1
|
Tangde VM, Bhalekar AA, Andresen B. Thermodynamic Stability Theories of Irreversible Processes and the Fourth Law of Thermodynamics. ENTROPY (BASEL, SWITZERLAND) 2024; 26:442. [PMID: 38920451 PMCID: PMC11202706 DOI: 10.3390/e26060442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Three approaches for determining the thermodynamic stability of irreversible processes are described in generalized formulations. The simplest is the Gibbs-Duhem theory, specialized to irreversible trajectories, which uses the concept of virtual displacement in the reverse direction. Its only drawback is that even a trajectory leading to an explosion is identified as a thermodynamically stable motion. In the second approach, we use a thermodynamic Lyapunov function and its time rate from the Lyapunov thermodynamic stability theory (LTS, previously known as CTTSIP). In doing so, we demonstrate that the second differential of entropy, a frequently used Lyapunov function, is useful only for investigating the stability of equilibrium states. Nonequilibrium steady states do not qualify. Without using explicit perturbation coordinates, we further identify asymptotic thermodynamic stability and thermodynamic stability under constantly acting disturbances of unperturbed trajectories as well as of nonequilibrium steady states. The third approach is also based on the Lyapunov function from LTS, but here we additionally use the rates of perturbation coordinates, based on the Gibbs relations and without using their explicit expressions, to identify not only asymptotic thermodynamic stability but also thermodynamic stability under constantly acting disturbances. Only those trajectories leading to an infinite rate of entropy production (unstable states) are excluded from this conclusion. Finally, we use these findings to formulate the Fourth Law of thermodynamics based on the thermodynamic stability. It is a comprehensive statement covering all nonequilibrium trajectories, close to as well as far from equilibrium. Unlike previous suggested "fourth laws", this one meets the same level of generality that is associated with the original zeroth to third laws. The above is illustrated using the Schlögl reaction with its multiple steady states in certain regions of operation.
Collapse
Affiliation(s)
- Vijay M. Tangde
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India; (V.M.T.); (A.A.B.)
| | - Anil A. Bhalekar
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India; (V.M.T.); (A.A.B.)
| | - Bjarne Andresen
- Niels Bohr Institute, University of Copenhagen, Jagtvej 155 A, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
2
|
Chimal-Eguia JC, Páez-Hernández RT, Pacheco-Paez JC, Ladino-Luna D. Linear Irreversible Thermodynamics: A Glance at Thermoelectricity and the Biological Scaling Laws. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1575. [PMID: 38136455 PMCID: PMC10743106 DOI: 10.3390/e25121575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 12/24/2023]
Abstract
This paper presents so-called thermoelectric generators (TEGs), which are considered thermal engines that transform heat into electricity using the Seebeck effect for this purpose. By using linear irreversible thermodynamics (LIT), it is possible to study the thermodynamic properties of TEGs for three different operating regimes: maximum power output (MPO), maximum ecological function (MEF) and maximum power efficiency (MPE). Then, by considering thermoelectricty, using the correspondence between the heat capacity of a solid and the metabolic rate, and taking the generation of energy by means of the metabolism of an organism as a process out of equilibrium, it is plausible to use linear irreversible thermodynamics (LIT) to obtain some interesting results in order to understand how metabolism is generated by a particle's released energy, which explains the empirically studied allometric laws.
Collapse
Affiliation(s)
- Juan Carlos Chimal-Eguia
- Laboratorio de Ciencias Matemáticas y Computacionales, Centro de Investigación en Computacion, Instituto Politecnico Nacional, Ciudad de Mexico 07738, Mexico
| | - Ricardo Teodoro Páez-Hernández
- Area de Fisica de Procesos Irreversibles, Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, U-Azcapotzalco, Av. San Pablo 180, Col. Reynosa, Ciudad de Mexico 02200, Mexico;
| | - Juan Carlos Pacheco-Paez
- Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-Azcapotzalco, Ciudad de Mexico 02200, Mexico;
| | - Delfino Ladino-Luna
- Area de Fisica de Procesos Irreversibles, Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, U-Azcapotzalco, Av. San Pablo 180, Col. Reynosa, Ciudad de Mexico 02200, Mexico;
| |
Collapse
|
3
|
Krishnamurthy S, Ganapathy R, Sood AK. Overcoming power-efficiency tradeoff in a micro heat engine by engineered system-bath interactions. Nat Commun 2023; 14:6842. [PMID: 37891165 PMCID: PMC10611737 DOI: 10.1038/s41467-023-42350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
All real heat engines, be it conventional macro engines or colloidal and atomic micro engines, inevitably tradeoff efficiency in their pursuit to maximize power. This basic postulate of finite-time thermodynamics has been the bane of all engine design for over two centuries and all optimal protocols implemented hitherto could at best minimize only the loss in the efficiency. The absence of a protocol that allows engines to overcome this limitation has prompted theoretical studies to suggest universality of the postulate in both passive and active engines. Here, we experimentally overcome the power-efficiency tradeoff in a colloidal Stirling engine by selectively reducing relaxation times over only the isochoric processes using system bath interactions generated by electrophoretic noise. Our approach opens a window of cycle times where the tradeoff is reversed and enables the engine to surpass even their quasistatic efficiency. Our strategies finally cut loose engine design from fundamental restrictions and pave way for the development of more efficient and powerful engines and devices.
Collapse
Affiliation(s)
| | - Rajesh Ganapathy
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- Sheikh Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
| |
Collapse
|
4
|
Contreras-Vergara O, Sánchez-Salas N, Valencia-Ortega G, Jiménez-Aquino JI. Carnot, Stirling, and Ericsson stochastic heat engines: Efficiency at maximum power. Phys Rev E 2023; 108:014123. [PMID: 37583186 DOI: 10.1103/physreve.108.014123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/26/2023] [Indexed: 08/17/2023]
Abstract
This work uses the low-dissipation strategy to obtain efficiency at maximum power from a stochastic heat engine performing Carnot-, Stirling- and Ericsson-like cycles at finite time. The heat engine consists of a colloidal particle trapped by optical tweezers, in contact with two thermal baths at different temperatures, namely hot (T_{h}) and cold (T_{c}). The particle dynamics is characterized by a Langevin equation with time-dependent control parameters bounded to a harmonic potential trap. In a low-dissipation approach, the equilibrium properties of the system are required, which in our case, can be calculated through a statelike equation for the mean value 〈x^{2}〉_{eq} coming from a macroscopic expression associated with the Langevin equation.
Collapse
Affiliation(s)
- O Contreras-Vergara
- Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edif. 9 UP Zacatenco, CP 07738, CDMX, México
| | - N Sánchez-Salas
- Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edif. 9 UP Zacatenco, CP 07738, CDMX, México
| | - G Valencia-Ortega
- División de Matemáticas e Ingeniería, Facultad de Estudios Superiores Acatlán, Universidad Nacional Autónoma de México, Av. Alcanfores y San Juan Totoltepec, Santa Cruz Acatlán, Naucalpan de Juárez, 53150, Estado de México, México
| | - J I Jiménez-Aquino
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, C.P. 09340, CDMX, México
| |
Collapse
|
5
|
Fadler P, Friedenberger A, Lutz E. Efficiency at Maximum Power of a Carnot Quantum Information Engine. PHYSICAL REVIEW LETTERS 2023; 130:240401. [PMID: 37390443 DOI: 10.1103/physrevlett.130.240401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/17/2023] [Indexed: 07/02/2023]
Abstract
Optimizing the performance of thermal machines is an essential task of thermodynamics. We here consider the optimization of information engines that convert information about the state of a system into work. We concretely introduce a generalized finite-time Carnot cycle for a quantum information engine and optimize its power output in the regime of low dissipation. We derive a general formula for its efficiency at maximum power valid for arbitrary working media. We further investigate the optimal performance of a qubit information engine subjected to weak energy measurements.
Collapse
Affiliation(s)
- Paul Fadler
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Alexander Friedenberger
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Eric Lutz
- Institute for Theoretical Physics I, University of Stuttgart, D-70550 Stuttgart, Germany
| |
Collapse
|
6
|
Tangde VM, Bhalekar AA. How Flexible Is the Concept of Local Thermodynamic Equilibrium? ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25010145. [PMID: 36673286 PMCID: PMC9858024 DOI: 10.3390/e25010145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 06/01/2023]
Abstract
It has been demonstrated by using generalized phenomenological irreversible thermodynamic theory (GPITT) that by replacing the conventional composition variables {xk} by the quantum level composition variables {x˜k,j} corresponding to the nonequilibrium population of the quantum states, the resultant description remains well within the local thermodynamic equilibrium (LTE) domain. The next attempt is to replace the quantum level composition variables by their respective macroscopic manifestations as variables. For example, these manifestations are, say, the observance of fluorescence and phosphorescence, existence of physical fluxes, and ability to register various spectra (microwave, IR, UV-VIS, ESR, NMR, etc.). This exercise results in a framework that resembles with the thermodynamics with internal variables (TIV), which too is obtained as a framework within the LTE domain. This TIV-type framework is easily transformed to an extended irreversible thermodynamics (EIT) type framework, which uses physical fluxes as additional variables. The GPITT in EIT version is also obtained well within the LTE domain. Thus, GPITT becomes a complete version of classical irreversible thermodynamics (CIT). It is demonstrated that LTE is much more flexible than what CIT impresses upon. This conclusion is based on the realization that the spatial uniformity for each tiny pocket (cell) of a spatially non-uniform system remains intact while developing GPITT and obviously in its other versions.
Collapse
Affiliation(s)
- Vijay M. Tangde
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Anil A. Bhalekar
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
- 106, Himalaya Prestige, South Ambazari Marg, SBI Colony, Gopal Nagar, Nagpur 440 022, India
| |
Collapse
|
7
|
Scandi M, Barker D, Lehmann S, Dick KA, Maisi VF, Perarnau-Llobet M. Minimally Dissipative Information Erasure in a Quantum Dot via Thermodynamic Length. PHYSICAL REVIEW LETTERS 2022; 129:270601. [PMID: 36638287 DOI: 10.1103/physrevlett.129.270601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In this Letter, we explore the use of thermodynamic length to improve the performance of experimental protocols. In particular, we implement Landauer erasure on a driven electron level in a semiconductor quantum dot, and compare the standard protocol in which the energy is increased linearly in time with the one coming from geometric optimization. The latter is obtained by choosing a suitable metric structure, whose geodesics correspond to optimal finite-time thermodynamic protocols in the slow driving regime. We show experimentally that geodesic drivings minimize dissipation for slow protocols, with a bigger improvement as one approaches perfect erasure. Moreover, the geometric approach also leads to smaller dissipation even when the time of the protocol becomes comparable with the equilibration timescale of the system, i.e., away from the slow driving regime. Our results also illustrate, in a single-electron device, a fundamental principle of thermodynamic geometry: optimal finite-time thermodynamic protocols are those with constant dissipation rate along the process.
Collapse
Affiliation(s)
- Matteo Scandi
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - David Barker
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Sebastian Lehmann
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Kimberly A Dick
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
- Centre for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
| | - Ville F Maisi
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | | |
Collapse
|
8
|
Yu Y, Xia S, Jin Q, Rong L. Finite-Time Thermodynamic Modeling and Optimization of Short-Chain Hydrocarbon Polymerization-Catalyzed Synthetic Fuel Process. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1658. [PMID: 36421513 PMCID: PMC9689745 DOI: 10.3390/e24111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The short-chain hydrocarbon polymerization-catalyzed synthetic fuel technology has great development potential in the fields of energy storage and renewable energy. Modeling and optimization of a short-chain hydrocarbon polymerization-catalyzed synthetic fuel process involving mixers, compressors, heat exchangers, reactors, and separators are performed through finite-time thermodynamics. Under the given conditions of the heat source temperature of the heat exchanger and the reactor, the optimal performance of the process is solved by taking the mole fraction of components, pressure, and molar flow as the optimization variables, and taking the minimum entropy generation rate (MEGR) of the process as the optimization objective. The results show that the entropy generation rate of the optimized reaction process is reduced by 48.81% compared to the reference process; among them, the component mole fraction is the most obvious optimization variable. The research results have certain theoretical guiding significance for the selection of the operation parameters of the short-chain hydrocarbon polymerization-catalyzed synthetic fuel process.
Collapse
Affiliation(s)
- Yajie Yu
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Shaojun Xia
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Qinglong Jin
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Lei Rong
- College of Nuclear Science and Technology, Naval University of Engineering, Wuhan 430033, China
| |
Collapse
|
9
|
Qiu X, Chen L, Ge Y, Shi S. Efficient Power Characteristic Analysis and Multi-Objective Optimization for an Irreversible Simple Closed Gas Turbine Cycle. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1531. [PMID: 36359622 PMCID: PMC9689163 DOI: 10.3390/e24111531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 05/28/2023]
Abstract
On the basis of the established irreversible simple closed gas turbine cycle model, this paper optimizes cycle performance further by applying the theory of finite-time thermodynamics. Dimensionless efficient power expression of the cycle is derived. Effects of internal irreversibility (turbine and compressor efficiencies) and heat reservoir temperature ratio on dimensionless efficient power are analyzed. When total heat conductance of two heat exchangers is constant, the double maximum dimensionless efficient power of a cycle can be obtained by optimizing heat-conductance distribution and cycle pressure-ratio. Through the NSGA-II algorithm, multi-objective optimizations are performed on the irreversible closed gas turbine cycle by taking five performance indicators, dimensionless power density, dimensionless ecological function, thermal efficiency, dimensionless efficient power and dimensionless power output, as objective functions, and taking pressure ratio and heat conductance distribution as optimization variables. The Pareto frontiers with the optimal solution set are obtained. The results reflect that heat reservoir temperature ratio and compressor efficiency have greatest influences on dimensionless efficient power, and the deviation indexes obtained by TOPSIS, LINMAP and Shannon Entropy decision-making methods are 0.2921, 0.2921, 0.2284, respectively, for five-objective optimization. The deviation index obtained by Shannon Entropy decision-making method is smaller than other decision-making methods and its result is more ideal.
Collapse
Affiliation(s)
- Xingfu Qiu
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuangshuang Shi
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
10
|
Wu Q, Chen L, Ge Y, Feng H. Four-Objective Optimization of an Irreversible Magnetohydrodynamic Cycle. ENTROPY 2022; 24:1470. [PMCID: PMC9601762 DOI: 10.3390/e24101470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/11/2022] [Indexed: 06/01/2023]
Abstract
Based on the existing model of an irreversible magnetohydrodynamic cycle, this paper uses finite time thermodynamic theory and multi-objective genetic algorithm (NSGA-II), introduces heat exchanger thermal conductance distribution and isentropic temperature ratio of working fluid as optimization variables, and takes power output, efficiency, ecological function, and power density as objective functions to carry out multi-objective optimization with different objective function combinations, and contrast optimization results with three decision-making approaches of LINMAP, TOPSIS, and Shannon Entropy. The results indicate that in the condition of constant gas velocity, deviation indexes are 0.1764 acquired by LINMAP and TOPSIS approaches when four-objective optimization is performed, which is less than that (0.1940) of the Shannon Entropy approach and those (0.3560, 0.7693, 0.2599, 0.1940) for four single-objective optimizations of maximum power output, efficiency, ecological function, and power density, respectively. In the condition of constant Mach number, deviation indexes are 0.1767 acquired by LINMAP and TOPSIS when four-objective optimization is performed, which is less than that (0.1950) of the Shannon Entropy approach and those (0.3600, 0.7630, 0.2637, 0.1949) for four single-objective optimizations, respectively. This indicates that the multi-objective optimization result is preferable to any single-objective optimization result.
Collapse
Affiliation(s)
- Qingkun Wu
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huijun Feng
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
11
|
He J, Chen L, Ge Y, Shi S, Li F. Four-Objective Optimizations of a Single Resonance Energy Selective Electron Refrigerator. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1445. [PMID: 37420465 PMCID: PMC9601456 DOI: 10.3390/e24101445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 06/01/2023]
Abstract
According to the established model of a single resonance energy selective electron refrigerator with heat leakage in the previous literature, this paper performs multi-objective optimization with finite-time thermodynamic theory and NSGA-II algorithm. Cooling load (R¯), coefficient of performance (ε), ecological function (ECO¯), and figure of merit (χ¯) of the ESER are taken as objective functions. Energy boundary (E'/kB) and resonance width (ΔE/kB) are regarded as optimization variables and their optimal intervals are obtained. The optimal solutions of quadru-, tri-, bi-, and single-objective optimizations are obtained by selecting the minimum deviation indices with three approaches of TOPSIS, LINMAP, and Shannon Entropy; the smaller the value of deviation index, the better the result. The results show that values of E'/kB and ΔE/kB are closely related to the values of the four optimization objectives; selecting the appropriate values of the system can design the system for optimal performance. The deviation indices are 0.0812 with LINMAP and TOPSIS approaches for four-objective optimization (ECO¯-R¯-ε-χ¯), while the deviation indices are 0.1085, 0.8455, 0.1865, and 0.1780 for four single-objective optimizations of maximum ECO¯, R¯, ε, and χ¯, respectively. Compared with single-objective optimization, four-objective optimization can better take different optimization objectives into account by choosing appropriate decision-making approaches. The optimal values of E'/kB and ΔE/kB range mainly from 12 to 13, and 1.5 to 2.5, respectively, for the four-objective optimization.
Collapse
Affiliation(s)
- Jinhu He
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuangshuang Shi
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fang Li
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
12
|
Chen L, Xia S. Maximum Profit Output Configuration of Multi-Reservoir Resource Exchange Intermediary. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1451. [PMID: 37420471 DOI: 10.3390/e24101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 07/09/2023]
Abstract
A model of a multi-reservoir resource exchange intermediary also defined as a commercial engine is proposed according to analogies and similarities between thermodynamics and economics. The optimal configuration of a multi-reservoir commercial engine with a maximum profit output objective is determined by applying optimal control theory. The optimal configuration consists of two instantaneous constant commodity flux processes and two constant price processes, and the configuration is independent of a number of economic subsystems and commodity transfer law qualitatively. The maximum profit output needs some economic subsystems to never contact with the commercial engine during commodity transfer processes. Numerical examples are provided for a three-economic-subsystem commercial engine with linear commodity transfer law. The effects of price changes of an intermediate economic subsystem on the optimal configuration of a three-economic-subsystem and the performance of optimal configuration are discussed. The research object is general, and the results can provide some theoretical guidelines for operations of actual economic processes and systems.
Collapse
Affiliation(s)
- Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shaojun Xia
- School of Power Engineering, Naval University of Engineering, Wuhan 430033, China
| |
Collapse
|
13
|
Tian L, Chen L, Ge Y, Shi S. Maximum Efficient Power Performance Analysis and Multi-Objective Optimization of Two-Stage Thermoelectric Generators. ENTROPY 2022; 24:1443. [PMCID: PMC9601944 DOI: 10.3390/e24101443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/08/2022] [Indexed: 06/01/2023]
Abstract
Two-stage thermoelectric generators have been widely used in the aerospace, military, industrial and daily life fields. Based on the established two-stage thermoelectric generator model, this paper further studies its performance. Applying the theory of finite-time thermodynamics, the efficient power expression of the two-stage thermoelectric generator is deduced firstly. The maximum efficient power is obtained secondly by optimizing the distribution of the heat exchanger area, distribution of thermoelectric elements and working current. Using the NSGA-II algorithm, multi-objective optimizations of the two-stage thermoelectric generator are performed thirdly by taking the dimensionless output power, thermal efficiency and dimensionless efficient power as objective functions, and taking the distribution of the heat exchanger area, distribution of thermoelectric elements and output current as optimization variables. The Pareto frontiers with the optimal solution set are obtained. The results show that when the total number of thermoelectric elements is increased from 40 to 100, the maximum efficient power is decreased from 0.308W to 0.2381W. When the total heat exchanger area is increased from 0.03m2 to 0.09m2, the maximum efficient power is increased from 0.0603W to 0.3777W. The deviation indexes are 0.1866, 0.1866 and 0.1815 with LINMAP, TOPSIS and Shannon entropy decision-making approaches, respectively, when multi-objective optimization is performed on three-objective optimization. The deviation indexes are 0.2140, 0.9429 and 0.1815 for three single-objective optimizations of maximum dimensionless output power, thermal efficiency and dimensionless efficient power, respectively.
Collapse
Affiliation(s)
- Lei Tian
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuangshuang Shi
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
14
|
Wang C, Xia S, Xie T. Finite-Time Thermodynamic Modeling and Analysis of Seawater Acidification Process in Electrochemical Acidification Cell. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1192. [PMID: 36141078 PMCID: PMC9497507 DOI: 10.3390/e24091192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
The unsteady process of the acidification of seawater by using an electrochemical acidification cell (EAC) is studied in this paper. The model of the concentration of hydrogen ions (H+) in the effluent seawater and the cell voltage of EAC varying with time and working current are built by applying the theory of finite-time thermodynamics, respectively. The semi-empirical formulas of the concentration of H+ in the effluent seawater and the cell voltage under the constant current of the Ionpure EAC are obtained, respectively, by fitting the experimental data of the Ionpure EAC. Then, the simulated data are compared with the experimental data. The total work consumption and average power consumption of the Ionpure EAC are obtained from the semi-empirical formulas. The results show that the semi-empirical formulas can simulate the operation process of the Ionpure EAC well. The validity of the models is verified. The increase of the working current will increase the total work consumption and average power consumption of the Ionpure EAC. The proper current can be selected in engineering practice to achieve different goals, such as high efficiency or low energy consumption. The obtained results can provide some guidelines for the optimal design and optimization of EAC.
Collapse
|
15
|
Chen YH, Chen JF, Fei Z, Quan HT. Microscopic theory of the Curzon-Ahlborn heat engine based on a Brownian particle. Phys Rev E 2022; 106:024105. [PMID: 36109948 DOI: 10.1103/physreve.106.024105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The Curzon-Ahlborn (CA) efficiency, as the efficiency at the maximum power (EMP) of the endoreversible Carnot engine, has significant impact on finite-time thermodynamics. However, the CA engine is based on many assumptions. In the past few decades, although a lot of efforts have been made, a microscopic theory of the CA engine is still lacking. By adopting the method of the stochastic differential equation of energy, we formulate a microscopic theory of the CA engine realized with a highly underdamped Brownian particle in a class of nonharmonic potentials. This theory gives microscopic interpretation of all assumptions made by Curzon and Ahlborn. In other words, we find a microscopic counterpart of the CA engine in stochastic thermodynamics. Also, based on this theory, we derive the explicit expression of the protocol associated with the maximum power for any given efficiency, and we obtain analytical results of the power and the efficiency statistics for the Brownian CA engine. Our research brings new perspectives to experimental studies of finite-time microscopic heat engines featured with fluctuations.
Collapse
Affiliation(s)
- Y H Chen
- School of Physics, Peking University, Beijing 100871, China
| | - Jin-Fu Chen
- School of Physics, Peking University, Beijing 100871, China
- Beijing Computational Science Research Center, Beijing 100193, China
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Zhaoyu Fei
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - H T Quan
- School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Singh V, Singh S, Abah O, Müstecaplıoğlu ÖE. Unified trade-off optimization of quantum harmonic Otto engine and refrigerator. Phys Rev E 2022; 106:024137. [PMID: 36110016 DOI: 10.1103/physreve.106.024137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
We investigate quantum Otto engine and refrigeration cycles of a time-dependent harmonic oscillator operating under the conditions of maximum Ω function, a trade-off objective function which represents a compromise between energy benefits and losses for a specific job, for both adiabatic and nonadiabatic (sudden) frequency modulations. We derive analytical expressions for the efficiency and coefficient of performance of the Otto cycle. For the case of adiabatic driving, we point out that in the low-temperature regime, the harmonic Otto engine (refrigerator) can be mapped to Feynman's ratchet and pawl model which is a steady-state classical heat engine. For the sudden switch of frequencies, we obtain loop-like behavior of the efficiency-work curve, which is characteristic of irreversible heat engines. Finally, we discuss the behavior of cooling power at maximum Ω function.
Collapse
Affiliation(s)
- Varinder Singh
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Satnam Singh
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Obinna Abah
- Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
- School of Mathematics, Statistics, and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Özgür E Müstecaplıoğlu
- Department of Physics, Koç University, 34450 Sarıyer, Istanbul, Turkey
- TÜBÍTAK Research Institute for Fundamental Sciences, 41470 Gebze, Turkey
| |
Collapse
|
17
|
Jin Q, Xia S, Xie T. Ecological Function Analysis and Optimization of a Recompression S-CO2 Cycle for Gas Turbine Waste Heat Recovery. ENTROPY 2022; 24:e24050732. [PMID: 35626615 PMCID: PMC9142093 DOI: 10.3390/e24050732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023]
Abstract
In this paper, a recompression S-CO2 Brayton cycle model that considers the finite-temperature difference heat transfer between the heat source and the working fluid, irreversible compression, expansion, and other irreversibility is established. First, the ecological function is analyzed. Then the mass flow rate, pressure ratio, diversion coefficient, and the heat conductance distribution ratios (HCDRs) of four heat exchangers (HEXs) are chosen as variables to optimize cycle performance, and the problem of long optimization time is solved by building a neural network prediction model. The results show that when the mass flow rate is small, the pressure ratio, the HCDRs of heater, and high temperature regenerator are the main influencing factors of the ecological function; when the mass flow rate is large, the influences of the re-compressor, the HCDRs of low temperature regenerator, and cooler on the ecological function increase; reasonable adjustment of the HCDRs of four HEXs can make the cycle performance better, but mass flow rate plays a more important role; the ecological function can be increased by 12.13%, 31.52%, 52.2%, 93.26%, and 96.99% compared with the initial design point after one-, two-, three-, four- and five-time optimizations, respectively.
Collapse
|
18
|
Sukin I, Tsirlin A, Andresen B. Finite-time thermodynamics: Multistage separation processes consuming mechanical energy. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Abstract
Microbial growth is a clear example of organization and structure arising in nonequilibrium conditions. Due to the complexity of the microbial metabolic network, elucidating the fundamental principles governing microbial growth remains a challenge. Here, we present a systematic analysis of microbial growth thermodynamics, leveraging an extensive dataset on energy-limited monoculture growth. A consistent thermodynamic framework based on reaction stoichiometry allows us to quantify how much of the available energy microbes can efficiently convert into new biomass while dissipating the remaining energy into the environment and producing entropy. We show that dissipation mechanisms can be linked to the electron donor uptake rate, a fact leading to the central result that the thermodynamic efficiency is related to the electron donor uptake rate by the scaling law [Formula: see text] and to the growth yield by [Formula: see text] These findings allow us to rederive the Pirt equation from a thermodynamic perspective, providing a means to compute its coefficients, as well as a deeper understanding of the relationship between growth rate and yield. Our results provide rather general insights into the relation between mass and energy conversion in microbial growth with potentially wide application, especially in ecology and biotechnology.
Collapse
|
20
|
Chen JF, Sun CP, Dong H. Extrapolating the thermodynamic length with finite-time measurements. Phys Rev E 2021; 104:034117. [PMID: 34654162 DOI: 10.1103/physreve.104.034117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/27/2021] [Indexed: 11/07/2022]
Abstract
The thermodynamic length, though providing a lower bound for the excess work required in a finite-time thermodynamic process, is determined by the properties of the equilibrium states reached by the quasistatic process and is thus beyond the direct experimental measurement. We propose an experimental strategy to measure the thermodynamic length of an open classical or quantum system by extrapolating finite-time measurements. The current proposal enables the measurement of the thermodynamic length for a single control parameter without requiring extra effort to find the optimal control scheme, and is illustrated with examples of the quantum harmonic oscillator with tuning frequency and the classical ideal gas with changing volume. Such a strategy shall shed light on the experimental design of the lacking platforms to measure the thermodynamic length.
Collapse
Affiliation(s)
- Jin-Fu Chen
- Beijing Computational Science Research Center, Beijing 100193, China.,Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - C P Sun
- Beijing Computational Science Research Center, Beijing 100193, China.,Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| |
Collapse
|
21
|
Wang T, Ge Y, Chen L, Feng H, Yu J. Optimal Heat Exchanger Area Distribution and Low-Temperature Heat Sink Temperature for Power Optimization of an Endoreversible Space Carnot Cycle. ENTROPY 2021; 23:e23101285. [PMID: 34682008 PMCID: PMC8534701 DOI: 10.3390/e23101285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022]
Abstract
Using finite-time thermodynamics, a model of an endoreversible Carnot cycle for a space power plant is established in this paper. The expressions of the cycle power output and thermal efficiency are derived. Using numerical calculations and taking the cycle power output as the optimization objective, the surface area distributions of three heat exchangers are optimized, and the maximum power output is obtained when the total heat transfer area of the three heat exchangers of the whole plant is fixed. Furthermore, the double-maximum power output is obtained by optimizing the temperature of a low-temperature heat sink. Finally, the influences of fixed plant parameters on the maximum power output performance are analyzed. The results show that there is an optimal temperature of the low-temperature heat sink and a couple of optimal area distributions that allow one to obtain the double-maximum power output. The results obtained have some guidelines for the design and optimization of actual space power plants.
Collapse
Affiliation(s)
- Tan Wang
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence:
| | - Huijun Feng
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiuyang Yu
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (T.W.); (Y.G.); (H.F.); (J.Y.)
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
22
|
Gong Q, Ge Y, Chen L, Shi S, Feng H. Performance Analysis and Four-Objective Optimization of an Irreversible Rectangular Cycle. ENTROPY 2021; 23:e23091203. [PMID: 34573828 PMCID: PMC8471157 DOI: 10.3390/e23091203] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
Based on the established model of the irreversible rectangular cycle in the previous literature, in this paper, finite time thermodynamics theory is applied to analyze the performance characteristics of an irreversible rectangular cycle by firstly taking power density and effective power as the objective functions. Then, four performance indicators of the cycle, that is, the thermal efficiency, dimensionless power output, dimensionless effective power, and dimensionless power density, are optimized with the cycle expansion ratio as the optimization variable by applying the nondominated sorting genetic algorithm II (NSGA-II) and considering four-objective, three-objective, and two-objective optimization combinations. Finally, optimal results are selected through three decision-making methods. The results show that although the efficiency of the irreversible rectangular cycle under the maximum power density point is less than that at the maximum power output point, the cycle under the maximum power density point can acquire a smaller size parameter. The efficiency at the maximum effective power point is always larger than that at the maximum power output point. When multi-objective optimization is performed on dimensionless power output, dimensionless effective power, and dimensionless power density, the deviation index obtained from the technique for order preference by similarity to an ideal solution (TOPSIS) decision-making method is the smallest value, which means the result is the best.
Collapse
Affiliation(s)
- Qirui Gong
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuangshaung Shi
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huijun Feng
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
23
|
Optimizing Power and Thermal Efficiency of an Irreversible Variable-Temperature Heat Reservoir Lenoir Cycle. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11157171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Applying finite-time thermodynamics theory, an irreversible steady flow Lenoir cycle model with variable-temperature heat reservoirs is established, the expressions of power (P) and efficiency (η) are derived. By numerical calculations, the characteristic relationships among P and η and the heat conductance distribution (uL) of the heat exchangers, as well as the thermal capacity rate matching (Cwf1/CH) between working fluid and heat source are studied. The results show that when the heat conductances of the hot- and cold-side heat exchangers (UH, UL) are constants, P-η is a certain “point”, with the increase of heat reservoir inlet temperature ratio (τ), UH, UL, and the irreversible expansion efficiency (ηe), P and η increase. When uL can be optimized, P and η versus uL characteristics are parabolic-like ones, there are optimal values of heat conductance distributions (uLP(opt), uLη(opt)) to make the cycle reach the maximum power and efficiency points (Pmax, ηmax). As Cwf1/CH increases, Pmax-Cwf1/CH shows a parabolic-like curve, that is, there is an optimal value of Cwf1/CH ((Cwf1/CH)opt) to make the cycle reach double-maximum power point ((Pmax)max); as CL/CH, UT, and ηe increase, (Pmax)max and (Cwf1/CH)opt increase; with the increase in τ, (Pmax)max increases, and (Cwf1/CH)opt is unchanged.
Collapse
|
24
|
Performance Optimizations with Single-, Bi-, Tri-, and Quadru-Objective for Irreversible Atkinson Cycle with Nonlinear Variation of Working Fluid’s Specific Heat. ENERGIES 2021. [DOI: 10.3390/en14144175] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Considering nonlinear variation of working fluid’s specific heat with its temperature, finite-time thermodynamic theory is applied to analyze and optimize the characteristics of an irreversible Atkinson cycle. Through numerical calculations, performance relationships between cycle dimensionless power density versus compression ratio and dimensionless power density versus thermal efficiency are obtained, respectively. When the design parameters take certain specific values, the performance differences of reversible, endoreversible and irreversible Atkinson cycles are compared. The maximum specific volume ratio, maximum pressure ratio, and thermal efficiency under the conditions of the maximum power output and maximum power density are compared. Based on NSGA-II, the single-, bi-, tri-, and quadru-objective optimizations are performed when the compression ratio is used as the optimization variable, and the cycle dimensionless power output, thermal efficiency, dimensionless ecological function, and dimensionless power density are used as the optimization objectives. The deviation indexes are obtained based on LINMAP, TOPSIS, and Shannon entropy solutions under different combinations of optimization objectives. By comparing the deviation indexes of bi-, tri- and quadru-objective optimization and the deviation indexes of single-objective optimizations based on maximum power output, maximum thermal efficiency, maximum ecological function and maximum power density, it is found that the deviation indexes of multi-objective optimization are smaller, and the solution of multi-objective optimization is desirable. The comparison results show that when the LINMAP solution is optimized with the dimensionless power output, thermal efficiency, and dimensionless power density as the objective functions, the deviation index is 0.1247, and this optimization objective combination is the most ideal.
Collapse
|
25
|
Shi S, Chen L, Ge Y, Feng H. Performance Optimizations with Single-, Bi-, Tri-, and Quadru-Objective for Irreversible Diesel Cycle. ENTROPY 2021; 23:e23070826. [PMID: 34203548 PMCID: PMC8305217 DOI: 10.3390/e23070826] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Applying finite time thermodynamics theory and the non-dominated sorting genetic algorithm-II (NSGA-II), thermodynamic analysis and multi-objective optimization of an irreversible Diesel cycle are performed. Through numerical calculations, the impact of the cycle temperature ratio on the power density of the cycle is analyzed. The characteristic relationships among the cycle power density versus the compression ratio and thermal efficiency are obtained with three different loss issues. The thermal efficiency, the maximum specific volume (the size of the total volume of the cylinder), and the maximum pressure ratio are compared under the maximum power output and the maximum power density criteria. Using NSGA-II, single-, bi-, tri-, and quadru-objective optimizations are performed for an irreversible Diesel cycle by introducing dimensionless power output, thermal efficiency, dimensionless ecological function, and dimensionless power density as objectives, respectively. The optimal design plan is obtained by using three solution methods, that is, the linear programming technique for multidimensional analysis of preference (LINMAP), the technique for order preferences by similarity to ideal solution (TOPSIS), and Shannon entropy, to compare the results under different objective function combinations. The comparison results indicate that the deviation index of multi-objective optimization is small. When taking the dimensionless power output, dimensionless ecological function, and dimensionless power density as the objective function to perform tri-objective optimization, the LINMAP solution is used to obtain the minimum deviation index. The deviation index at this time is 0.1333, and the design scheme is closer to the ideal scheme.
Collapse
Affiliation(s)
- Shuangshuang Shi
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (S.S.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (S.S.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (L.C.); (Y.G.)
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (S.S.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (L.C.); (Y.G.)
| | - Huijun Feng
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (S.S.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
26
|
Remlein B, Seifert U. Optimality of nonconservative driving for finite-time processes with discrete states. Phys Rev E 2021; 103:L050105. [PMID: 34134247 DOI: 10.1103/physreve.103.l050105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 11/07/2022]
Abstract
An optimal finite-time process drives a given initial distribution to a given final one in a given time at the lowest cost as quantified by total entropy production. We prove that for a system with discrete states this optimal process involves nonconservative driving, i.e., a genuine driving affinity, in contrast to the case of a system with continuous states. In a multicyclic network, the optimal driving affinity is bounded by the number of states within each cycle. If the driving affects forward and backwards rates nonsymmetrically, the bound additionally depends on a structural parameter characterizing this asymmetry.
Collapse
Affiliation(s)
- Benedikt Remlein
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
27
|
Izumida Y. Hierarchical Onsager symmetries in adiabatically driven linear irreversible heat engines. Phys Rev E 2021; 103:L050101. [PMID: 34134349 DOI: 10.1103/physreve.103.l050101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 11/07/2022]
Abstract
In existing linear response theories for adiabatically driven cyclic heat engines, Onsager symmetry is identified only phenomenologically, and a relation between global and local Onsager coefficients, defined over one cycle and at any instant of a cycle, respectively, is not derived. To address this limitation, we develop a linear response theory for the speed of adiabatically changing parameters and temperature differences in generic Gaussian heat engines obeying Fokker-Planck dynamics. We establish a hierarchical relationship between the global linear response relations, defined over one cycle of the heat engines, and the local ones, defined at any instant of the cycle. This yields a detailed expression for the global Onsager coefficients in terms of the local Onsager coefficients. Moreover, we derive an efficiency bound, which is tighter than the Carnot bound, for adiabatically driven linear irreversible heat engines based on the detailed global Onsager coefficients. Finally, we demonstrate the application of the theory using the simplest stochastic Brownian heat engine model.
Collapse
Affiliation(s)
- Yuki Izumida
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| |
Collapse
|
28
|
Abstract
The ideal Stirling cycle describes a specific way to operate an equilibrium Stirling engine. This cycle consists of two isothermal and two isochoric strokes. For non-equilibrium Stirling engines, which may feature various irreversibilities and whose dynamics is characterized by a set of coupled ordinary differential equations, a control strategy that is based on the ideal cycle will not necessarily yield the best performance—for example, it will not generally lead to maximum power. In this paper, we present a method to optimize the engine’s piston paths for different objectives; in particular, power and efficiency. Here, the focus is on an indirect iterative gradient algorithm that we use to solve the cyclic optimal control problem. The cyclic optimal control problem leads to a Hamiltonian system that features a symmetry between its state and costate subproblems. The symmetry manifests itself in the existence of mutually related attractive and repulsive limit cycles. Our algorithm exploits these limit cycles to solve the state and costate problems with periodic boundary conditions. A description of the algorithm is provided and it is explained how the control can be embedded in the system dynamics. Moreover, the optimization results obtained for an exemplary Stirling engine model are discussed. For this Stirling engine model, a comparison of the optimized piston paths against harmonic piston paths shows significant gains in both power and efficiency. At the maximum power point, the relative power gain due to the power-optimal control is ca. 28%, whereas the relative efficiency gain due to the efficiency-optimal control at the maximum efficiency point is ca. 10%.
Collapse
|
29
|
Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases. ENTROPY 2021; 23:e23050536. [PMID: 33925622 PMCID: PMC8145201 DOI: 10.3390/e23050536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
An irreversible combined Carnot cycle model using ideal quantum gases as a working medium was studied by using finite-time thermodynamics. The combined cycle consisted of two Carnot sub-cycles in a cascade mode. Considering thermal resistance, internal irreversibility, and heat leakage losses, the power output and thermal efficiency of the irreversible combined Carnot cycle were derived by utilizing the quantum gas state equation. The temperature effect of the working medium on power output and thermal efficiency is analyzed by numerical method, the optimal relationship between power output and thermal efficiency is solved by the Euler-Lagrange equation, and the effects of different working mediums on the optimal power and thermal efficiency performance are also focused. The results show that there is a set of working medium temperatures that makes the power output of the combined cycle be maximum. When there is no heat leakage loss in the combined cycle, all the characteristic curves of optimal power versus thermal efficiency are parabolic-like ones, and the internal irreversibility makes both power output and efficiency decrease. When there is heat leakage loss in the combined cycle, all the characteristic curves of optimal power versus thermal efficiency are loop-shaped ones, and the heat leakage loss only affects the thermal efficiency of the combined Carnot cycle. Comparing the power output of combined heat engines with four types of working mediums, the two-stage combined Carnot cycle using ideal Fermi-Bose gas as working medium obtains the highest power output.
Collapse
|
30
|
Bouton Q, Nettersheim J, Burgardt S, Adam D, Lutz E, Widera A. A quantum heat engine driven by atomic collisions. Nat Commun 2021; 12:2063. [PMID: 33824327 PMCID: PMC8024360 DOI: 10.1038/s41467-021-22222-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/05/2021] [Indexed: 12/02/2022] Open
Abstract
Quantum heat engines are subjected to quantum fluctuations related to their discrete energy spectra. Such fluctuations question the reliable operation of thermal machines in the quantum regime. Here, we realize an endoreversible quantum Otto cycle in the large quasi-spin states of Cesium impurities immersed in an ultracold Rubidium bath. Endoreversible machines are internally reversible and irreversible losses only occur via thermal contact. We employ quantum control to regulate the direction of heat transfer that occurs via inelastic spin-exchange collisions. We further use full-counting statistics of individual atoms to monitor quantized heat exchange between engine and bath at the level of single quanta, and additionally evaluate average and variance of the power output. We optimize the performance as well as the stability of the quantum heat engine, achieving high efficiency, large power output and small power output fluctuations. Designing reliable nanoscale quantum-heat engines achieving high efficiency, high power and high stability is of fundamental and practical interest. Here, the authors report the realization of such a quantum machine using individual neutral Cs atoms in an atomic Rb bath, in which quantized heat exchange via inelastic spin-exchange collisions is controlled at the level of single quanta.
Collapse
Affiliation(s)
- Quentin Bouton
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Jens Nettersheim
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Sabrina Burgardt
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Daniel Adam
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Eric Lutz
- Institute for Theoretical Physics I, University of Stuttgart, Stuttgart, Germany
| | - Artur Widera
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
31
|
Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle. ENTROPY 2021; 23:e23040425. [PMID: 33918144 PMCID: PMC8066634 DOI: 10.3390/e23040425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Using finite time thermodynamic theory, an irreversible steady-flow Lenoir cycle model is established, and expressions of power output and thermal efficiency for the model are derived. Through numerical calculations, with the different fixed total heat conductances (UT) of two heat exchangers, the maximum powers (Pmax), the maximum thermal efficiencies (ηmax), and the corresponding optimal heat conductance distribution ratios (uLP(opt)) and (uLη(opt)) are obtained. The effects of the internal irreversibility are analyzed. The results show that, when the heat conductances of the hot- and cold-side heat exchangers are constants, the corresponding power output and thermal efficiency are constant values. When the heat source temperature ratio (τ) and the effectivenesses of the heat exchangers increase, the corresponding power output and thermal efficiency increase. When the heat conductance distributions are the optimal values, the characteristic relationships of P-uL and η-uL are parabolic-like ones. When UT is given, with the increase in
τ, the Pmax, ηmax, uLP(opt), and uLη(opt) increase. When τ is given, with the increase in UT, Pmax and ηmax increase, while uLP(opt) and uLη(opt) decrease.
Collapse
|
32
|
Qi C, Ding Z, Chen L, Ge Y, Feng H. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine. ENTROPY 2021; 23:e23040419. [PMID: 33807398 PMCID: PMC8065476 DOI: 10.3390/e23040419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022]
Abstract
Based on finite time thermodynamics, an irreversible combined thermal Brownian heat engine model is established in this paper. The model consists of two thermal Brownian heat engines which are operating in tandem with thermal contact with three heat reservoirs. The rates of heat transfer are finite between the heat engine and the reservoir. Considering the heat leakage and the losses caused by kinetic energy change of particles, the formulas of steady current, power output and efficiency are derived. The power output and efficiency of combined heat engine are smaller than that of single heat engine operating between reservoirs with same temperatures. When the potential filed is free from external load, the effects of asymmetry of the potential, barrier height and heat leakage on the performance of the combined heat engine are analyzed. When the potential field is free from external load, the effects of basic design parameters on the performance of the combined heat engine are analyzed. The optimal power and efficiency are obtained by optimizing the barrier heights of two heat engines. The optimal working regions are obtained. There is optimal temperature ratio which maximize the overall power output or efficiency. When the potential filed is subjected to external load, effect of external load is analyzed. The steady current decreases versus external load; the power output and efficiency are monotonically increasing versus external load.
Collapse
Affiliation(s)
- Congzheng Qi
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (C.Q.); (Y.G.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China;
| | - Zemin Ding
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China;
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (C.Q.); (Y.G.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: or
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (C.Q.); (Y.G.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huijun Feng
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (C.Q.); (Y.G.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
33
|
Four-Objective Optimizations for an Improved Irreversible Closed Modified Simple Brayton Cycle. ENTROPY 2021; 23:e23030282. [PMID: 33652671 PMCID: PMC7996966 DOI: 10.3390/e23030282] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/02/2022]
Abstract
An improved irreversible closed modified simple Brayton cycle model with one isothermal heating process is established in this paper by using finite time thermodynamics. The heat reservoirs are variable-temperature ones. The irreversible losses in the compressor, turbine, and heat exchangers are considered. Firstly, the cycle performance is optimized by taking four performance indicators, including the dimensionless power output, thermal efficiency, dimensionless power density, and dimensionless ecological function, as the optimization objectives. The impacts of the irreversible losses on the optimization results are analyzed. The results indicate that four objective functions increase as the compressor and turbine efficiencies increase. The influences of the latter efficiency on the cycle performances are more significant than those of the former efficiency. Then, the NSGA-II algorithm is applied for multi-objective optimization, and three different decision methods are used to select the optimal solution from the Pareto frontier. The results show that the dimensionless power density and dimensionless ecological function compromise dimensionless power output and thermal efficiency. The corresponding deviation index of the Shannon Entropy method is equal to the corresponding deviation index of the maximum ecological function.
Collapse
|
34
|
Kong R, Chen L, Xia S, Li P, Ge Y. Minimization of Entropy Generation Rate in Hydrogen Iodide Decomposition Reactor Heated by High-Temperature Helium. ENTROPY 2021; 23:e23010082. [PMID: 33429980 PMCID: PMC7828003 DOI: 10.3390/e23010082] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/03/2022]
Abstract
The thermochemical sulfur-iodine cycle is a potential method for hydrogen production, and the hydrogen iodide (HI) decomposition is the key step to determine the efficiency of hydrogen production in the cycle. To further reduce the irreversibility of various transmission processes in the HI decomposition reaction, a one-dimensional plug flow model of HI decomposition tubular reactor is established, and performance optimization with entropy generate rate minimization (EGRM) in the decomposition reaction system as an optimization goal based on finite-time thermodynamics is carried out. The reference reactor is heated counter-currently by high-temperature helium gas, the optimal reactor and the modified reactor are designed based on the reference reactor design parameters. With the EGRM as the optimization goal, the optimal control method is used to solve the optimal configuration of the reactor under the condition that both the reactant inlet state and hydrogen production rate are fixed, and the optimal value of total EGR in the reactor is reduced by 13.3% compared with the reference value. The reference reactor is improved on the basis of the total EGR in the optimal reactor, two modified reactors with increased length are designed under the condition of changing the helium inlet state. The total EGR of the two modified reactors are the same as that of the optimal reactor, which are realized by decreasing the helium inlet temperature and helium inlet flow rate, respectively. The results show that the EGR of heat transfer accounts for a large proportion, and the decrease of total EGR is mainly caused by reducing heat transfer irreversibility. The local total EGR of the optimal reactor distribution is more uniform, which approximately confirms the principle of equipartition of entropy production. The EGR distributions of the modified reactors are similar to that of the reference reactor, but the reactor length increases significantly, bringing a relatively large pressure drop. The research results have certain guiding significance to the optimum design of HI decomposition reactors.
Collapse
Affiliation(s)
- Rui Kong
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China; (R.K.); (S.X.); (P.L.)
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: ; Tel.: +86-27-83615046
| | - Shaojun Xia
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China; (R.K.); (S.X.); (P.L.)
| | - Penglei Li
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China; (R.K.); (S.X.); (P.L.)
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
35
|
Góes P, Rosa D, Manzi J. A mathematical approach of the entropic index applied to chemical systems. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Paulo Góes
- Department of Chemical Engineering Federal University of Campina Grande Campina Grande Brazil
| | - David Rosa
- Department of Chemical Engineering Federal University of Campina Grande Campina Grande Brazil
| | - João Manzi
- Department of Chemical Engineering Federal University of Campina Grande Campina Grande Brazil
| |
Collapse
|
36
|
Dann R, Kosloff R, Salamon P. Quantum Finite-Time Thermodynamics: Insight from a Single Qubit Engine. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1255. [PMID: 33287023 PMCID: PMC7712823 DOI: 10.3390/e22111255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 02/01/2023]
Abstract
Incorporating time into thermodynamics allows for addressing the tradeoff between efficiency and power. A qubit engine serves as a toy model in order to study this tradeoff from first principles, based on the quantum theory of open systems. We study the quantum origin of irreversibility, originating from heat transport, quantum friction, and thermalization in the presence of external driving. We construct various finite-time engine cycles that are based on the Otto and Carnot templates. Our analysis highlights the role of coherence and the quantum origin of entropy production.
Collapse
Affiliation(s)
- Roie Dann
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Ronnie Kosloff
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Peter Salamon
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-7720, USA;
| |
Collapse
|
37
|
Shi S, Ge Y, Chen L, Feng H. Four-Objective Optimization of Irreversible Atkinson Cycle Based on NSGA-II. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1150. [PMID: 33286919 PMCID: PMC7597310 DOI: 10.3390/e22101150] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 11/23/2022]
Abstract
Variation trends of dimensionless power density (PD) with a compression ratio and thermal efficiency (TE) are discussed according to the irreversible Atkinson cycle (AC) model established in previous literature. Then, for the fixed cycle temperature ratio, the maximum specific volume ratios, the maximum pressure ratios, and the TEs corresponding to the maximum power output (PO) and the maximum PD are compared. Finally, multi-objective optimization (MOO) of cycle performance with dimensionless PO, TE, dimensionless PD, and dimensionless ecological function (EF) as the optimization objectives and compression ratio as the optimization variable are performed by applying the non-dominated sorting genetic algorithm-II (NSGA-II). The results show that there is an optimal compression ratio which will maximize the dimensionless PD. The relation curve of the dimensionless PD and compression ratio is a parabolic-like one, and the dimensionless PD and TE is a loop-shaped one. The AC engine has smaller size and higher TE under the maximum PD condition than those of under the maximum PO condition. With the increase of TE, the dimensionless PO will decrease, the dimensionless PD will increase, and the dimensionless EF will first increase and then decrease. There is no positive ideal point in Pareto frontier. The optimal solutions by using three decision-making methods are compared. This paper analyzes the performance of the PD of the AC with three losses, and performs MOO of dimensionless PO, TE, dimensionless PD, and dimensionless EF. The new conclusions obtained have theoretical guideline value for the optimal design of actual Atkinson heat engine.
Collapse
Affiliation(s)
- Shuangshuang Shi
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (S.S.); (Y.G.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanlin Ge
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (S.S.); (Y.G.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (S.S.); (Y.G.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huijun Feng
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (S.S.); (Y.G.); (H.F.)
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
38
|
Power, Efficiency, Power Density and Ecological Function Optimization for an Irreversible Modified Closed Variable-Temperature Reservoir Regenerative Brayton Cycle with One Isothermal Heating Process. ENERGIES 2020. [DOI: 10.3390/en13195133] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
One or more isothermal heating process was introduced to modify single and regenerative Brayton cycles by some scholars, which effectively improved the thermal efficiency and significantly reduced the emissions. To analyze and optimize the performance of this type of Brayton cycle, a regenerative modified Brayton cycle with an isothermal heating process is established in this paper based on finite time thermodynamics. The isothermal pressure drop ratio is variable. The irreversibilities of the compressor, turbine and all heat exchangers are considered in the cycle, and the heat reservoirs are variable-temperature ones. The function expressions of four performance indexes; that is, dimensionless power output, thermal efficiency, dimensionless power density and dimensionless ecological function are obtained. With the dimensionless power density as the optimization objective, the heat conductance distributions among all heat exchangers and the thermal capacitance rate matching among the working fluid and heat reservoir are optimized. Based on the NSGA-II algorithm, the cycle’s double-, triple- and quadruple-objective optimization are conducted with the total pressure ratio and the heat conductance distributions among heat exchangers as design variables. The optimal value is chosen from the Pareto frontier by applying the LINMAP, TOPSIS and Shannon entropy methods. The results show that when the pressure ratio in the compressor is less than 12.0, it is beneficial to add the regenerator to improve the cycle performance; when the pressure ratio is greater than 12.0, adding the regenerator will reduce the cycle performance. For single-objective optimization, the four performance indexes could be maximized under the optimal pressure ratios, respectively. When the pressure ratio is greater than 9.2, the cycle is simplified to a closed irreversible simple modified Brayton cycle with one isothermal heating process and coupled to variable-temperature heat reservoirs. Therefore, when the regenerator is used, the range of pressure ratio is limited, and a suitable pressure ratio should be selected. The triple objective (dimensionless power output, dimensionless power density and dimensionless ecological function) optimization’ deviation index gained by LINMAP or TOPSIS method is the smallest. The optimization results gained in this paper could offer some new pointers for the regenerative Brayton cycles’ optimal designs.
Collapse
|
39
|
Abiuso P, Miller HJD, Perarnau-Llobet M, Scandi M. Geometric Optimisation of Quantum Thermodynamic Processes. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1076. [PMID: 33286845 PMCID: PMC7597153 DOI: 10.3390/e22101076] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 11/22/2022]
Abstract
Differential geometry offers a powerful framework for optimising and characterising finite-time thermodynamic processes, both classical and quantum. Here, we start by a pedagogical introduction to the notion of thermodynamic length. We review and connect different frameworks where it emerges in the quantum regime: adiabatically driven closed systems, time-dependent Lindblad master equations, and discrete processes. A geometric lower bound on entropy production in finite-time is then presented, which represents a quantum generalisation of the original classical bound. Following this, we review and develop some general principles for the optimisation of thermodynamic processes in the linear-response regime. These include constant speed of control variation according to the thermodynamic metric, absence of quantum coherence, and optimality of small cycles around the point of maximal ratio between heat capacity and relaxation time for Carnot engines.
Collapse
Affiliation(s)
- Paolo Abiuso
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain; (P.A.); (M.S.)
| | - Harry J. D. Miller
- Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| | | | - Matteo Scandi
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain; (P.A.); (M.S.)
| |
Collapse
|
40
|
Schön JC. Optimal Control of Hydrogen Atom-Like Systems as Thermodynamic Engines in Finite Time. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1066. [PMID: 33286835 PMCID: PMC7597135 DOI: 10.3390/e22101066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 11/16/2022]
Abstract
Nano-size machines are moving from only being topics of basic research to becoming elements in the toolbox of engineers, and thus the issue of optimally controlling their work cycles becomes important. Here, we investigate hydrogen atom-like systems as working fluids in thermodynamic engines and their optimal control in minimizing entropy or excess heat production in finite-time processes. The electronic properties of the hydrogen atom-like system are controlled by a parameter κ reflecting changes in, e.g., the effective dielectric constant of the medium where the system is embedded. Several thermodynamic cycles consisting of combinations of iso-κ, isothermal, and adiabatic branches are studied, and a possible a-thermal cycle is discussed. Solving the optimal control problem, we show that the minimal thermodynamic length criterion of optimality for finite-time processes also applies to these cycles for general statistical mechanical systems that can be controlled by a parameter κ, and we derive an appropriate metric in probability distribution space. We show how the general formulas we have obtained for the thermodynamic length are simplified for the case of the hydrogen atom-like system, and compute the optimal distribution of process times for a two-state approximation of the hydrogen atom-like system.
Collapse
Affiliation(s)
- Johann Christian Schön
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| |
Collapse
|
41
|
Sun M, Xia S, Chen L, Wang C, Tang C. Minimum Entropy Generation Rate and Maximum Yield Optimization of Sulfuric Acid Decomposition Process Using NSGA-II. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1065. [PMID: 33286834 PMCID: PMC7597133 DOI: 10.3390/e22101065] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 12/01/2022]
Abstract
Based on the theory of finite-time thermodynamics (FTT), the effects of three design parameters, that is, inlet temperature, inlet pressure, and inlet total mole flow rate, of a tubular plug-flow sulfuric acid decomposition reactor on the total entropy generation rate (EGR) and SO2 yield are analyzed firstly. One can find that when the three design parameters are taken as optimization variables, the minimum total EGR and the maximum SO2 yield of the reference reactor restrict each other, i.e., the two different performance objectives cannot achieve the corresponding extremum values at the same time. Then, the second-generation non-dominated solution sequencing genetic algorithm (NSGA-II) is further used to pursue the minimum total EGR and the maximum SO2 yield of the reference reactor by taking the three parameters as optimization design variables. After the multi-objective optimization, the reference reactor can be Pareto improved, and the total EGR can be reduced by 9% and the SO2 yield can be increased by 14% compared to those of the reference reactor. The obtained results could provide certain theoretical guidance for the optimal design of actual sulfuric acid decomposition reactors.
Collapse
Affiliation(s)
- Ming Sun
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China; (M.S.); (S.X.); (C.W.); (C.T.)
| | - Shaojun Xia
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China; (M.S.); (S.X.); (C.W.); (C.T.)
| | - Lingen Chen
- Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Chao Wang
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China; (M.S.); (S.X.); (C.W.); (C.T.)
| | - Chenqi Tang
- College of Power Engineering, Naval University of Engineering, Wuhan 430033, China; (M.S.); (S.X.); (C.W.); (C.T.)
| |
Collapse
|
42
|
Muschik W, Hoffmann KH. Modeling, Simulation, and Reconstruction of 2-Reservoir Heat-to-Power Processes in Finite-Time Thermodynamics. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E997. [PMID: 33286766 PMCID: PMC7597325 DOI: 10.3390/e22090997] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
The connection between endoreversible models of Finite-Time Thermodynamics and the corresponding real running irreversible processes is investigated by introducing two concepts which complement each other: Simulation and Reconstruction. In that context, the importance of particular machine diagrams for Simulation and (reconstruction) parameter diagrams for Reconstruction is emphasized. Additionally, the treatment of internal irreversibilities through the use of contact quantities like the contact temperature is introduced into the Finite-Time Thermodynamics description of thermal processes.
Collapse
Affiliation(s)
- Wolfgang Muschik
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Karl Heinz Hoffmann
- Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany;
| |
Collapse
|
43
|
Proesmans K, Ehrich J, Bechhoefer J. Finite-Time Landauer Principle. PHYSICAL REVIEW LETTERS 2020; 125:100602. [PMID: 32955336 DOI: 10.1103/physrevlett.125.100602] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
We study the thermodynamic cost associated with the erasure of one bit of information over a finite amount of time. We present a general framework for minimizing the average work required when full control of a system's microstates is possible. In addition to exact numerical results, we find simple bounds proportional to the variance of the microscopic distribution associated with the state of the bit. In the short-time limit, we get a closed expression for the minimum average amount of work needed to erase a bit. The average work associated with the optimal protocol can be up to a factor of 4 smaller relative to protocols constrained to end in local equilibrium. Assessing prior experimental and numerical results based on heuristic protocols, we find that our bounds often dissipate an order of magnitude less energy.
Collapse
Affiliation(s)
- Karel Proesmans
- Department of Physics, Simon Fraser University, Burnaby, British Columbia,V5A 1S6, Canada
- Hasselt University, B-3590 Diepenbeek, Belgium
| | - Jannik Ehrich
- Department of Physics, Simon Fraser University, Burnaby, British Columbia,V5A 1S6, Canada
| | - John Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, British Columbia,V5A 1S6, Canada
| |
Collapse
|
44
|
Abstract
The first paper published as Finite-Time Thermodynamics is from 1977 [...].
Collapse
|
45
|
|
46
|
Re-Optimization of Expansion Work of a Heated Working Fluid with Generalized Radiative Heat Transfer Law. ENTROPY 2020; 22:e22070720. [PMID: 33286492 PMCID: PMC7517258 DOI: 10.3390/e22070720] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 11/29/2022]
Abstract
Based on the theoretical model of a heated ideal working fluid in the cylinder, the optimal motion path of the piston in this system, for the maximum work output, is re-studied by establishing the changed Lagrangian function and applying the elimination method when the initial internal energy, initial volume, finial volume and the process time are given and generalized radiative heat transfer law between the working fluid and heat bath is considered. The analytical solutions of the intermediate Euler-Lagrange arc with square, cubic and radiative heat transfer laws are taken as examples and obtained. The optimal motion path of the piston with cubic heat transfer law, which is obtained by applying the elimination method, is compared with that obtained by applying the Taylor formula expansion method through numerical example. The comparing result shows that the accuracy of the result which is obtained by applying the elimination method is not affected by the length of time of the expansion process of the working fluid, so this result is more universal.
Collapse
|
47
|
Optimized Piston Motion for an Alpha-Type Stirling Engine. ENTROPY 2020; 22:e22060700. [PMID: 33286472 PMCID: PMC7517238 DOI: 10.3390/e22060700] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/25/2022]
Abstract
The Stirling engine is one of the most promising devices for the recovery of waste heat. Its power output can be optimized by several means, in particular by an optimized piston motion. Here, we investigate its potential performance improvements in the presence of dissipative processes. In order to ensure the possibility of a technical implementation and the simplicity of the optimization, we restrict the possible piston movements to a parametrized class of smooth piston motions. In this theoretical study the engine model is based on endoreversible thermodynamics, which allows us to incorporate non-equilibrium heat and mass transfer as well as the friction of the piston motion. The regenerator of the Stirling engine is modeled as ideal. An investigation of the impact of the individual loss mechanisms on the resulting optimized motion is carried out for a wide range of parameter values. We find that an optimization within our restricted piston motion class leads to a power gain of about 50% on average.
Collapse
|
48
|
Optimal Power and Efficiency of Multi-Stage Endoreversible Quantum Carnot Heat Engine with Harmonic Oscillators at the Classical Limit. ENTROPY 2020; 22:e22040457. [PMID: 33286231 PMCID: PMC7516941 DOI: 10.3390/e22040457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
At the classical limit, a multi-stage, endoreversible Carnot cycle model of quantum heat engine (QHE) working with non-interacting harmonic oscillators systems is established in this paper. A simplified combined cycle, where all sub-cycles work at maximum power output (MPO), is analyzed under two types of combined form: constraint of cycle period or constraint of interstage heat current. The expressions of power and the corresponding efficiency under two types of combined constrains are derived. A general combined cycle, in which all sub-cycles run at arbitrary state, is further investigated under two types of combined constrains. By introducing the Lagrangian function, the MPO of two-stage combined QHE with different intermediate temperatures is obtained, utilizing numerical calculation. The results show that, for the simplified combined cycle, the total power decreases and heat exchange from hot reservoir increases under two types of constrains with the increasing number (N) of stages. The efficiency of the combined cycle decreases under the constraints of the cycle period, but keeps constant under the constraint of interstage heat current. For the general combined cycle, three operating modes, including single heat engine mode at low “temperature” (SM1), double heat engine mode (DM) and single heat engine mode at high “temperature” (SM2), appear as intermediate temperature varies. For the constraint of cycle period, the MPO is obtained at the junction of DM mode and SM2 mode. For the constraint of interstage heat current, the MPO keeps constant during DM mode, in which the two sub-cycles compensate each other.
Collapse
|
49
|
Performance of Universal Reciprocating Heat-Engine Cycle with Variable Specific Heats Ratio of Working Fluid. ENTROPY 2020; 22:e22040397. [PMID: 33286171 PMCID: PMC7516874 DOI: 10.3390/e22040397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 11/17/2022]
Abstract
Considering the finite time characteristic, heat transfer loss, friction loss and internal irreversibility loss, an air standard reciprocating heat-engine cycle model is founded by using finite time thermodynamics. The cycle model, which consists of two endothermic processes, two exothermic processes and two adiabatic processes, is well generalized. The performance parameters, including the power output and efficiency (PAE), are obtained. The PAE versus compression ratio relations are obtained by numerical computation. The impacts of variable specific heats ratio (SHR) of working fluid (WF) on universal cycle performances are analyzed and various special cycles are also discussed. The results include the PAE performance characteristics of various special cycles (including Miller, Dual, Atkinson, Brayton, Diesel and Otto cycles) when the SHR of WF is constant and variable (including the SHR varied with linear function (LF) and nonlinear function (NLF) of WF temperature). The maximum power outputs and the corresponding optimal compression ratios, as well as the maximum efficiencies and the corresponding optimal compression ratios for various special cycles with three SHR models are compared.
Collapse
|
50
|
A nonequilibrium thermodynamics perspective on nature-inspired chemical engineering processes. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.10.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|