1
|
Kulkarni AM, Gayam PKR, Baby BT, Aranjani JM. Epithelial-Mesenchymal Transition in Cancer: A Focus on Itraconazole, a Hedgehog Inhibitor. Biochim Biophys Acta Rev Cancer 2025; 1880:189279. [PMID: 39938662 DOI: 10.1016/j.bbcan.2025.189279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Cancer, and the resulting mortality from it, is an ever-increasing concern in global health. Cancer mortality stems from the metastatic progression of the disease, by dissemination of the tumor cells. Epithelial-Mesenchymal Transition, the major hypothesis purported to be the origin of metastasis, confers mesenchymal phenotype to epithelial cells in a variety of contexts, physiological and pathological. EMT in cancer leads to rise of cancer-stem-like cells, drug resistance, relapse, and progression of malignancy. Inhibition of EMT could potentially attenuate the mortality. While novel molecules for inhibiting EMT are underway, repurposing drugs is also being considered as a viable strategy. In this review, Itraconazole is focused upon, as a repurposed molecule to mitigate EMT. Itraconazole is known to inhibit Hedgehog signaling, and light is shed upon the existing evidence, as well as the questions remaining to be answered.
Collapse
Affiliation(s)
- Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Beena Thazhackavayal Baby
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| |
Collapse
|
2
|
Kiyama R, Wada-Kiyama Y. Estrogenic actions of alkaloids: Structural characteristics and molecular mechanisms. Biochem Pharmacol 2025; 232:116645. [PMID: 39577707 DOI: 10.1016/j.bcp.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
This comprehensive review of estrogenic alkaloids reveals that although the number is small, they exhibit a wide range of structures, biosynthesis pathways, mechanisms of action, and applications. Estrogenic alkaloids belong to different classes, different biosynthetic pathways, different estrogenic actions (estrogenic/synergistic, anti-estrogenic/antagonistic, biphasic, and acting as a selective estrogen receptor modulator or SERM), different receptor-initiated signaling pathways, different ways of modulations of estrogen action, and different applications. The future applications of estrogenic alkaloids, such as those for diagnostics, drug development, and therapeutics, are considered with the help of new databases containing comprehensive descriptions of their relationships and more elaborate artificial intelligence-based prediction technologies. Structure-activity studies reveal the significance of the nitrogen atom for their structural and functional diversity, which may help support their broader applications. Based on the summary of previous reports, estrogenic alkaloids have significant potential for future applications.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Dept. of Life Science, Faculty of Life Science, Kyushu Sangyo Univ. 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
3
|
Zott MD, Zuschlag DW, Trauner DH. Concise Synthesis of (-)-Veratramine and (-)-20- iso-Veratramine via Aromative Diels-Alder Reaction. J Am Chem Soc 2025; 147:3010-3016. [PMID: 39811914 DOI: 10.1021/jacs.4c16495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A concise and convergent synthesis of the isosteroidal alkaloids veratramine and 20-iso-veratramine has been accomplished. A Horner-Wadsworth-Emmons olefination joins two chiral building blocks of approximately equal complexity and a transition-metal catalyzed intramolecular Diels-Alder cycloaddition-aromatization cascade constructs the tetrasubstituted arene. Other key steps include a highly diastereoselective crotylation of an N-sulfonyl iminium ion and an Eschenmoser fragmentation. The chiral building blocks developed for this synthesis could be used to access a range of additional isosteroidal alkaloids using our diversifiable strategy. Our work shows that 20-iso-veratramine is not identical with a natural product proposed to have that structure. The single crystal X-ray structures of veratramine and 20-iso-veratramine are reported.
Collapse
Affiliation(s)
- Michael D Zott
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel W Zuschlag
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dirk H Trauner
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Wei Y, Zhang S, Shao F, Sun Y. Ankylosing spondylitis: From pathogenesis to therapy. Int Immunopharmacol 2025; 145:113709. [PMID: 39644789 DOI: 10.1016/j.intimp.2024.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Ankylosing spondylitis (AS) is an autoimmune rheumatic disease that primarily affects the axial joints, with its etiology complex and still not fully understood. The unknown pathogenesis of AS limits the development of treatment strategies, so keeping up-to-date with the current research on AS can help in searching for potential therapeutic targets. In addition to the classic HLA-B27 genetic susceptibility and Th17-related inflammatory signals, increasing research is focusing on the influence of autoantigen-centered autoimmune responses and bone stromal cells on the onset of AS. Autoantigens derived from gut microbiota and preferential TCR both exacerbate the autoimmune response in patients with AS. Furthermore, dysregulated bone metabolism also promotes pathological new bone formation in AS. Current treatments approved for AS almost focus on the management of inflammation with inconsistent treatment results due to the heterogeneity of patients. In this review, we systematically summarized various pathogenesis and management of AS, meanwhile discussed the underlying risk factors and potential therapeutic targets.
Collapse
Affiliation(s)
- Yuxiao Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Shuqiong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Fenli Shao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
5
|
Zhu D, Pan Y, Yang Y, Wang S. Regulation of the Cilia as a Potential Treatment for Senescence and Tumors: A Review. J Cell Physiol 2025; 240:e31499. [PMID: 39660388 DOI: 10.1002/jcp.31499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Millions of people worldwide die from malignant tumors every year, and the current clinical treatment is still based on radiotherapy and chemotherapy. Immunotherapy-adjuvant chemotherapy is widely applied, yet resistance to various factors persists in the management of advanced malignancies. Recently researchers have gradually discovered that the integrity of primary cilia is closely related to many diseases. The phenotypic changes in primary cilia are found in some cases of progeria, tumorigenesis, and drug resistance. Primary cilia seem to mediate signaling during these diseases. Hedgehog inhibitors have emerged in recent years to treat tumors by controlling signaling proteins on primary cilia. There is evidence for the use of anti-tumor drugs to treat senescence-related disease. Considering the close relationship between aging and obesity, as well as the obesity is the phenotype of many ciliopathies. Therefore, we speculate that some anti-tumor or anti-aging drugs can treat ciliopathies. Additionally, there is evidence suggesting that anti-aging drugs for tumor treatment, in which the process may be mediated by cilia. This review elucidates for the first time that cilia may be involved in the regulation of senescence, metabolic, tumorigenesis, and tumor resistance and hypothesizes that cilia can be regulated to treat these diseases in the future.
Collapse
Affiliation(s)
- Danping Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shukui Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Yao Y, Liu Y, Lu B, Ji G, Wang L, Dong K, Zhao Z, Lyu D, Wei M, Tu S, Lyu X, Li Y, Huang R, Zhou W, Xu G, Pan X, Cui X. Construction and validation of a regulatory T cells-based classification of renal cell carcinoma: an integrated bioinformatic analysis and clinical cohort study. Cell Oncol (Dordr) 2024:10.1007/s13402-024-01030-9. [PMID: 39714755 DOI: 10.1007/s13402-024-01030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 12/24/2024] Open
Abstract
PURPOSE Renal cell carcinoma (RCC), exhibiting remarkable heterogeneity, can be highly infiltrated by regulatory T cells (Tregs). However, the relationship between Treg and the heterogeneity of RCC remains to be explored. METHODS We acquired single-cell RNA-seq profiles and 537 bulk RNA-seq profiles of TCGA-KIRC cohort. Through clustering, monocle2 pseudotime and prognostic analyses, we identified Treg states-related prognostic genes (TSRPGs), then constructing the RCC Treg states-related prognostic classification (RCC-TSC). We also explored its prognostic significance and multi-omics landmarks. Additionally, we utilized correlation analysis to establish regulatory networks, and predicted candidate inhibitors. More importantly, in Xinhua cohort of 370 patients with kidney neoplasm, we used immunohistochemical (IHC) staining for classification, then employing statistical analyses including Chi-square tests and multivariate Cox proportional hazards regression analysis to explore its clinical relevance. RESULTS We defined 44 TSRPGs in four different monocle states, and identified high immune infiltration RCC (HIRC, LAG3+, Mki67+) as the highly exhausted subtype with the worst prognosis in RCC-TSC (p < 0.001). BATF-LAG3-immune cells axis might be its underlying metastasis-related mechanism. Immunotherapy and inhibitors including sunitinib potentially conferred best therapeutic effects for HIRC. Furthermore, we successfully validated HIRC subtype as an independent prognostic factor within the Xinhua cohort (OS, HR = 16.68, 95% CI = 1.88-148.1, p = 0.011; PFS, HR = 4.43, 95% CI = 1.55-12.6, p = 0.005). CONCLUSION Through integrated bioinformatics analysis and a large-sample retrospective clinical study, we successfully established RCC-TSC and a diagnostic kit, which could stratify RCC patients with different prognosis and to guide personalized treatment.
Collapse
Affiliation(s)
- Yuntao Yao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guo Ji
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Keqin Dong
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zihui Zhao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Donghao Lyu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Maodong Wei
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Siqi Tu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xukun Lyu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuanan Li
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Guofeng Xu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
7
|
Kumar RN, Lee S. Hypervalent Iodine-Mediated Synthesis of Steroidal 5/5-Spiroiminals. Molecules 2024; 29:5812. [PMID: 39683969 DOI: 10.3390/molecules29235812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The hypervalent iodine-mediated formation of steroidal 5/5-spiroiminals and 5/5-spiroaminals from steroidal amines is presented. Under the influence of excess PhI(OAc)2 and iodine in acetonitrile at 0 °C, steroidal amines smoothly underwent cyclization to give a mixture of 5/5-spiroiminals and 5/5-spiroaminals. This reaction represents the first example of a C-H-activation-mediated formation of a spiroiminal. Presumably, the formation of 5/5-spiroiminals occurs through aminyl radical-mediated cyclization followed by amine-to-imine oxidation.
Collapse
Affiliation(s)
- Rayala Naveen Kumar
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Seongmin Lee
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Hu Y, Peng L, Zhuo X, Yang C, Zhang Y. Hedgehog Signaling Pathway in Fibrosis and Targeted Therapies. Biomolecules 2024; 14:1485. [PMID: 39766192 PMCID: PMC11727624 DOI: 10.3390/biom14121485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025] Open
Abstract
Hedgehog (Hh) signaling is a well-established developmental pathway; it is crucial for early embryogenesis, cell differentiation, and damage-driven regeneration. It is being increasingly recognized that dysregulated Hh signaling is also involved in fibrotic diseases, which are characterized by excessive extracellular matrix deposition that compromises tissue architecture and function. As in-depth insights into the mechanisms of Hh signaling are obtained, its complex involvement in fibrosis is gradually being illuminated. Notably, some Hh-targeted inhibitors are currently under exploration in preclinical and clinical trials as a means to prevent fibrosis progression. In this review, we provide a concise overview of the biological mechanisms involved in Hh signaling. We summarize the latest advances in our understanding of the roles of Hh signaling in fibrogenesis across the liver, kidneys, airways, and lungs, as well as other tissues and organs, with an emphasis on both the shared features and, more critically, the distinct functional variations observed across these tissues and organs. We thus highlight the context dependence of Hh signaling, as well as discuss the current status and the challenges of Hh-targeted therapies for fibrosis.
Collapse
Affiliation(s)
- Yuchen Hu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.H.); (L.P.); (X.Z.)
- Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linrui Peng
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.H.); (L.P.); (X.Z.)
- Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Zhuo
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.H.); (L.P.); (X.Z.)
- Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chan Yang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.H.); (L.P.); (X.Z.)
- Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Kim K, Bansal PD, Shukla D. Cyclopamine modulates smoothened receptor activity in a binding position dependent manner. Commun Biol 2024; 7:1207. [PMID: 39342033 PMCID: PMC11438977 DOI: 10.1038/s42003-024-06906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Cyclopamine, a natural alkaloid, can act as an agonist when it binds to the Cysteine-Rich Domain (CRD) of Smoothened receptor and as an antagonist when it binds to the Transmembrane Domain (TMD). To study the effect of cyclopamine binding to each site experimentally, mutations in the other site are required. Hence, simulations are critical for understanding the WT activity due to binding at different sites. Using multi-milliseconds long aggregate MD simulations combined with Markov state models and machine learning, we explore the dynamic behavior of cyclopamine's interactions with different domains of WT SMO. A higher population of the active state at equilibrium, a lower free energy barrier of ~2 kcal/mol, and expansion of hydrophobic tunnel to facilitate cholesterol transport agrees with cyclopamine's agonistic behavior when bound to CRD. A higher population of the inactive state at equilibrium, a higher free energy barrier of ~4 kcal/mol and restricted hydrophobic tunnel shows cyclopamine's antagonistic behavior when bound to TMD. With cyclopamine bound to both sites, there is a slightly larger inactive population at equilibrium and an increased free energy barrier (~3.5 kcal/mol) exhibiting an overall weak antagonistic effect. These findings show cyclopamine's domain-specific modulation of SMO regulates Hedgehog signaling and cholesterol transport.
Collapse
Affiliation(s)
- Kihong Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Prateek D Bansal
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
10
|
Huang L, Liang S, Luo L, Wu M, Fu H, Zhong Z. Transcriptomic analysis reveals effects of fertilization towards growth and quality of Fritillariae thunbergii bulbus. PLoS One 2024; 19:e0309978. [PMID: 39302908 DOI: 10.1371/journal.pone.0309978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/17/2024] [Indexed: 09/22/2024] Open
Abstract
Fritillariae thunbergii Bulbus (FTB) is a traditional Chinese medicine that has been widely cultivated for its expectorant, antitussive, antiasthmatic, antiviral, and anticancer properties. The yield and quality of F. thunbergii are influenced by cultivation conditions, such as the use of fertilizers. However, the optimal type of fertilizers for maximum quality and yield and underlying mechanisms are not clear. We collected F. thunbergii using raw chicken manure (RC), organic fertilizer (OF), and plant ash (PA) as the base fertilizer in Pan'an County, Jinhua City, Zhejiang Province as experimental materials. The combined results of HPLC-ELSD detection and yield statistics showed that the F. thunbergii with OF application was the best, with the content of peimine and peiminine reaching 0.0603% and 0.0502%, respectively. In addition, the yield was 2.70 kg/m2. Transcriptome analysis indicated that up-regulation of the ABA signaling pathway might promote bulb yield. Furthermore, putative key genes responsible for steroidal alkaloid accumulation were identified. These results provided guiding significance for the rational fertilization conditions of F. thunbergii as well as the basis for the exploration of functional genes related to the alkaloid biosynthesis pathway.
Collapse
Affiliation(s)
- Luman Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Shuang Liang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Lei Luo
- Zhejiang Institute for Food and Drug Control, Hangzhou, P.R. China
| | - Mengmin Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Hongwei Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| |
Collapse
|
11
|
Romero-Hernández LL, Ahuja-Casarín AI, Merino-Montiel P, Montiel-Smith S, Vega-Báez JL, Sandoval-Ramírez J. Syntheses and medicinal chemistry of spiro heterocyclic steroids. Beilstein J Org Chem 2024; 20:1713-1745. [PMID: 39076294 PMCID: PMC11285062 DOI: 10.3762/bjoc.20.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
There is compelling evidence that incorporating a heterocyclic moiety into a steroid can alter its pharmacological and pharmacokinetic properties, driving intense interest in the synthesis of such hybrids among research groups. In this review, we present an overview of recent synthetic methodologies, spanning the period from 2000 to 2023, for the preparation of spiro heterocyclic steroids. The compounds surveyed encompass four-, five-, six-, and seven-membered heterocycles appended to various positions of steroidal backbones, with spirocycles containing oxygen, nitrogen, and sulfur atoms being predominant. The outlined synthetic procedures emphasize the pivotal steps for constructing the heterocycles, often accompanied by a detailed account of the overall synthesis pathway. The review encompasses innovative compounds, including bis-steroids linked by a spiro heterocycle and steroids conjugated to heterocyclic moieties containing three or more (hetero)cycles. Moreover, many compounds are accompanied by data on their biological activities, such as antiproliferative, antimalarial, antimicrobial, antifungal, steroid antagonist, and enzyme inhibition, among others, aimed at furnishing pertinent insights for the future design of more potent and selective drugs.
Collapse
Affiliation(s)
- Laura L Romero-Hernández
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570, Puebla, Pue., México
| | - Ana Isabel Ahuja-Casarín
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570, Puebla, Pue., México
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570, Puebla, Pue., México
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570, Puebla, Pue., México
| | - José Luis Vega-Báez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570, Puebla, Pue., México
| | - Jesús Sandoval-Ramírez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570, Puebla, Pue., México
| |
Collapse
|
12
|
Hou W, Lin H, Wu Y, Li C, Chen J, Liu XY, Qin Y. Divergent and gram-scale syntheses of (-)-veratramine and (-)-cyclopamine. Nat Commun 2024; 15:5332. [PMID: 38909052 PMCID: PMC11193734 DOI: 10.1038/s41467-024-49748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
Veratramine and cyclopamine, two of the most representative members of the isosteroidal alkaloids, are valuable molecules in agricultural and medicinal chemistry. While plant extraction of these compounds suffers from uncertain supply, efficient chemical synthesis approaches are in high demand. Here, we present concise, divergent, and scalable syntheses of veratramine and cyclopamine with 11% and 6.2% overall yield, respectively, from inexpensive dehydro-epi-androsterone. Our synthesis readily provides gram quantities of both target natural products by utilizing a biomimetic rearrangement to form the C-nor-D-homo steroid core and a stereoselective reductive coupling/(bis-)cyclization sequence to establish the (E)/F-ring moiety.
Collapse
Affiliation(s)
- Wenlong Hou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hao Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yanru Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Chuang Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jiajun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xiao-Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Kim K, Bansal PD, Shukla D. Binding Position Dependent Modulation of Smoothened Activity by Cyclopamine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579369. [PMID: 38405881 PMCID: PMC10888922 DOI: 10.1101/2024.02.08.579369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Cyclopamine is a natural alkaloid that is known to act as an agonist when it binds to the Cysteine Rich Domain (CRD) of the Smoothened receptor and as an antagonist when it binds to the Transmembrane Domain (TMD). To study the effect of cyclopamine binding to each binding site experimentally, mutations in the other site are required. Hence, simulations are critical for understanding the WT activity due to binding at different sites. Additionally, there is a possibility that cyclopamine could bind to both sites simultaneously especially at high concentration, the implications of which remain unknown. We performed three independent sets of simulations to observe the receptor activation with cyclopamine bound to each site independently (CRD, TMD) and bound to both sites simultaneously. Using multi-milliseconds long aggregate MD simulations combined with Markov state models and machine learning, we explored the dynamic behavior of cyclopamine's interactions with different domains of WT SMO. A higher population of the active state at equilibrium, a lower activation free energy barrier of ~ 2 kcal/mol, and expansion of the hydrophobic tunnel to facilitate cholesterol transport agrees with the cyclopamine's agonistic behavior when bound to the CRD of SMO. A higher population of the inactive state at equilibrium, a higher free energy barrier of ~ 4 kcal/mol and restricted the hydrophobic tunnel to impede cholesterol transport showed cyclopamine's antagonistic behavior when bound to TMD. With cyclopamine bound to both sites, there was a slightly larger inactive population at equilibrium and an increased free energy barrier (~ 3.5 kcal/mol). The tunnel was slightly larger than when solely bound to TMD, and showed a balance between agonism and antagonism with respect to residue movements exhibiting an overall weak antagonistic effect.
Collapse
Affiliation(s)
- Kihong Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Prateek D Bansal
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| |
Collapse
|
14
|
Joseph AM, Al Aiyan A, Al-Ramadi B, Singh SK, Kishore U. Innate and adaptive immune-directed tumour microenvironment in pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1323198. [PMID: 38384463 PMCID: PMC10879611 DOI: 10.3389/fimmu.2024.1323198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
One of the most deadly and aggressive cancers in the world, pancreatic ductal adenocarcinoma (PDAC), typically manifests at an advanced stage. PDAC is becoming more common, and by the year 2030, it is expected to overtake lung cancer as the second greatest cause of cancer-related death. The poor prognosis can be attributed to a number of factors, including difficulties in early identification, a poor probability of curative radical resection, limited response to chemotherapy and radiotherapy, and its immunotherapy resistance. Furthermore, an extensive desmoplastic stroma that surrounds PDAC forms a mechanical barrier that prevents vascularization and promotes poor immune cell penetration. Phenotypic heterogeneity, drug resistance, and immunosuppressive tumor microenvironment are the main causes of PDAC aggressiveness. There is a complex and dynamic interaction between tumor cells in PDAC with stromal cells within the tumour immune microenvironment. The immune suppressive microenvironment that promotes PDAC aggressiveness is contributed by a range of cellular and humoral factors, which itself are modulated by the cancer. In this review, we describe the role of innate and adaptive immune cells, complex tumor microenvironment in PDAC, humoral factors, innate immune-mediated therapeutic advances, and recent clinical trials in PDAC.
Collapse
Affiliation(s)
- Ann Mary Joseph
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shiv K. Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, Goettingen, Germany
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
15
|
Jin Y, Hok S, Bacsa J, Dai M. Convergent and Efficient Total Synthesis of (+)-Heilonine Enabled by C-H Functionalizations. J Am Chem Soc 2024; 146:1825-1831. [PMID: 38226869 PMCID: PMC10811669 DOI: 10.1021/jacs.3c13492] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
We report a convergent and efficient total synthesis of the C-nor D-homo steroidal alkaloid (+)-heilonine with a hexacyclic ring system, nine stereocenters, and a trans-hydrindane moiety. Our synthesis features four selective C-H functionalizations to form key C-C bonds and stereocenters, a Stille carbonylative cross-coupling to connect the AB ring system with the DEF ring system, and a Nazarov cyclization to construct the five-membered C ring. These enabling transformations significantly reduced functional group manipulations and delivered (+)-heilonine in 11 or 13 longest linear sequence (LLS) steps.
Collapse
Affiliation(s)
- Yuan Jin
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sovanneary Hok
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mingji Dai
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia 30322, United States
| |
Collapse
|
16
|
Sofiadis M, Xu D, Rodriguez AJ, Nissl B, Clementson S, Petersen NN, Baran PS. Convergent Total Synthesis of (-)-Cyclopamine. J Am Chem Soc 2023; 145:21760-21765. [PMID: 37782691 PMCID: PMC10696607 DOI: 10.1021/jacs.3c09085] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
A concise and enantioselective total synthesis of the Veratrum alkaloid cyclopamine is disclosed. This highly convergent synthesis with a 16-step longest linear sequence (LLS) was enabled by a de novo synthesis of the trans-6,5-heterobicycle via a strain-inducing halocyclization process, a key Tsuji-Trost cyclization to construct the fully substituted, spirocyclic THF motif with exquisite diastereocontrol, and a late-stage ring-closing metathesis (RCM) reaction to forge the central tetrasubstituted olefin.
Collapse
Affiliation(s)
- Manolis Sofiadis
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Dongmin Xu
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Anthony J. Rodriguez
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Benedikt Nissl
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | | | | | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| |
Collapse
|
17
|
Wang X, Zhang H, Chen X, Wu C, Ding K, Sun G, Luo Y, Xiang D. Overcoming tumor microenvironment obstacles: Current approaches for boosting nanodrug delivery. Acta Biomater 2023; 166:42-68. [PMID: 37257574 DOI: 10.1016/j.actbio.2023.05.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
In order to achieve targeted delivery of anticancer drugs, efficacy improvement, and side effect reduction, various types of nanoparticles are employed. However, their therapeutic effects are not ideal. This phenomenon is caused by tumor microenvironment abnormalities such as abnormal blood vessels, elevated interstitial fluid pressure, and dense extracellular matrix that affect nanoparticle penetration into the tumor's interstitium. Furthermore, nanoparticle properties including size, charge, and shape affect nanoparticle transport into tumors. This review comprehensively goes over the factors hindering nanoparticle penetration into tumors and describes methods for improving nanoparticle distribution by remodeling the tumor microenvironment and optimizing nanoparticle physicochemical properties. Finally, a critical analysis of future development of nanodrug delivery in oncology is further discussed. STATEMENT OF SIGNIFICANCE: This article reviews the factors that hinder the distribution of nanoparticles in tumors, and describes existing methods and approaches for improving the tumor accumulation from the aspects of remodeling the tumor microenvironment and optimizing the properties of nanoparticles. The description of the existing methods and approaches is followed by highlighting their advantages and disadvantages and put forward possible directions for the future researches. At last, the challenges of improving tumor accumulation in nanomedicines design were also discussed. This review will be of great interest to the broad readers who are committed to delivering nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Xiaohui Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Hong Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Xiaohui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chunrong Wu
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Ke Ding
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Guiyin Sun
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China.
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Debing Xiang
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China.
| |
Collapse
|
18
|
Bansal PD, Dutta S, Shukla D. Activation mechanism of the human Smoothened receptor. Biophys J 2023; 122:1400-1413. [PMID: 36883002 PMCID: PMC10111369 DOI: 10.1016/j.bpj.2023.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/17/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Smoothened (SMO) is a membrane protein of the class F subfamily of G protein-coupled receptors (GPCRs) and maintains homeostasis of cellular differentiation. SMO undergoes conformational change during activation, transmitting the signal across the membrane, making it amenable to bind to its intracellular signaling partner. Receptor activation has been studied at length for class A receptors, but the mechanism of class F receptor activation remains unknown. Agonists and antagonists bound to SMO at sites in the transmembrane domain (TMD) and the cysteine-rich domain have been characterized, giving a static view of the various conformations SMO adopts. Although the structures of the inactive and active SMO outline the residue-level transitions, a kinetic view of the overall activation process remains unexplored for class F receptors. We describe SMO's activation process in atomistic detail by performing 300 μs of molecular dynamics simulations and combining it with Markov state model theory. A molecular switch, conserved across class F and analogous to the activation-mediating D-R-Y motif in class A receptors, is observed to break during activation. We also show that this transition occurs in a stage-wise movement of the transmembrane helices: TM6 first, followed by TM5. To see how modulators affect SMO activity, we simulated agonist and antagonist-bound SMO. We observed that agonist-bound SMO has an expanded hydrophobic tunnel in SMO's core TMD, whereas antagonist-bound SMO shrinks this tunnel, further supporting the hypothesis that cholesterol travels through a tunnel inside Smoothened to activate it. In summary, this study elucidates the distinct activation mechanism of class F GPCRs and shows that SMO's activation process rearranges the core TMD to open a hydrophobic conduit for cholesterol transport.
Collapse
Affiliation(s)
- Prateek D Bansal
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Soumajit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
19
|
Current understanding of passive and active targeting nanomedicines to enhance tumor accumulation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Chianese G, Lopatriello A, Sirignano C, Andreani A, Gambini A, De Combarieu E, Stornaiuolo M, Taglialatela-Scafati O. Hydroxylated Cyclopamine Analogues from Veratrum californicum and Their Hedgehog Pathway Inhibiting Activity. Bioorg Med Chem 2023; 84:117265. [PMID: 37001245 DOI: 10.1016/j.bmc.2023.117265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Cyclopamine (1), the teratogenic steroidal alkaloid isolated from corn lily (Veratrum californicum), has recently gained renewed interest due to its anticancer potential, that has been translated into the FDA approval of three Hedgehog (Hh) pathway inhibiting antitumor drugs. A chemical analysis of mother liquors obtained from crystallization of cyclopamine, extracted from roots and rhizomes of V. californicum, resulted in the isolation of two unprecedented cyclopamine analogues, 18-hydroxycyclopamine (2) and 24R-hydroxycyclopamine (3), the first compounds of this class to show modifications on rings D-F. The stereostructures of these new natural compounds have been established based on a detailed MS and 1D/2D NMR investigation. The isolated compounds were evaluated with the dual-luciferase bioassay for their inhibition of the hedgehog pathway in comparison to cyclopamine, providing new insights into the structure-activity relationships for this class of compounds.
Collapse
Affiliation(s)
- Giuseppina Chianese
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Annalisa Lopatriello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Carmina Sirignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Alessandro Andreani
- R&D Laboratories, INDENA SpA, Via Don Minzoni 6, Settala, 20090 Milan, Italy
| | - Andrea Gambini
- R&D Laboratories, INDENA SpA, Via Don Minzoni 6, Settala, 20090 Milan, Italy
| | - Eric De Combarieu
- R&D Laboratories, INDENA SpA, Via Don Minzoni 6, Settala, 20090 Milan, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
21
|
Effects of Modulation of the Hedgehog and Notch Signaling Pathways on Osteoblast Differentiation Induced by Titanium with Nanotopography. J Funct Biomater 2023; 14:jfb14020079. [PMID: 36826878 PMCID: PMC9968096 DOI: 10.3390/jfb14020079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/14/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The events of bone formation and osteoblast/titanium (Ti) interactions may be affected by Hedgehog and Notch signalling pathways. Herein, we investigated the effects of modulation of these signalling pathways on osteoblast differentiation caused by the nanostructured Ti (Ti-Nano) generated by H2SO4/H2O2. METHODS Osteoblasts from newborn rat calvariae were cultured on Ti-Control and Ti-Nano in the presence of the Hedgehog agonist purmorphamine or antagonist cyclopamine and of the Notch antagonist N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) or agonist bexarotene. Osteoblast differentiation was evaluated by alkaline phosphatase activity and mineralization, and the expression of Hedgehog and Notch receptors was also evaluated. RESULTS In general, purmorphamine and DAPT increased while cyclopamine and bexarotene decreased osteoblast differentiation and regulated the receptor expression on both Ti surfaces, with more prominent effects on Ti-Nano. The purmorphamine and DAPT combination exhibited synergistic effects on osteoblast differentiation that was more intense on Ti-Nano. CONCLUSION Our results indicated that the Hedgehog and Notch signalling pathways drive osteoblast/Ti interactions more intensely on nanotopography. We also demonstrated that combining Hedgehog activation with Notch inhibition exhibits synergistic effects on osteoblast differentiation, especially on Ti-Nano. The uncovering of these cellular mechanisms contributes to create strategies to control the process of osseointegration based on the development of nanostructured surfaces.
Collapse
|
22
|
Liao W, Zhang L, Chen X, Xiang J, Zheng Q, Chen N, Zhao M, Zhang G, Xiao X, Zhou G, Zeng J, Tang J. Targeting cancer stem cells and signalling pathways through phytochemicals: A promising approach against colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154524. [PMID: 36375238 DOI: 10.1016/j.phymed.2022.154524] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are strongly associated with high tumourigenicity, chemotherapy or radiotherapy resistance, and metastasis and recurrence, particularly in colorectal cancer (CRC). Therefore, targeting CSCs may be a promising approach. Recently, discovery and research on phytochemicals that effectively target colorectal CSCs have been gaining popularity because of their broad safety profile and multi-target and multi-pathway modes of action. PURPOSE This review aimed to elucidate and summarise the effects and mechanisms of phytochemicals with potential anti-CSC agents that could contribute to the better management of CRC. METHODS We reviewed PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases from the original publication date to March 2022 to review the mechanisms by which phytochemicals inhibit CRC progression by targeting CSCs and their key signalling pathways. Phytochemicals were classified and summarised based on the mechanisms of action. RESULTS We observed that phytochemicals could affect the biological properties of colorectal CSCs. Phytochemicals significantly inhibit self-renewal, migration, invasion, colony formation, and chemoresistance and induce apoptosis and differentiation of CSCs by regulating the Wnt/β-catenin pathway (e.g., diallyl trisulfide and genistein), the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway (e.g., caffeic acid and piperlongumine), the neurogenic locus notch homolog protein pathway (e.g., honokiol, quercetin, and α-mangostin), the Janus kinase-signal transducer and activator of transcription pathway (e.g., curcumin, morin, and ursolic acid), and other key signalling pathways. It is worth noting that several phytochemicals, such as resveratrol, silibinin, evodiamine, and thymoquinone, highlight multi-target and multi-pathway effects in restraining the malignant biological behaviour of CSCs. CONCLUSIONS This review demonstrates the potential of targeted therapies for colorectal CSCs using phytochemicals. Phytochemicals could serve as novel therapeutic agents for CRC and aid in drug development.
Collapse
Affiliation(s)
- Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lanlan Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Chen
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Juyi Xiang
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Maoyuan Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaolin Xiao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhou
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
23
|
3α,7-Dihydroxy-14(13→12) abeo-5β,12α(H),13β(H)-cholan-24-oic Acids Display Neuroprotective Properties in Common Forms of Parkinson's Disease. Biomolecules 2022; 13:biom13010076. [PMID: 36671460 PMCID: PMC9855844 DOI: 10.3390/biom13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Parkinson's Disease is the most common neurodegenerative movement disorder globally, with prevalence increasing. There is an urgent need for new therapeutics which are disease-modifying rather than symptomatic. Mitochondrial dysfunction is a well-documented mechanism in both sporadic and familial Parkinson's Disease. Furthermore, ursodeoxycholic acid (UDCA) has been identified as a bile acid which leads to increased mitochondrial function in multiple in vitro and in vivo models of Parkinson's Disease. Here, we describe the synthesis of novel C-nor-D-homo bile acid derivatives and the 12-hydroxy-methylated derivative of lagocholic acid (7) and their biological evaluation in fibroblasts from patients with either sporadic or LRRK2 mutant Parkinson's Disease. These compounds boost mitochondrial function to a similar level or above that of UDCA in many assays; notable, however, is their ability to boost mitochondrial function to a higher level and at lower concentrations than UDCA specifically in the fibroblasts from LRRK2 patients. Our study indicates that novel bile acid chemistry could lead to the development of more efficacious bile acids which increase mitochondrial function and ultimately cellular health at lower concentrations proving attractive potential novel therapeutics for Parkinson's Disease.
Collapse
|
24
|
Sequentially sustained release of anticarcinogens for postsurgical chemoimmunotherapy. J Control Release 2022; 350:803-814. [PMID: 36087802 DOI: 10.1016/j.jconrel.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/15/2022] [Accepted: 09/03/2022] [Indexed: 12/14/2022]
Abstract
Postsurgical treatment is of great importance to combat tumor recurrence and metastasis. Anti-CD47 antibodies (aCD47) can block the CD47-signal regulatory protein-alpha (CD47-SIRPα) pathway to restore immunity. Here, an in-situ gel implantation was engineered by crosslinking chitosan (CS) and pullulan (Pul) for postsurgical treatment. A highly selected chemotherapeutic, cyclopamine (Cyc), encapsulated in liposomes (Cyc-Lip) was co-loaded with aCD47 in gels for chemoimmunotherapy. Importantly, a sequential drug release kinetics can be achieved. Nanotherapeutics were confirmed to be released prior to aCD47 in a burst-release manner, which was benefit for immediately killing residual tumor cells followed by releasing tumor antigens. Meanwhile, aCD47 was released in a sustained-release manner to restore macrophage functions and exert anti-tumor immune responses. Afterwards, the efficacy of in-situ chemoimmunotherapy was confirmed on 4T1 mouse breast cancer models, which could not only efficiently augment anti-tumor effect to inhibit tumor recurrence but also establish a long-term immune memory to combat tumor metastasis.
Collapse
|
25
|
Rahman MM, Sarker MT, Alam Tumpa MA, Yamin M, Islam T, Park MN, Islam MR, Rauf A, Sharma R, Cavalu S, Kim B. Exploring the recent trends in perturbing the cellular signaling pathways in cancer by natural products. Front Pharmacol 2022; 13:950109. [PMID: 36160435 PMCID: PMC9498834 DOI: 10.3389/fphar.2022.950109] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is commonly thought to be the product of irregular cell division. According to the World Health Organization (WHO), cancer is the major cause of death globally. Nature offers an abundant supply of bioactive compounds with high therapeutic efficacy. Anticancer effects have been studied in a variety of phytochemicals found in nature. When Food and Drug Administration (FDA)-approved anticancer drugs are combined with natural compounds, the effectiveness improves. Several agents have already progressed to clinical trials based on these promising results of natural compounds against various cancer forms. Natural compounds prevent cancer cell proliferation, development, and metastasis by inducing cell cycle arrest, activating intrinsic and extrinsic apoptosis pathways, generating reactive oxygen species (ROS), and down-regulating activated signaling pathways. These natural chemicals are known to affect numerous important cellular signaling pathways, such as NF-B, MAPK, Wnt, Notch, Akt, p53, AR, ER, and many others, to cause cell death signals and induce apoptosis in pre-cancerous or cancer cells without harming normal cells. As a result, non-toxic “natural drugs” taken from nature’s bounty could be effective for the prevention of tumor progression and/or therapy of human malignancies, either alone or in combination with conventional treatments. Natural compounds have also been shown in preclinical studies to improve the sensitivity of resistant cancers to currently available chemotherapy agents. To summarize, preclinical and clinical findings against cancer indicate that natural-sourced compounds have promising anticancer efficacy. The vital purpose of these studies is to target cellular signaling pathways in cancer by natural compounds.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Taslim Sarker
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mst. Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Yamin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Tamanna Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Pakistan
- *Correspondence: Abdur Rauf, ; Bonglee Kim,
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Abdur Rauf, ; Bonglee Kim,
| |
Collapse
|
26
|
Zhu LC, Yang DL, Shi Y. Synthesis of 5α,6-Dihydroveragranines A and B. Org Lett 2022; 24:5825-5828. [PMID: 35920688 DOI: 10.1021/acs.orglett.2c02367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 5α,6-dihydro congeners of veragranines A and B, two steroidal alkaloids with an unprecedented hexacyclic skeleton and potent analgesic effects, were synthesized from hecogenin acetate within six steps. This work enables quick access to the hexacyclic skeleton and is amendable to prepare other D-ring-modified congeners.
Collapse
Affiliation(s)
- Liang-Chao Zhu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Dong-Li Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yong Shi
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
27
|
Wilson M, Johnson RP, Senft SC, Pan EY, Krakowski AC. Advanced basal cell carcinoma: What dermatologists need to know about treatment. J Am Acad Dermatol 2022; 86:S14-S24. [PMID: 35577406 DOI: 10.1016/j.jaad.2022.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
The treatment of advanced basal cell carcinoma (BCC) often requires therapies beyond local surgical excision or radiation due to the invasiveness of the tumor. Historically, cytotoxic chemotherapy was used to treat advanced BCC, but with limited data, no standard regimens were established. The discovery of cyclopamine, a natural inhibitor in the Hedgehog pathway, led to the development of the 2 currently approved Hedgehog inhibitors, vismodegib and sonidegib. Both agents are indicated for locally advanced BCC, while vismodegib is also indicated for metastatic BCC. In patients who progress on hedgehog inhibitors or cannot tolerate hedgehog inhibitors, the programmed cell death protein 1 inhibitor cemiplimab can be used to treat locally advanced or metastatic disease. Complex cases of locally advanced or metastatic BCC may be best discussed through a multidisciplinary approach in order to determine the optimal treatment approach for the individual patient.
Collapse
|
28
|
Zeng LH, Barkat MQ, Syed SK, Shah S, Abbas G, Xu C, Mahdy A, Hussain N, Hussain L, Majeed A, Khan KUR, Wu X, Hussain M. Hedgehog Signaling: Linking Embryonic Lung Development and Asthmatic Airway Remodeling. Cells 2022; 11:1774. [PMID: 35681469 PMCID: PMC9179967 DOI: 10.3390/cells11111774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022] Open
Abstract
The development of the embryonic lung demands complex endodermal-mesodermal interactions, which are regulated by a variety of signaling proteins. Hedgehog (Hh) signaling is vital for lung development. It plays a key regulatory role during several morphogenic mechanisms, such as cell growth, differentiation, migration, and persistence of cells. On the other hand, abnormal expression or loss of regulation of Hh signaling leads to airway asthmatic remodeling, which is characterized by cellular matrix modification in the respiratory system, goblet cell hyperplasia, deposition of collagen, epithelial cell apoptosis, proliferation, and activation of fibroblasts. Hh also targets some of the pathogens and seems to have a significant function in tissue repairment and immune-related disorders. Similarly, aberrant Hh signaling expression is critically associated with the etiology of a variety of other airway lung diseases, mainly, bronchial or tissue fibrosis, lung cancer, and pulmonary arterial hypertension, suggesting that controlled regulation of Hh signaling is crucial to retain healthy lung functioning. Moreover, shreds of evidence imply that the Hh signaling pathway links to lung organogenesis and asthmatic airway remodeling. Here, we compiled all up-to-date investigations linked with the role of Hh signaling in the development of lungs as well as the attribution of Hh signaling in impairment of lung expansion, airway remodeling, and immune response. In addition, we included all current investigational and therapeutic approaches to treat airway asthmatic remodeling and immune system pathway diseases.
Collapse
Affiliation(s)
- Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China;
| | - Muhammad Qasim Barkat
- Key Laboratory of CFDA for Respiratory Drug Research, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.Q.B.); (C.X.)
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology Lahore, Lahore 54000, Pakistan;
| | - Shahid Shah
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Ghulam Abbas
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Chengyun Xu
- Key Laboratory of CFDA for Respiratory Drug Research, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.Q.B.); (C.X.)
| | - Amina Mahdy
- Medical Pharmacology Department, International School of Medicine, Istanbul Medipol University, Istanbul 34000, Turkey;
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates;
| | - Liaqat Hussain
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Abdul Majeed
- Faculty of Pharmacy, Bahauddin Zakariya University, Mulatn 60000, Pakistan;
| | - Kashif-ur-Rehman Khan
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China;
| | - Musaddique Hussain
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| |
Collapse
|
29
|
Hedgehog Signaling Pathway Orchestrates Human Lung Branching Morphogenesis. Int J Mol Sci 2022; 23:ijms23095265. [PMID: 35563656 PMCID: PMC9100880 DOI: 10.3390/ijms23095265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023] Open
Abstract
The Hedgehog (HH) signaling pathway plays an essential role in mouse lung development. We hypothesize that the HH pathway is necessary for branching during human lung development and is impaired in pulmonary hypoplasia. Single-cell, bulk RNA-sequencing data, and human fetal lung tissues were analyzed to determine the spatiotemporal localization of HH pathway actors. Distal human lung segments were cultured in an air-liquid interface and treated with an SHH inhibitor (5E1) to determine the effect of HH inhibition on human lung branching, epithelial-mesenchymal markers, and associated signaling pathways in vitro. Our results showed an early and regulated expression of HH pathway components during human lung development. Inhibiting HH signaling caused a reduction in branching during development and dysregulated epithelial (SOX2, SOX9) and mesenchymal (ACTA2) progenitor markers. FGF and Wnt pathways were also disrupted upon HH inhibition. Finally, we demonstrated that HH signaling elements were downregulated in lung tissues of patients with a congenital diaphragmatic hernia (CDH). In this study, we show for the first time that HH signaling inhibition alters important genes and proteins required for proper branching of the human developing lung. Understanding the role of the HH pathway on human lung development could lead to the identification of novel therapeutic targets for childhood pulmonary diseases.
Collapse
|
30
|
Rota Graziosi E, François S, Pateux J, Gauthier M, Butigieg X, Oger M, Drouet M, Riccobono D, Jullien N. Muscle regeneration after high-dose radiation exposure: therapeutic potential of Hedgehog pathway modulation? Int J Radiat Biol 2021; 98:968-979. [PMID: 34879217 DOI: 10.1080/09553002.2021.2013574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Purpose: Intentional or accidental exposure of relatively large as well as localized areas of the skin to ionizing radiation can lead to severe damage of many of its cellular components and cutaneous radiation syndrome. Patients can be treated with an invasive surgical procedure coupled with autologous cell therapy. However, this approach remains perfectible, especially for muscle repair. Indeed, a severe underlying muscle defect persists, in particular because of the damage to the satellite cells which ensure muscle regeneration. To overcome these shortcomings, a solution could be to develop new therapeutic strategies based on pharmacological treatments to improve post-irradiation muscle regeneration. In this study, we focus on the Hedgehog signaling pathway as a target, due to its involvement in myogenesis.Materials and methods: To evaluate the benefit of the pro-myogenic Hedgehog signaling pathway modulation, recombinant Sonic Hedgehog (rShh; agonist) or Cyclopamine (antagonist) were used in a stable cell line of mouse C2C12 myoblasts exposed to radiation (X-rays; 5 Gy). Our in vitro studies were carried out under either proliferation or differentiation conditions. Proliferation, migration, survival (apoptosis) and expression of myogenic genes/proteins were evaluated.Results: A high dose of radiation was shown to exert a serious negative impact in our in vitro model of mouse muscle progenitors after irradiation in proliferation or differentiation conditions. Interestingly, Hh pathway stimulation by rShh promotes the proliferation of myoblasts and their survival while its blockade by Cyclopamine significantly increases cell differentiation toward mature myotubes.Conclusion: These data suggest that, after irradiation, the sequence of activation and inhibition of the Hh pathway could allow rescue and proliferation of satellite cells, followed by their differentiation to regenerate new fibers. On the basis of these encouraging in vitro results, the second phase of our study will involve the in vivo validation of this treatment in a new murine model of ultra-localized muscle irradiation.
Collapse
Affiliation(s)
- E Rota Graziosi
- Département des Effets Biologiques des Rayonnements, Institut de Recherche Biomedicale des Armées (IRBA), Unité de Radiobiologie, Brétigny-sur-Orge, France
| | - S François
- Département des Effets Biologiques des Rayonnements, Institut de Recherche Biomedicale des Armées (IRBA), Unité de Radiobiologie, Brétigny-sur-Orge, France.,UMR 1296, Institut National de la Santé et de la Recherche Médicale (INSERM) and IRBA, Brétigny-sur-Orge, France
| | - J Pateux
- Département des Effets Biologiques des Rayonnements, Institut de Recherche Biomedicale des Armées (IRBA), Unité de Radiobiologie, Brétigny-sur-Orge, France
| | - M Gauthier
- Département des Effets Biologiques des Rayonnements, Institut de Recherche Biomedicale des Armées (IRBA), Unité de Radiobiologie, Brétigny-sur-Orge, France
| | - X Butigieg
- Département des Plateformes et de la Recherche Technologique, Institut de Recherche Biomédical des Armées (IRBA), Unité Imagerie, Brétigny-sur-Orge, France
| | - M Oger
- Département des Plateformes et de la Recherche Technologique, Institut de Recherche Biomédical des Armées (IRBA), Unité Imagerie, Brétigny-sur-Orge, France
| | - M Drouet
- Département des Effets Biologiques des Rayonnements, Institut de Recherche Biomedicale des Armées (IRBA), Unité de Radiobiologie, Brétigny-sur-Orge, France.,UMR 1296, Institut National de la Santé et de la Recherche Médicale (INSERM) and IRBA, Brétigny-sur-Orge, France
| | - D Riccobono
- Département des Effets Biologiques des Rayonnements, Institut de Recherche Biomedicale des Armées (IRBA), Unité de Radiobiologie, Brétigny-sur-Orge, France.,UMR 1296, Institut National de la Santé et de la Recherche Médicale (INSERM) and IRBA, Brétigny-sur-Orge, France
| | - N Jullien
- Département des Effets Biologiques des Rayonnements, Institut de Recherche Biomedicale des Armées (IRBA), Unité de Radiobiologie, Brétigny-sur-Orge, France
| |
Collapse
|
31
|
Luxenburger A, Harris LD, Ure EM, Landaeta Aponte RA, Woolhouse AD, Cameron SA, Ling CD, Piltz RO, Lewis AR, Gainsford GJ, Weymouth-Wilson A, Furneaux RH. Synthesis of 12β-Methyl-18- nor-bile Acids. ACS OMEGA 2021; 6:25019-25039. [PMID: 34604682 PMCID: PMC8482778 DOI: 10.1021/acsomega.1c04199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Decoupling the roles of the farnesoid X nuclear receptor and Takeda G-protein-coupled bile acid receptor 5 is essential for the development of novel bile acid therapeutics targeting metabolic and neurodegenerative diseases. Herein, we describe the synthesis of 12β-methyl-18-nor-bile acids which may serve as probes in the search for new bile acid analogues with clinical applicability. A Nametkin-type rearrangement was applied to protected cholic acid derivatives, giving rise to tetra-substituted Δ13,14- and Δ13,17-unsaturated 12β-methyl-18-nor-bile acid intermediates (24a and 25a). Subsequent catalytic hydrogenation and deprotection yielded 12β-methyl-18-nor-chenodeoxycholic acid (27a) and its 17-epi-epimer (28a) as the two major reaction products. Optimization of the synthetic sequence enabled a chromatography-free route to prepare these bile acids at a multi-gram scale. In addition, the first cis-C-D ring-junctured bile acid and a new 14(13 → 12)-abeo-bile acid are described. Furthermore, deuteration experiments were performed to provide mechanistic insights into the formation of the formal anti-hydrogenation product 12β-methyl-18-nor-chenodeoxycholic acid (27a).
Collapse
Affiliation(s)
- Andreas Luxenburger
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield
Rd, Lower Hutt 5040, New Zealand
| | - Lawrence D. Harris
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield
Rd, Lower Hutt 5040, New Zealand
| | - Elizabeth M. Ure
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield
Rd, Lower Hutt 5040, New Zealand
| | - Roselis A. Landaeta Aponte
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield
Rd, Lower Hutt 5040, New Zealand
| | - Anthony D. Woolhouse
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield
Rd, Lower Hutt 5040, New Zealand
| | - Scott A. Cameron
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield
Rd, Lower Hutt 5040, New Zealand
| | - Chris D. Ling
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ross O. Piltz
- Australian
Centre for Neutron Scattering, New Illawarra Rd, Lucas Heights, Sydney, New South Wales 2234, Australia
| | - Andrew R. Lewis
- Callaghan
Innovation, P.O. Box 31 310, Lower
Hutt 5040, New Zealand
| | - Graeme J. Gainsford
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield
Rd, Lower Hutt 5040, New Zealand
| | - Alex Weymouth-Wilson
- New
Zealand Pharmaceuticals Ltd, 68 Weld Street, RD2, Palmerston North 4472, New Zealand
| | - Richard H. Furneaux
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield
Rd, Lower Hutt 5040, New Zealand
| |
Collapse
|
32
|
Li Y, Song W, Hu Y, Xia Y, Li Z, Lu Y, Shen Y. "Petal-like" size-tunable gold wrapped immunoliposome to enhance tumor deep penetration for multimodal guided two-step strategy. J Nanobiotechnology 2021; 19:293. [PMID: 34579725 PMCID: PMC8477504 DOI: 10.1186/s12951-021-01004-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background Breast cancer is the fastest-growing cancer among females and the second leading cause of female death. At present, targeted antibodies combined with hyperthermia locally in tumor has been identified as a potential combination therapy to combat tumors. But in fact, the uniformly deep distribution of photosensitizer in tumor sites is still an urgent problem, which limited the clinical application. We reported an HER2-modified thermosensitive liposome (immunoliposome)-assisted complex by reducing gold nanocluster on the surface (GTSL-CYC-HER2) to obtain a new type of bioplasma resonance structured carrier. The HER2 decoration on the surface enhanced targeting to the breast cancer tumor site and forming irregular, dense, "petal-like" shells of gold nanoclusters. Due to the good photothermal conversion ability under near-infrared light (NIR) irradiation, the thermosensitive liposome released the antitumor Chinese traditional medicine, cyclopamine, accompanied with the degradation of gold clusters into 3–5 nm nanoparticles which can accelerate renal metabolism of the gold clusters. With the help of cyclopamine to degrade the tumor associated matrix, this size-tunable gold wrapped immunoliposome was more likely to penetrate the deeper layers of the tumor, while the presence of gold nanoparticles makes GTSL-CYC-HER2 multimodal imaging feasible. Results The prepared GTSL-CYC-HER2 had a size of 113.5 nm and displayed excellent colloidal stability, photo-thermal conversion ability and NIR-sensitive drug release. These GTSL-CYC-HER2 were taken up selectively by cancer cells in vitro and accumulated at tumour sites in vivo. As for the in vivo experiments, compared to the other groups, under near-infrared laser irradiation, the temperature of GTSL-CYC-HER2 rises rapidly to the phase transition temperature, and released the cyclopamine locally in the tumor. Then, the released cyclopamine destroyed the stroma of the tumor tissue while killing the tumor cells, which in turn increased the penetration of the liposomes in deep tumor tissues. Moreover, the GTSL-CYC-HER2 enhanced the performance of multimodal computed tomography (CT) and photothermal (PT) imaging and enabled chemo-thermal combination therapy. Conclusions This optically controlled biodegradable plasmonic resonance structures not only improves the safety of the inorganic carrier application in vivo, but also greatly improves the anti-tumor efficiency through the visibility of in vivo CT and PT imaging, as well as chemotherapy combined with hyperthermia, and provides a synergistic treatment strategy that can broaden the conventional treatment alone. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01004-1.
Collapse
Affiliation(s)
- Yanan Li
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Wenting Song
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yumin Hu
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yun Xia
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Zhen Li
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yang Lu
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yan Shen
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
33
|
Bao J, Qian Z, Liu L, Hong X, Che H, Wu X. Pharmacological Disruption of Phosphorylated Eukaryotic Initiation Factor-2α/Activating Transcription Factor 4/Indian Hedgehog Protects Intervertebral Disc Degeneration via Reducing the Reactive Oxygen Species and Apoptosis of Nucleus Pulposus Cells. Front Cell Dev Biol 2021; 9:675486. [PMID: 34164397 PMCID: PMC8215438 DOI: 10.3389/fcell.2021.675486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Excessive reactive oxygen species (ROS) and apoptosis in nucleus pulposus (NP) cells accelerate the process of intervertebral disc degeneration (IDD). Here, we integrated pathological samples and in vitro and in vivo framework to investigate the impact of phosphorylation of eukaryotic initiation factor-2α (eIF2α)/activating transcription factor 4 (ATF4)/Indian hedgehog (Ihh) signaling in the IDD. From the specimen analysis of the IDD patients, we found phosphorylated eIF2α (p-eIF2α), ATF4 and Ihh protein levels were positively related while the NP tissue went degenerative. In vitro, tumor necrosis factor (TNF)-α caused the NP cell degeneration and induced a cascade of upregulation of p-eIF2α, ATF4, and Ihh. Interestingly, ATF4 could enhance Ihh expression through binding its promoter region, and silencing of ATF4 decreased Ihh and protected the NP cells from degeneration. Moreover, ISRIB inhibited the p-eIF2α, which resulted in a suppression of ATF4/Ihh, and alleviated the TNF-α-induced ROS production and apoptosis of NP cells. On the contrary, further activating p-eIF2α aggravated the NP cell degeneration, with amplification of ATF4/Ihh and a higher level of ROS and apoptosis. Additionally, applying cyclopamine (CPE) to suppress Ihh was efficient to prevent NP cell apoptosis but did not decrease the ROS level. In an instability-induced IDD model in mice, ISRIB suppressed p-eIF2α/ATF4/Ihh and prevented IDD via protecting the anti-oxidative enzymes and decreased the NP cell apoptosis. CPE prevented NP cell apoptosis but did not affect anti-oxidative enzyme expression. Taken together, p-eIF2α/ATF4/Ihh signaling involves the ROS level and apoptosis in NP cells, the pharmacological disruption of which may provide promising methods in preventing IDD.
Collapse
Affiliation(s)
- Junping Bao
- Spine Center, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Zhanyang Qian
- Spine Center, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Lei Liu
- Spine Center, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Xin Hong
- Spine Center, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Hui Che
- Faculty of Medicine, Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Xiaotao Wu
- Spine Center, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
34
|
Alzhrani R, Alsaab HO, Vanamal K, Bhise K, Tatiparti K, Barari A, Sau S, Iyer AK. Overcoming the Tumor Microenvironmental Barriers of Pancreatic Ductal Adenocarcinomas for Achieving Better Treatment Outcomes. ADVANCED THERAPEUTICS 2021; 4:2000262. [PMID: 34212073 PMCID: PMC8240487 DOI: 10.1002/adtp.202000262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with the lowest survival rate among all solid tumors. The lethality of PDAC arises from late detection and propensity of the tumor to metastasize and develop resistance against chemo and radiation therapy. A highly complex tumor microenvironment composed of dense stroma, immune cells, fibroblast, and disorganized blood vessels, is the main obstacle to current PDAC therapy. Despite the tremendous success of immune checkpoint inhibitors (ICIs) in cancers, PDAC remains one of the poorest responders of ICIs therapy. The immunologically "cold" phenotype of PDAC is attributed to the low mutational burden, high infiltration of myeloid-derived suppressor cells and T-regs, contributing to a significant immunotherapy resistance mechanism. Thus, the development of innovative strategies for turning immunologically "cold" tumor into "hot" ones is an unmet need to improve the outcome of PDAC ICIs therapies. Other smart strategies, such as nanomedicines, sonic Hedgehog inhibitor, or smoothened inhibitor, are discussed to enhance chemotherapeutic agents' efficiency by disrupting the PDAC stroma. This review highlights the current challenges and various preclinical and clinical strategies to overcome current PDAC therapy difficulties, thus significantly advancing PDAC research knowledge.
Collapse
Affiliation(s)
- Rami Alzhrani
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Kushal Vanamal
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ketki Bhise
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ayatakshi Barari
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Arun K. Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, United States
| |
Collapse
|
35
|
Liu Y, Zhou J, Li Q, Li L, Jia Y, Geng F, Zhou J, Yin T. Tumor microenvironment remodeling-based penetration strategies to amplify nanodrug accessibility to tumor parenchyma. Adv Drug Deliv Rev 2021; 172:80-103. [PMID: 33705874 DOI: 10.1016/j.addr.2021.02.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Remarkable advances in nano delivery systems have provided new hope for tumor prevention, diagnosis and treatment. However, only limited clinical therapeutic effects against solid tumors were achieved. One of the main reasons is the presence of abundant physiological and pathological barriers in vivo that impair tumoral penetration and distribution of the nanodrugs. These barriers are related to the components of tumor microenvironment (TME) including abnormal tumor vasculature, rich composition of the extracellular matrix (ECM), and abundant stroma cells. Herein, we review the advanced strategies of TME remodeling to overcome these biological obstacles against nanodrug delivery. This review aims to offer a perspective guideline for the implementation of promising approaches to facilitate intratumoral permeation of nanodrugs through alleviation of biological barriers. At the same time, we analyze the advantages and disadvantages of the corresponding methods and put forward possible directions for the future researches.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jiyuan Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Qiang Li
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Lingchao Li
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yue Jia
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Feiyang Geng
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
36
|
Gao LJ, Zhang MZ, Li XY, Huang WK, Xu SF, Ye YP. Steroidal alkaloids isolated from Veratrum grandiflorum Loes. as novel Smoothened inhibitors with anti-proliferation effects on DAOY medulloblastoma cells. Bioorg Med Chem 2021; 39:116166. [PMID: 33910157 DOI: 10.1016/j.bmc.2021.116166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 01/11/2023]
Abstract
Constitutive activation of Hedgehog (Hh) pathway is intimately related with the occurrence and development of several malignancies, such as medulloblastoma (MB) and other tumors. Therefore, small molecular inhibitors of Hh pathway are urgently needed. In this study, three new steroidal alkaloids, ⊿5 (20R, 24R) 23-oxo-24-methylsolacongetidine, ⊿5 (20S, 24R) 23-oxo-24-methylsolacongetidine and veralinine 3-O-α-l-rhamnopyranosyl-(1 → 2)-β-D-glucopyranoside, together with six known alkaloids, 20-epi-verazine, verazine, protoverine 15-(l)-2'-methylbutyrate, jervine, veramarine and β1-chaconine, were isolated and determined from Veratrum grandiflorum Loes. The dual-luciferase bioassay indicated that all compounds exhibited significant inhibitions of Hh pathway with IC50 values of 0.72-14.31 μM against Shh-LIGHT 2 cells. To determine whether these Hh pathway inhibitors act with the Smoothened (Smo) protein, which is an important oncoprotein and target for this pathway, BODIPY-cyclopamine (BC) competitive binding assay was preferentially performed. Compared with BC alone, all compounds obviously reduced the fluorescence intensities of BC binding with Smo in Smo-overexpression HEK293T cells through fluorescence microscope and flow cytometer. By directly interacting with Smo, it revealed that they were actually novel natural Smo inhibitors. Then, their anti-tumor effects were investigated against the human MB cell line DAOY, which is a typical pediatric brain tumor cells line with highly expressed Hh pathway. Interestingly, most of compounds had slight proliferation inhibitions on DAOY cells after treatment for 24 h same as vismodegib, while β1-chaconine showed the strongest inhibitory effect on the growth of DAOY with IC50 value of 5.35 μM. In conclusion, our studies valuably provide several novel natural Smo inhibitors for potential targeting treatment of Hh-dependent tumors.
Collapse
Affiliation(s)
- Li Juan Gao
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Meng Zhen Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Xiao Yu Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Wen Kang Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Shi Fang Xu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Yi Ping Ye
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China.
| |
Collapse
|
37
|
Goel B, Tripathi N, Mukherjee D, Jain SK. Glycorandomization: A promising diversification strategy for the drug development. Eur J Med Chem 2021; 213:113156. [PMID: 33460832 DOI: 10.1016/j.ejmech.2021.113156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Glycorandomization is a natural product derivatization strategy in which different sugar moieties are linked to the aglycone part of the naturally existing glycosides to create glycorandomized libraries. Sugars attached to the natural products are responsible for affecting their solubility, mechanism of action, target recognition, and toxicity and thus, by changing the sugar part, these properties could be modified. Glycorandomization can be done via two approaches (i) a synthetic approach known as neoglycorandomization, and (ii) chemoenzymatic approach including in-vitro and in-vivo glycorandomization. Glycorandomization can be a promising technology for the drug discovery that has proved its potential to improve pharmacokinetic (solubility) and pharmacodynamic profile (mechanism of action, toxicity, and target recognition) of the parent compounds. The substrate flexibility of glycosyltransferases and other enzymes towards sugars and/or aglycone substrates has made this technique versatile. Further, the enzymes can be altered by genetic engineering to generate glycorandomized libraries of diverse natural product scaffolds. This technique has the potential to produce new compounds that can be helpful to the mankind by treating the threatening disease states. This review covers the different strategies for glycorandomization as a tool in drug discovery and development. The fundamentals of glycorandomization, different types, and further development of differentially glycorandomized libraries of natural products and small molecule based drugs have been discussed.
Collapse
Affiliation(s)
- Bharat Goel
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Nancy Tripathi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Debaraj Mukherjee
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
38
|
Jiang B, Zhou L, Lu J, Wang Y, Liu C, You L, Guo J. Stroma-Targeting Therapy in Pancreatic Cancer: One Coin With Two Sides? Front Oncol 2020; 10:576399. [PMID: 33178608 PMCID: PMC7593693 DOI: 10.3389/fonc.2020.576399] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with one of the worst prognoses worldwide and has an overall 5-year survival rate of only 9%. Although chemotherapy is the recommended treatment for patients with advanced PDAC, its efficacy is not satisfactory. The dense dysplastic stroma of PDAC is a major obstacle to the delivery of chemotherapy drugs and plays an important role in the progression of PDAC. Therefore, stroma-targeting therapy is considered a potential treatment strategy to improve the efficacy of chemotherapy and patient survival. While several preclinical studies have shown encouraging results, the anti-tumor potential of the PDAC stroma has also been revealed, and the extreme depletion might promote tumor progression and undermine patient survival. Therefore, achieving a balance between stromal abundance and depletion might be the further of stroma-targeting therapy. This review summarized the current progress of stroma-targeting therapy in PDAC and discussed the double-edged sword of its therapeutic effects.
Collapse
Affiliation(s)
- Bolun Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Lu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yizhi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengxi Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
39
|
Szeliga M, Ciura J, Tyrka M. Representational Difference Analysis of Transcripts Involved in Jervine Biosynthesis. Life (Basel) 2020; 10:life10060088. [PMID: 32575579 PMCID: PMC7344996 DOI: 10.3390/life10060088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/28/2022] Open
Abstract
Veratrum-type steroidal alkaloids (VSA) are the major bioactive ingredients that strongly determine the pharmacological activities of Veratrum nigrum. Biosynthesis of VSA at the molecular and genetic levels is not well understood. Next-generation sequencing of representational difference analysis (RDA) products after elicitation and precursor feeding was applied to identify candidate genes involved in VSA biosynthesis. A total of 12,048 contigs with a median length of 280 bases were received in three RDA libraries obtained after application of methyl jasmonate, squalene and cholesterol. The comparative analysis of annotated sequences was effective in identifying candidate genes. GABAT2 transaminase and hydroxylases active at C-22, C-26, C-11, and C-16 positions in late stages of jervine biosynthesis were selected. Moreover, genes coding pyrroline-5-carboxylate reductase and enzymes from the short-chain dehydrogenases/reductases family (SDR) associated with the reduction reactions of the VSA biosynthesis process were proposed. The data collected contribute to better understanding of jervine biosynthesis and may accelerate implementation of biotechnological methods of VSA biosynthesis.
Collapse
Affiliation(s)
- Magdalena Szeliga
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-959 Rzeszow, Poland; (J.C.); (M.T.)
- Correspondence:
| | - Joanna Ciura
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-959 Rzeszow, Poland; (J.C.); (M.T.)
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-959 Rzeszow, Poland; (J.C.); (M.T.)
| |
Collapse
|
40
|
Horwitz MA, Robins JG, Johnson JS. De Novo Synthesis of the DEF-Ring Stereotriad Core of the Veratrum Alkaloids. J Org Chem 2020; 85:6808-6814. [PMID: 32352768 PMCID: PMC7246867 DOI: 10.1021/acs.joc.0c00685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of the stereotriad core in the eastern portion of the Veratrum alkaloids jervine (1), cyclopamine (2), and veratramine (3) is reported. Starting from a known β-methyltyrosine derivative (8), the route utilizes a diastereoselective substrate-controlled 1,2-reduction to establish the stereochemistry of the vicinal amino alcohol motif embedded within the targets. Oxidative dearomatization is demonstrated to be a viable approach for the synthesis of the spirocyclic DE ring junction found in jervine and cyclopamine.
Collapse
Affiliation(s)
- Matthew A Horwitz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jacob G Robins
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jeffrey S Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
41
|
Abstract
Progress toward a convergent approach for the enantioselective synthesis of the Veratrum alkaloid jervine is presented. The two requisite fragments were stereoselectively and efficiently fashioned from economical and readily available reagents. Key reactions include (a) a highly diastereoselective Ireland-Claisen rearrangement to establish the necessary cis-relationship between the amine and methyl group on the tetrahydrofuran E-ring; (b) a diastereoselective selenoetherification reaction that enabled the assembly of the D/E oxaspiro[4.5]decene in the needed configuration; and (c) an enzymatic desymmetrization of an abundant achiral diol en route to a key four-carbon building block as a practical alternative to a protected Roche ester reduction.
Collapse
Affiliation(s)
- Blane P Zavesky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Pedro De Jesús Cruz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jeffrey S Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
42
|
Bonn-Breach R, Gu Y, Jenkins J, Fasan R, Wedekind J. Structure of Sonic Hedgehog protein in complex with zinc(II) and magnesium(II) reveals ion-coordination plasticity relevant to peptide drug design. Acta Crystallogr D Struct Biol 2019; 75:969-979. [PMID: 31692471 PMCID: PMC6834079 DOI: 10.1107/s2059798319012890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
The Hedgehog pathway is an essential cell-signaling paradigm implicated in cancer tumorigenesis and the developmental disorder holoprosencephaly, making it an attractive target for therapeutic design. The N-terminal domain of the Sonic Hedgehog protein (Shh-N) is the essential signaling molecule in the Hedgehog pathway. In this role Shh-N interacts with its cognate membrane receptor Patched, as well as the regulatory proteins HHIP and CDO, by utilizing interfaces harboring one or more divalent ions. Here, the crystal structure of human Shh-N is presented at 1.43 Å resolution, representing a landmark in the characterization of this protein. The structure reveals that the conserved Zn2+-binding site adopts an atypical octahedral coordination geometry, whereas an adjacent binding site, normally occupied by binuclear Ca2+, has been supplanted by a single octahedrally bound Mg2+. Both divalent sites are compared with those in previous Shh-N structures, which demonstrates a significant degree of plasticity of the Shh-N protein in terms of divalent ion binding. The presence of a high Mg2+ concentration in the crystallization medium appears to have influenced metal loading at both metal ion-binding sites. These observations have technical and design implications for efforts focused on the development of inhibitors that target Shh-N-mediated protein-protein interactions.
Collapse
Affiliation(s)
- Rachel Bonn-Breach
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Yu Gu
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627, USA
| | - Jermaine Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627, USA
| | - Joseph Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
43
|
Lafaro KJ, Melstrom LG. The Paradoxical Web of Pancreatic Cancer Tumor Microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:44-57. [PMID: 30558722 DOI: 10.1016/j.ajpath.2018.09.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/28/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is increasing in incidence and is projected to become the second leading cause of cancer death in the United States. Despite significant advances in understanding the disease, there has been minimal increase in PDAC patient survival. PDAC tumors are unique in the fact that there is significant desmoplasia. This generates a large stromal compartment composed of immune cells, inflammatory cells, growth factors, extracellular matrix, and fibroblasts, comprising the tumor microenvironment (TME), which may represent anywhere from 15% to 85% of the tumor. It has become evident that the TME, including both the stroma and extracellular component, plays an important role in tumor progression and chemoresistance of PDAC. This review will discuss the multiple components of the TME, their specific impact on tumorigenesis, and the multiple therapeutic targets.
Collapse
Affiliation(s)
- Kelly J Lafaro
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| | - Laleh G Melstrom
- Department of Surgery, City of Hope National Medical Center, Duarte, California.
| |
Collapse
|
44
|
Min DJ, Vural S, Krushkal J. Association of transcriptional levels of folate-mediated one-carbon metabolism-related genes in cancer cell lines with drug treatment response. Cancer Genet 2019; 237:19-38. [DOI: 10.1016/j.cancergen.2019.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/09/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
|
45
|
Szeliga M, Ciura J, Grzesik M, Tyrka M. Identification of candidate genes involved in steroidal alkaloids biosynthesis in organ-specific transcriptomes of Veratrum nigrum L. Gene 2019; 712:143962. [PMID: 31288057 DOI: 10.1016/j.gene.2019.143962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/10/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
Abstract
Veratrum nigrum is protected plant of Melanthiaceae family, able to synthetize unique steroidal alkaloids important for pharmacy. Transcriptomes from leaves, stems and rhizomes of in vitro maintained V. nigrum plants were sequenced and annotated for genes and markers discovery. Sequencing of samples derived from the different organs resulted in a total of 108,511 contigs with a mean length of 596 bp. Transcripts derived from leaf and stalk were annotated at 28%, and 38% in Nr nucleotide database, respectively. The sequencing revealed 949 unigenes related with lipid metabolism, including 73 transcripts involved in steroids and genus-specific steroid alkaloids biosynthesis. Additionally, 3203 candidate SSRs markers we identified in unigenes with average density of one SSR locus every 6.2 kb sequence. Unraveling of biochemical machinery of the pathway responsible for steroidal alkaloids will open possibility to design and optimize biotechnological process. The transcriptomic data provide valuable resources for biochemical, molecular genetics, comparative transcriptomics, functional genomics, ecological and evolutionary studies of V. nigrum.
Collapse
Affiliation(s)
- Magdalena Szeliga
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-595 Rzeszów, Poland.
| | - Joanna Ciura
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-595 Rzeszów, Poland; Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Michalina Grzesik
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-595 Rzeszów, Poland; Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Ćwiklińskiej 1, 35-601 Rzeszów, Poland
| | - Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-595 Rzeszów, Poland
| |
Collapse
|
46
|
|
47
|
Turner MW, Cruz R, Elwell J, French J, Mattos J, McDougal OM. Native V. californicum Alkaloid Combinations Induce Differential Inhibition of Sonic Hedgehog Signaling. Molecules 2018; 23:E2222. [PMID: 30200443 PMCID: PMC6225318 DOI: 10.3390/molecules23092222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 01/10/2023] Open
Abstract
Veratrum californicum is a rich source of steroidal alkaloids such as cyclopamine, a known inhibitor of the Hedgehog (Hh) signaling pathway. Here we provide a detailed analysis of the alkaloid composition of V. californicum by plant part through quantitative analysis of cyclopamine, veratramine, muldamine and isorubijervine in the leaf, stem and root/rhizome of the plant. To determine whether additional alkaloids in the extracts contribute to Hh signaling inhibition, the concentrations of these four alkaloids present in extracts were replicated using commercially available standards, followed by comparison of extracts to alkaloid standard mixtures for inhibition of Hh signaling using Shh-Light II cells. Alkaloid combinations enhanced Hh signaling pathway antagonism compared to cyclopamine alone, and significant differences were observed in the Hh pathway inhibition between the stem and root/rhizome extracts and their corresponding alkaloid standard mixtures, indicating that additional alkaloids present in these extracts are capable of inhibiting Hh signaling.
Collapse
Affiliation(s)
- Matthew W Turner
- Biomolecular Sciences Graduate Programs, Boise State University, 1910 University Drive, Boise, ID 83725, USA.
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, USA.
| | - Roberto Cruz
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, USA.
| | - Jordan Elwell
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, USA.
| | - John French
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, USA.
| | - Jared Mattos
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, USA.
| | - Owen M McDougal
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, USA.
| |
Collapse
|
48
|
Zhang B, Wang H, Jiang T, Jin K, Luo Z, Shi W, Mei H, Wang H, Hu Y, Pang Z, Jiang X. Cyclopamine treatment disrupts extracellular matrix and alleviates solid stress to improve nanomedicine delivery for pancreatic cancer. J Drug Target 2018. [PMID: 29533111 DOI: 10.1080/1061186x.2018.1452243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As one of the most intractable tumours, pancreatic ductal adenocarcinoma (PDA) has a dense extracellular matrix (ECM) which could increase solid stress within tumours to compress tumour vessels, reduce tumour perfusion and compromise nanomedicine delivery for PDA. Thus, alleviating solid stress represents a potential therapeutic target for PDA treatment. In this study, cyclopamine, a special inhibitor of the hedgehog signalling pathway which contributes a lot to ECM formation of PDA, was exploited to alleviate solid stress and improve nanomedicine delivery to PDA. Results demonstrated that cyclopamine successfully disrupted ECM and lowered solid stress within PDA, which increased functional tumour vessels and resulted in enhanced tumour perfusion as well as improved tumour nanomedicine delivery in PDA-bearing animal models. Therefore, solid stress within PDA represents a new therapeutic target for PDA treatment.
Collapse
Affiliation(s)
- Bo Zhang
- a Institute of Hematology , Union Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan , China
| | - Honglan Wang
- a Institute of Hematology , Union Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan , China
| | - Ting Jiang
- a Institute of Hematology , Union Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan , China
| | - Kai Jin
- b School of Pharmacy , Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai , China
| | - Zimiao Luo
- b School of Pharmacy , Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai , China
| | - Wei Shi
- a Institute of Hematology , Union Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan , China
| | - Heng Mei
- a Institute of Hematology , Union Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan , China
| | - Huafang Wang
- a Institute of Hematology , Union Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan , China
| | - Yu Hu
- a Institute of Hematology , Union Hospital, Tongji Medical College, Huazhong University of Science & Technology , Wuhan , China
| | - Zhiqing Pang
- b School of Pharmacy , Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai , China
| | - Xinguo Jiang
- b School of Pharmacy , Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai , China
| |
Collapse
|
49
|
Zhang B, Hu Y, Pang Z. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery. Front Pharmacol 2017; 8:952. [PMID: 29311946 PMCID: PMC5744178 DOI: 10.3389/fphar.2017.00952] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022] Open
Abstract
Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR) effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents.
Collapse
Affiliation(s)
- Bo Zhang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, China
| |
Collapse
|
50
|
Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy. Eur J Med Chem 2017; 142:393-415. [DOI: 10.1016/j.ejmech.2017.08.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022]
|