• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4599785)   Today's Articles (3767)   Subscriber (49359)
For: Preti D, Squarcialupi S, Fachinetti G. Production of HCOOH/NEt3Adducts by CO2/H2Incorporation into Neat NEt3. Angew Chem Int Ed Engl 2010;49:2581-4. [DOI: 10.1002/anie.200906054] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Number Cited by Other Article(s)
1
Bello T, Bresciani A, Nascimento C, Alves R. Thermodynamic analysis of carbon dioxide hydrogenation to formic acid and methanol. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
2
Sancho-Sanz I, Korili S, Gil A. Catalytic valorization of CO2 by hydrogenation: current status and future trends. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1968197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
3
Meng F, Zhang Q, Liu K, Zhang X. Integrated Bismuth Oxide Ultrathin Nanosheets/Carbon Foam Electrode for Highly Selective and Energy‐Efficient Electrocatalytic Conversion of CO 2 to HCOOH. Chemistry 2019;26:4013-4018. [DOI: 10.1002/chem.201903158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/27/2019] [Indexed: 11/10/2022]
4
Wu Y, Zhao Y, Wang H, Yu B, Yu X, Zhang H, Liu Z. 110th Anniversary: Ionic Liquid Promoted CO2 Hydrogenation to Free Formic Acid over Pd/C. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00654] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
5
Gunasekar GH, Jung KD, Yoon S. Hydrogenation of CO2 to Formate using a Simple, Recyclable, and Efficient Heterogeneous Catalyst. Inorg Chem 2019;58:3717-3723. [DOI: 10.1021/acs.inorgchem.8b03336] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
6
Kaiser T, Rathgeb A, Gertig C, Bardow A, Leonhard K, Jupke A. Carbon2Polymer - Conceptual Design of a CO2 -Based Process for the Production of Isocyanates. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201800029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
7
Zhao L, Lolli G, Wolf A, Mleczko L. Closing the Gap in Formic Acid Reforming. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201600732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
8
Gunasekar GH, Shin J, Jung KD, Park K, Yoon S. Design Strategy toward Recyclable and Highly Efficient Heterogeneous Catalysts for the Hydrogenation of CO2 to Formate. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00392] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
9
Wonglakhon T, Surawatanawong P. Mechanistic insights into HCO2H dehydrogenation and CO2 hydrogenation catalyzed by Ir(Cp*) containing tetrahydroxy bipyrimidine ligand: the role of sodium and proton shuttle. Dalton Trans 2018;47:17020-17031. [DOI: 10.1039/c8dt03283a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
10
Sordakis K, Tang C, Vogt LK, Junge H, Dyson PJ, Beller M, Laurenczy G. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chem Rev 2017;118:372-433. [DOI: 10.1021/acs.chemrev.7b00182] [Citation(s) in RCA: 608] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
11
Song H, Zhang N, Zhong C, Liu Z, Xiao M, Gai H. Hydrogenation of CO2into formic acid using a palladium catalyst on chitin. NEW J CHEM 2017. [DOI: 10.1039/c7nj00460e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
12
Ehnes C, Lucas M, Claus P. In-situ-Reaktionsverfolgung mittels ATR-IR-Spektroskopie bei der CO2-Hydrierung zu Ameisensäure. CHEM-ING-TECH 2016. [DOI: 10.1002/cite.201600031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
13
Gunasekar GH, Park K, Jung KD, Yoon S. Recent developments in the catalytic hydrogenation of CO2 to formic acid/formate using heterogeneous catalysts. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00231a] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
14
Ertem MZ, Himeda Y, Fujita E, Muckerman JT. Interconversion of Formic Acid and Carbon Dioxide by Proton-Responsive, Half-Sandwich Cp*IrIII Complexes: A Computational Mechanistic Investigation. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01663] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
15
Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction. Chem Rev 2015;115:12936-73. [DOI: 10.1021/acs.chemrev.5b00197] [Citation(s) in RCA: 1023] [Impact Index Per Article: 113.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
16
Wang WH, Ertem MZ, Xu S, Onishi N, Manaka Y, Suna Y, Kambayashi H, Muckerman JT, Fujita E, Himeda Y. Highly Robust Hydrogen Generation by Bioinspired Ir Complexes for Dehydrogenation of Formic Acid in Water: Experimental and Theoretical Mechanistic Investigations at Different pH. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01090] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
Zhang S, Sun J, Zhang X, Xin J, Miao Q, Wang J. Ionic liquid-based green processes for energy production. Chem Soc Rev 2015;43:7838-69. [PMID: 24553494 DOI: 10.1039/c3cs60409h] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
18
Recent Progress in Carbon Dioxide Reduction Using Homogeneous Catalysts. TOP ORGANOMETAL CHEM 2015. [DOI: 10.1007/3418_2015_109] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
19
Moret S, Dyson PJ, Laurenczy G. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nat Commun 2014;5:4017. [PMID: 24886955 PMCID: PMC4059918 DOI: 10.1038/ncomms5017] [Citation(s) in RCA: 343] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/30/2014] [Indexed: 12/25/2022]  Open
20
Wang WH, Himeda Y, Muckerman JT, Fujita E. Interconversion of CO2/H2 and Formic Acid Under Mild Conditions in Water. ADVANCES IN INORGANIC CHEMISTRY 2014. [DOI: 10.1016/b978-0-12-420221-4.00006-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
21
Cai YY, Li XH, Zhang YN, Wei X, Wang KX, Chen JS. Highly Efficient Dehydrogenation of Formic Acid over a Palladium-Nanoparticle-Based Mott-Schottky Photocatalyst. Angew Chem Int Ed Engl 2013;52:11822-5. [DOI: 10.1002/anie.201304652] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Indexed: 11/11/2022]
22
Cai YY, Li XH, Zhang YN, Wei X, Wang KX, Chen JS. Highly Efficient Dehydrogenation of Formic Acid over a Palladium-Nanoparticle-Based Mott-Schottky Photocatalyst. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304652] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
23
He M, Sun Y, Han B. Grüne Kohlenstoffwissenschaft: eine wissenschaftliche Grundlage für das Verknüpfen von Verarbeitung, Nutzung und Recycling der Kohlenstoffressourcen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209384] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
24
He M, Sun Y, Han B. Green Carbon Science: Scientific Basis for Integrating Carbon Resource Processing, Utilization, and Recycling. Angew Chem Int Ed Engl 2013;52:9620-33. [DOI: 10.1002/anie.201209384] [Citation(s) in RCA: 627] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Indexed: 11/09/2022]
25
Stratakis M, Garcia H. Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 2012;112:4469-506. [PMID: 22690711 DOI: 10.1021/cr3000785] [Citation(s) in RCA: 546] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
26
Preti D, Squarcialupi S, Fachinetti G. Conversion of Syngas into Formic Acid. ChemCatChem 2012. [DOI: 10.1002/cctc.201200046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
27
Preti D, Resta C, Squarcialupi S, Fachinetti G. Carbon Dioxide Hydrogenation to Formic Acid by Using a Heterogeneous Gold Catalyst. Angew Chem Int Ed Engl 2011;50:12551-4. [DOI: 10.1002/anie.201105481] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Indexed: 11/12/2022]
28
Preti D, Resta C, Squarcialupi S, Fachinetti G. Carbon Dioxide Hydrogenation to Formic Acid by Using a Heterogeneous Gold Catalyst. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201105481] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
29
Schaub T, Paciello RA. Ein Verfahren zur Herstellung von Ameisensäure durch CO2-Hydrierung: Thermodynamik und die Rolle von CO. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101292] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
30
Himeda Y, Miyazawa S, Hirose T. Interconversion between formic acid and H(2)/CO(2) using rhodium and ruthenium catalysts for CO(2) fixation and H(2) storage. CHEMSUSCHEM 2011;4:487-493. [PMID: 21271682 DOI: 10.1002/cssc.201000327] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/06/2010] [Indexed: 05/30/2023]
31
Boddien A, Gärtner F, Jackstell R, Junge H, Spannenberg A, Baumann W, Ludwig R, Beller M. ortho-Metalation of Iron(0) Tribenzylphosphine Complexes: Homogeneous Catalysts for the Generation of Hydrogen from Formic Acid. Angew Chem Int Ed Engl 2010;49:8993-6. [DOI: 10.1002/anie.201004621] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
32
Boddien A, Gärtner F, Jackstell R, Junge H, Spannenberg A, Baumann W, Ludwig R, Beller M. Orthometallierung in Eisen(0)-Tribenzylphosphan-Komplexen: aktivere Homogenkatalysatoren für die Wasserstofferzeugung aus Ameisensäure. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201004621] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA