled surface wettability. NANO LETTERS 2015; 15:2474-2484. [PMID: 25798655 DOI: 10.1021/nl504958e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A two-dimensional epitaxial growth template for organic semiconductors was developed using a new method for transferring clean graphene sheets onto a substrate with controlled surface wettability. The introduction of a sacrificial graphene layer between a patterned polymeric supporting layer and a monolayer graphene sheet enabled the crack-free and residue-free transfer of free-standing monolayer graphene onto arbitrary substrates. The clean graphene template clearly induced the quasi-epitaxial growth of crystalline organic semiconductors with lying-down molecular orientation while maintaining the "wetting transparency", which allowed the transmission of the interaction between organic molecules and the underlying substrate. Consequently, the growth mode and corresponding morphology of the organic semiconductors on graphene templates exhibited distinctive dependence on the substrate hydrophobicity with clear transition from lateral to vertical growth mode on hydrophilic substrates, which originated from the high surface energy of the exposed crystallographic planes of the organic semiconductors on graphene. The optical properties of the pentacene layer, especially the diffusion of the exciton, also showed a strong dependency on the corresponding morphological evolution. Furthermore, the effect of pentacene-substrate interaction was systematically investigated by gradually increasing the number of graphene layers. These results suggested that the combination of a clean graphene surface and a suitable underlying substrate could serve as an atomically thin growth template to engineer the interaction between organic molecules and aromatic graphene network, thereby paving the way for effectively and conveniently tuning the semiconductor layer morphologies in devices prepared using graphene.
Collapse
Affiliation(s)
- Nguyen Ngan Nguyen
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 790-784 Korea
| | - Sae Byeok Jo
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 790-784 Korea
| | - Seong Kyu Lee
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 790-784 Korea
| | - Dong Hun Sin
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 790-784 Korea
| | - Boseok Kang
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 790-784 Korea
| | - Hyun Ho Kim
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 790-784 Korea
| | - Hansol Lee
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 790-784 Korea
| | - Kilwon Cho
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 790-784 Korea
| |
Collapse
|
32
|
Urgel JI, Schwarz M, Garnica M, Stassen D, Bonifazi D, Ecija D, Barth JV, Auwärter W. Controlling Coordination Reactions and Assembly on a Cu(111) Supported Boron Nitride Monolayer. J Am Chem Soc 2015; 137:2420-3. [DOI: 10.1021/ja511611r] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- José I. Urgel
- Physik
Department E20, Technische Universität München, James
Franck Str. 1, D-85748 Garching, Germany
| | - Martin Schwarz
- Physik
Department E20, Technische Universität München, James
Franck Str. 1, D-85748 Garching, Germany
| | - Manuela Garnica
- Physik
Department E20, Technische Universität München, James
Franck Str. 1, D-85748 Garching, Germany
| | - Daphné Stassen
- Department
of Chemistry and Namur Research College (NARC), University of Namur (UNamur), Namur, Belgium
| | - Davide Bonifazi
- Department
of Chemistry and Namur Research College (NARC), University of Namur (UNamur), Namur, Belgium
| | - David Ecija
- Physik
Department E20, Technische Universität München, James
Franck Str. 1, D-85748 Garching, Germany
- IMDEA Nanoscience, 28049 Madrid, Spain
| | - Johannes V. Barth
- Physik
Department E20, Technische Universität München, James
Franck Str. 1, D-85748 Garching, Germany
| | - Willi Auwärter
- Physik
Department E20, Technische Universität München, James
Franck Str. 1, D-85748 Garching, Germany
| |
Collapse
|
33
|
Svatek SA, Scott OR, Rivett JP, Wright K, Baldoni M, Bichoutskaia E, Taniguchi T, Watanabe K, Marsden AJ, Wilson NR, Beton PH. Adsorbate-induced curvature and stiffening of graphene. NANO LETTERS 2015; 15:159-164. [PMID: 25469625 PMCID: PMC4326047 DOI: 10.1021/nl503308c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/10/2014] [Indexed: 05/30/2023]
Abstract
The adsorption of the alkane tetratetracontane (TTC, C44H90) on graphene induces the formation of a curved surface stabilized by a gain in adsorption energy. This effect arises from a curvature-dependent variation of a moiré pattern due to the mismatch of the carbon-carbon separation in the adsorbed molecule and the period of graphene. The effect is observed when graphene is transferred onto a deformable substrate, which in our case is the interface between water layers adsorbed on mica and an organic solvent, but is not observed on more rigid substrates such as boron nitride. Our results show that molecular adsorption can be influenced by substrate curvature, provide an example of two-dimensional molecular self-assembly on a soft, responsive interface, and demonstrate that the mechanical properties of graphene may be modified by molecular adsorption, which is of relevance to nanomechanical systems, electronics, and membrane technology.
Collapse
Affiliation(s)
- Simon A. Svatek
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Oliver R. Scott
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Jasmine P.H. Rivett
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Katherine Wright
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Matteo Baldoni
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Elena Bichoutskaia
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Takashi Taniguchi
- The National Institute for Materials Science,
Advanced Materials Laboratory, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kenji Watanabe
- The National Institute for Materials Science,
Advanced Materials Laboratory, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | - Neil R. Wilson
- Department
of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Peter H. Beton
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
34
|
Stradi D, Garnica M, Díaz C, Calleja F, Barja S, Martín N, Alcamí M, Vazquez de Parga AL, Miranda R, Martín F. Controlling the spatial arrangement of organic magnetic anions adsorbed on epitaxial graphene on Ru(0001). NANOSCALE 2014; 6:15271-15279. [PMID: 25382549 DOI: 10.1039/c4nr02917h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Achieving control over the self-organization of functional molecules on graphene is critical for the development of graphene technology in organic electronic and spintronic. Here, by using a scanning tunneling microscope (STM), we show that the electron acceptor molecule 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) and its fluorinated derivative 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyano-p-quinodimethane (F4-TCNQ), co-deposited on the surface of epitaxial graphene on Ru(0001), transform spontaneously into their corresponding magnetic anions and self-organize in two remarkably different structures. TCNQ forms densely packed linear magnetic arrays, while F4-TCNQ molecules remain as isolated non interacting magnets. With the help of density functional theory (DFT) calculations, we trace back the origin of this behavior in the competition between the intermolecular repulsion experienced by the individual charged anions, which tends to separate the molecules, and the delocalization of the electrons transferred from the surface to the molecules, which promotes the formation of molecular oligomers. Our results demonstrate that it is possible to control the spatial arrangement of organic magnetic anions co-adsorbed on a surface by means of chemical substitution, paving the way for the design of two-dimensional fully organic magnetic structures on graphene and on other surfaces.
Collapse
Affiliation(s)
- Daniele Stradi
- Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Slater AG, Perdigão LMA, Beton PH, Champness NR. Surface-based supramolecular chemistry using hydrogen bonds. Acc Chem Res 2014; 47:3417-27. [PMID: 25330179 DOI: 10.1021/ar5001378] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CONSPECTUS: The arrangement of molecular species into extended structures remains the focus of much current chemical science. The organization of molecules on surfaces using intermolecular interactions has been studied to a lesser degree than solution or solid-state systems, and unanticipated observations still lie in store. Intermolecular hydrogen bonds are an attractive tool that can be used to facilitate the self-assembly of an extended structure through the careful design of target building blocks. Our studies have focused on the use of 3,4,9,10-perylene tetracarboxylic acid diimides (PTCDIs), and related functionalized analogues, to prepare extended arrays on surfaces. These molecules are ideal for such studies because they are specifically designed to interact with appropriate diaminopyridine-functionalized molecules, and related species, through complementary hydrogen bonds. Additionally, PTCDI species can be functionalized in the bay region of the molecule, facilitating modification of the self-assembled structures that can be prepared. Through a combination of PTCDI derivatives, sometimes in combination with melamine, porous two-dimensional arrays can be formed that can entrap guest molecules. The factors that govern the self-assembly processes of PTCDI derivatives are discussed, and the ability to construct suitable target arrays and host-specific molecular species, including fullerenes and transition metal clusters, is demonstrated.
Collapse
Affiliation(s)
- Anna G. Slater
- School of Chemistry, ‡School of Physics
and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Luis M. A. Perdigão
- School of Chemistry, ‡School of Physics
and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Peter H. Beton
- School of Chemistry, ‡School of Physics
and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Neil R. Champness
- School of Chemistry, ‡School of Physics
and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
36
|
Müller F, Grandthyll S, Gsell S, Weinl M, Schreck M, Jacobs K. Graphene from fingerprints: exhausting the performance of liquid precursor deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6114-6119. [PMID: 24807530 DOI: 10.1021/la500633n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Epitaxial graphene is expected to be the only way to obtain large-area sheets of this two-dimensional material for applications on an industrial scale. So far, there are different recipes for epitaxial growth of graphene, using either intrinsic carbon, such as the selective desorption of silicon from a SiC surface, or extrinsic carbon, as via the chemical vapor deposition (CVD) of simple hydrocarbons on transition metal surfaces. In addition, even liquid precursor deposition (LPD) provides well-ordered graphene monolayers. It will be shown that graphene formation on transition metal surfaces by LPD synthesis is a very robust mechanism that even works if carbon is provided in a quite undefined way, namely by using a human fingerprint as a liquid precursor. Graphene growth from fingerprints provides well-ordered monolayers with the same quality as LPD grown graphene using ultrapure synthetic single precursors. The reliability of the self-assembly process of graphene growth on transition metals by LPD therefore offers a simple and extremely robust synthesis route for epitaxial graphene and may give access to production pathways for substrates for which the CVD method fails.
Collapse
Affiliation(s)
- Frank Müller
- Experimental Physics, Saarland University , 66123 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Meguellati A, Ahmed-Belkacem A, Yi W, Haudecoeur R, Crouillère M, Brillet R, Pawlotsky JM, Boumendjel A, Peuchmaur M. B-ring modified aurones as promising allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Eur J Med Chem 2014; 80:579-92. [DOI: 10.1016/j.ejmech.2014.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 01/21/2023]
|
38
|
Sun X, Mu Y, Zhang J, Wang X, Hu P, Wan X, Guo Z, Lei S. Tuning the Self-Assembly of Oligothiophenes on Chemical Vapor Deposition Graphene: Effect of Functional Group, Solvent, and Substrate. Chem Asian J 2014; 9:1888-94. [DOI: 10.1002/asia.201402075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 11/08/2022]
|
39
|
Zhang X, Huisman EH, Gurram M, Browne WR, van Wees BJ, Feringa BL. Supramolecular chemistry on graphene field-effect transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1735-1740. [PMID: 24515931 DOI: 10.1002/smll.201303098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/13/2013] [Indexed: 06/03/2023]
Affiliation(s)
- Xiaoyan Zhang
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Li G, Huang L, Xu W, Que Y, Zhang Y, Lu J, Du S, Liu Y, Gao HJ. Constructing molecular structures on periodic superstructure of graphene/Ru(0001). PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20130015. [PMID: 24615151 PMCID: PMC3949362 DOI: 10.1098/rsta.2013.0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We review the way to fabricate large-scale, high-quality and single crystalline graphene epitaxially grown on Ru(0001) substrate. A moiré pattern of the graphene/Ru(0001) is formed due to the lattice mismatch between graphene and Ru(0001). This superstructure gives rise to surface charge redistribution and could behave as an ordered quantum dot array, which results in a perfect template to guide the assembly of organic molecular structures. Molecules, for example iron phthalocyanine and C60, on this template show how the molecule-substrate interaction makes different superstructures. These results show the possibility of constructing ordered molecular structures on graphene/Ru(0001), which is helpful for practical applications in the future.
Collapse
Affiliation(s)
- Geng Li
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Li Huang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wenyan Xu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yande Que
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yi Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jianchen Lu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Shixuan Du
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yunqi Liu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hong-Jun Gao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
41
|
MacLeod JM, Rosei F. Molecular self-assembly on graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1038-1049. [PMID: 24155272 DOI: 10.1002/smll.201301982] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Indexed: 06/02/2023]
Abstract
The formation of ordered arrays of molecules via self-assembly is a rapid, scalable route towards the realization of nanoscale architectures with tailored properties. In recent years, graphene has emerged as an appealing substrate for molecular self-assembly in two dimensions. Here, the first five years of progress in supramolecular organization on graphene are reviewed. The self-assembly process can vary depending on the type of graphene employed: epitaxial graphene, grown in situ on a metal surface, and non-epitaxial graphene, transferred onto an arbitrary substrate, can have different effects on the final structure. On epitaxial graphene, the process is sensitive to the interaction between the graphene and the substrate on which it is grown. In the case of graphene that strongly interacts with its substrate, such as graphene/Ru(0001), the inhomogeneous adsorption landscape of the graphene moiré superlattice provides a unique opportunity for guiding molecular organization, since molecules experience spatially constrained diffusion and adsorption. On weaker-interacting epitaxial graphene films, and on non-epitaxial graphene transferred onto a host substrate, self-assembly leads to films similar to those obtained on graphite surfaces. The efficacy of a graphene layer for facilitating planar adsorption of aromatic molecules has been repeatedly demonstrated, indicating that it can be used to direct molecular adsorption, and therefore carrier transport, in a certain orientation, and suggesting that the use of transferred graphene may allow for predictible molecular self-assembly on a wide range of surfaces.
Collapse
Affiliation(s)
- J M MacLeod
- Centre Énergie Matériaux Télécommunications, Institut national de la recherche scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X 1S2, Canada
| | | |
Collapse
|
42
|
Cun H, Iannuzzi M, Hemmi A, Osterwalder J, Greber T. Implantation length and thermal stability of interstitial ar atoms in boron nitride nanotents. ACS NANO 2014; 8:1014-1021. [PMID: 24328314 DOI: 10.1021/nn405907a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hyperthermal atoms may be implanted beneath single layers of graphene or hexagonal boron nitride (h-BN) on a substrate. For the case of h-BN on rhodium, which is a corrugated honeycomb superstructure with a periodicity of 3.2 nm, Ar atoms are implanted at distinct interstitial sites within the supercell, where the h-BN is weakly bound to the substrate. These peculiar structures are reminiscent of "nanotents" with an ultimately thin "rainfly". Here we explore the implantation length (i.e., the distance the atoms move before they come to rest as interstitial defects) and the thermal stability of these atomic agglomerates above room temperature. The results are obtained by variable-temperature scanning tunneling microscopy and density functional theory calculations.
Collapse
Affiliation(s)
- Huanyao Cun
- Physik-Institut and ‡Physikalisch-Chemisches Institut, Universität Zürich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Joshi S, Bischoff F, Koitz R, Ecija D, Seufert K, Seitsonen AP, Hutter J, Diller K, Urgel JI, Sachdev H, Barth JV, Auwärter W. Control of molecular organization and energy level alignment by an electronically nanopatterned boron nitride template. ACS NANO 2014; 8:430-42. [PMID: 24328081 DOI: 10.1021/nn406024m] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Suitable templates to steer the formation of nanostructure arrays on surfaces are indispensable in nanoscience. Recently, atomically thin sp(2)-bonded layers such as graphene or boron nitride (BN) grown on metal supports have attracted considerable interest due to their potential geometric corrugation guiding the positioning of atoms, metallic clusters or molecules. Here, we demonstrate three specific functions of a geometrically smooth, but electronically corrugated, sp(2)/metal interface, namely, BN/Cu(111), qualifying it as a unique nanoscale template. As functional adsorbates we employed free-base porphine (2H-P), a prototype tetrapyrrole compound, and tetracyanoquinodimethane (TCNQ), a well-known electron acceptor. (i) The electronic moirons of the BN/Cu(111) interface trap both 2H-P and TCNQ, steering self-organized growth of arrays with extended molecular assemblies. (ii) We report an effective decoupling of the trapped molecules from the underlying metal support by the BN, which allows for a direct visualization of frontier orbitals by scanning tunneling microscopy (STM). (iii) The lateral molecular positioning in the superstructured surface determines the energetic level alignment; i.e., the energy of the frontier orbitals, and the electronic gap are tunable.
Collapse
Affiliation(s)
- Sushobhan Joshi
- Physik Department E20, Technische Universität München , James Franck Strasse 1, D-85748 Garching, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Karmel HJ, Chien T, Demers-Carpentier V, Garramone JJ, Hersam MC. Self-Assembled Two-Dimensional Heteromolecular Nanoporous Molecular Arrays on Epitaxial Graphene. J Phys Chem Lett 2014; 5:270-274. [PMID: 26270698 DOI: 10.1021/jz4025518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The development of graphene functionalization strategies that simultaneously achieve two-dimensional (2D) spatial periodicity and substrate registry is of critical importance for graphene-based nanoelectronics and related technologies. Here, we demonstrate the generation of a hydrogen-bonded molecularly thin organic heteromolecular nanoporous network on epitaxial graphene on SiC(0001) using room-temperature ultrahigh vacuum scanning tunneling microscopy. In particular, perylenetetracarboxylic diimide (PTCDI) and melamine are intermixed to form a spatially periodic 2D nanoporous network architecture with hexagonal symmetry and a lattice parameter of 3.45 ± 0.10 nm. The resulting adlayer is in registry with the underlying graphene substrate and possesses a characteristic domain size of 40-50 nm. This molecularly defined nanoporous network holds promise as a template for 2D ordered chemical modification of graphene at lengths scales relevant for graphene band structure engineering.
Collapse
|
45
|
Karmel HJ, Garramone JJ, Emery JD, Kewalramani S, Bedzyk MJ, Hersam MC. Self-assembled organic monolayers on epitaxial graphene with enhanced structural and thermal stability. Chem Commun (Camb) 2014; 50:8852-5. [DOI: 10.1039/c4cc02761b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Perylenetetracarboxylic diimide forms well-ordered self-assembled monolayers on epitaxial graphene with enhanced structural and thermal stability compared to previous perylene-based compounds.
Collapse
Affiliation(s)
- Hunter J. Karmel
- Dept. of Materials Science & Engineering
- Northwestern Univ
- Evanston, USA
| | - John J. Garramone
- Dept. of Materials Science & Engineering
- Northwestern Univ
- Evanston, USA
| | - Jonathan D. Emery
- Dept. of Materials Science & Engineering
- Northwestern Univ
- Evanston, USA
| | - Sumit Kewalramani
- Dept. of Materials Science & Engineering
- Northwestern Univ
- Evanston, USA
| | - Michael J. Bedzyk
- Dept. of Materials Science & Engineering
- Northwestern Univ
- Evanston, USA
- Dept. of Physics
- Northwestern Univ
| | - Mark C. Hersam
- Dept. of Materials Science & Engineering
- Northwestern Univ
- Evanston, USA
- Dept. of Chemistry
- Northwestern Univ
| |
Collapse
|
46
|
Llewellyn BA, Slater AG, Goretzki G, Easun TL, Sun XZ, Davies ES, Argent SP, Lewis W, Beeby A, George MW, Champness NR. Photophysics and electrochemistry of a platinum-acetylide disubstituted perylenediimide. Dalton Trans 2014; 43:85-94. [DOI: 10.1039/c3dt50874a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
47
|
Li B, Tahara K, Adisoejoso J, Vanderlinden W, Mali KS, De Gendt S, Tobe Y, De Feyter S. Self-assembled air-stable supramolecular porous networks on graphene. ACS NANO 2013; 7:10764-10772. [PMID: 24206021 DOI: 10.1021/nn4039047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Functionalization and modification of graphene at the nanometer scale is desirable for many applications. Supramolecular assembly offers an attractive approach in this regard, as many organic molecules form well-defined patterns on surfaces such as graphite via physisorption. Here we show that ordered porous supramolecular networks with different pore sizes can be readily fabricated on different graphene substrates via self-assembly of dehydrobenzo[12]annulene (DBA) derivatives at the interface between graphene and an organic liquid. Molecular resolution scanning tunneling microscopy (STM) and atomic force microscopy (AFM) investigations reveal that the extended honeycomb networks are highly flexible and that they follow the topological features of the graphene surface without any discontinuity, irrespective of the step-edges present in the substrate underneath. We also demonstrate the stability of these networks under liquid as well as ambient air conditions. The robust yet flexible DBA network adsorbed on graphene surface is a unique platform for further functionalization and modification of graphene. Identical network formation irrespective of the substrate supporting the graphene layer and the level of surface roughness illustrates the versatility of these building blocks.
Collapse
Affiliation(s)
- Bing Li
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Nogaret A. Negative differential conductance materials for flexible electronics. J Appl Polym Sci 2013. [DOI: 10.1002/app.40169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alain Nogaret
- Department of Physics; University of Bath; Claverton Down Bath BA2 7AY United Kingdom
| |
Collapse
|
49
|
Li B, Klekachev AV, Cantoro M, Huyghebaert C, Stesmans A, Asselberghs I, De Gendt S, De Feyter S. Toward tunable doping in graphene FETs by molecular self-assembled monolayers. NANOSCALE 2013; 5:9640-9644. [PMID: 23827941 DOI: 10.1039/c3nr01255g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this paper, we report the formation of self-assembled monolayers (SAMs) of oleylamine (OA) on highly oriented pyrolytic graphite (HOPG) and graphene surfaces and demonstrate the potential of using such organic SAMs to tailor the electronic properties of graphene. Molecular resolution Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) images reveal the detailed molecular ordering. The electrical measurements show that OA strongly interacts with graphene leading to n-doping effects in graphene devices. The doping levels are tunable by varying the OA deposition conditions. Importantly, neither hole nor electron mobilities are decreased by the OA modification. As a benefit from this noncovalent modification strategy, the pristine characteristics of the device are recoverable upon OA removal. From this study, one can envision the possibility to correlate the graphene-based device performance with the molecular structure and supramolecular ordering of the organic dopant.
Collapse
Affiliation(s)
- Bing Li
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Noncovalent functionalization of graphene in suspension. ISRN ORGANIC CHEMISTRY 2013; 2013:656185. [PMID: 24052867 PMCID: PMC3767447 DOI: 10.1155/2013/656185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/03/2013] [Indexed: 11/17/2022]
Abstract
Suspensions of graphene, prepared from graphite foil by sonochemical exfoliation, have been treated with new nonpolar pyrenebutyric amides. The assemblies, in suspension and after deposition on solid supports, were characterized by NMR, absorption, and fluorescence spectroscopy and by transmission electron microscopy, where the well-defined shape and size of an appended [60]fulleropyrrolidine unit facilitates TEM detection of the nonstationary molecules. The accumulated evidence, also including direct comparisons of carbon nanotubes treated with pyrene amides under the same conditions, proves the successful noncovalent functionalization of graphene suspended in non-polar solvent with non-polar pyrene derivatives.
Collapse
|