1
|
Pekov SI, Bormotov DS, Bocharova SI, Sorokin AA, Derkach MM, Popov IA. Mass spectrometry for neurosurgery: Intraoperative support in decision-making. MASS SPECTROMETRY REVIEWS 2025; 44:62-73. [PMID: 38571445 DOI: 10.1002/mas.21883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
Ambient ionization mass spectrometry was proved to be a powerful tool for oncological surgery. Still, it remains a translational technique on the way from laboratory to clinic. Brain surgery is the most sensitive to resection accuracy field since the balance between completeness of resection and minimization of nerve fiber damage determines patient outcome and quality of life. In this review, we summarize efforts made to develop various intraoperative support techniques for oncological neurosurgery and discuss difficulties arising on the way to clinical implementation of mass spectrometry-guided brain surgery.
Collapse
Affiliation(s)
- Stanislav I Pekov
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
- Siberian State Medical University, Tomsk, Russian Federation
| | - Denis S Bormotov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | | | - Anatoly A Sorokin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Maria M Derkach
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Igor A Popov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
- Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
2
|
Hu S, Habib A, Xiong W, Chen L, Bi L, Wen L. Mass Spectrometry Imaging Techniques: Non-Ambient and Ambient Ionization Approaches. Crit Rev Anal Chem 2024:1-54. [PMID: 38889072 DOI: 10.1080/10408347.2024.2362703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Molecular information can be acquired from sample surfaces in real time using a revolutionary molecular imaging technique called mass spectrometry imaging (MSI). The technique can concurrently provide high spatial resolution information on the spatial distribution and relative proportion of many different compounds. Thus, many scientists have been drawn to the innovative capabilities of the MSI approach, leading to significant focus in various fields during the past few decades. This review describes the sampling protocol, working principle and applications of a few non-ambient and ambient ionization mass spectrometry imaging techniques. The non-ambient techniques include secondary ionization mass spectrometry and matrix-assisted laser desorption ionization, while the ambient techniques include desorption electrospray ionization, laser ablation electrospray ionization, probe electro-spray ionization, desorption atmospheric pressure photo-ionization and femtosecond laser desorption ionization. The review additionally addresses the advantages and disadvantages of ambient and non-ambient MSI techniques in relation to their suitability, particularly for biological samples used in tissue diagnostics. Last but not least, suggestions and conclusions are made regarding the challenges and future prospects of MSI.
Collapse
Affiliation(s)
- Shundi Hu
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Wei Xiong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - La Chen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Mondal S, Nandy A, Dande G, Prabhu K, Valmiki RR, Koner D, Banerjee S. Mass Spectrometric Imaging of Anionic Phospholipids Desorbed from Human Hippocampal Sections: Discrimination between Temporal and Nontemporal Lobe Epilepsies. ACS Chem Neurosci 2024; 15:983-993. [PMID: 38355427 DOI: 10.1021/acschemneuro.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common neurological disorders, often accompanied by hippocampal sclerosis. The molecular processes underlying this epileptogenesis are poorly understood. To examine the lipid profile, 39 fresh frozen sections of the human hippocampus obtained from epilepsy surgery for TLE (n = 14) and non-TLE (control group; n = 25) patients were subjected to desorption electrospray ionization mass spectrometry imaging in the negative ion mode. In contrast to our earlier report that showed striking downregulation of positively charged phospholipids (e.g., phosphatidylcholine and phosphatidylethanolamine, etc.) in the TLE hippocampus, this study finds complementary upregulation of negatively charged phospholipids, notably, phosphatidylserine and phosphatidylglycerol. This result may point to an active metabolic pool in the TLE hippocampus that produces these anionic phospholipids at the expense of the cationic phospholipids. This metabolic shift could be due to the dysregulation of the Kennedy and CDP-DG pathways responsible for biosynthesizing these lipids. Thus, this study further opens up opportunities to investigate the molecular hallmarks and potential therapeutic targets for TLE.
Collapse
Affiliation(s)
- Supratim Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Abhijit Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Geetha Dande
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Krishna Prabhu
- Department of Neurological Sciences, Christian Medical College, Vellore 632004, India
| | | | - Debasish Koner
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Shibdas Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| |
Collapse
|
4
|
Tomalty D, Giovannetti O, Velikonja L, Munday J, Kaufmann M, Iaboni N, Jamzad A, Rubino R, Fichtinger G, Mousavi P, Nicol CJB, Rudan JF, Adams MA. Molecular characterization of human peripheral nerves using desorption electrospray ionization mass spectrometry imaging. J Anat 2023; 243:758-769. [PMID: 37264225 PMCID: PMC10557387 DOI: 10.1111/joa.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023] Open
Abstract
Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) is a molecular imaging method that can be used to elucidate the small-molecule composition of tissues and map their spatial information using two-dimensional ion images. This technique has been used to investigate the molecular profiles of variety of tissues, including within the central nervous system, specifically the brain and spinal cord. To our knowledge, this technique has yet to be applied to tissues of the peripheral nervous system (PNS). Data generated from such analyses are expected to advance the characterization of these structures. The study aimed to: (i) establish whether DESI-MSI can discriminate the molecular characteristics of peripheral nerves and distinguish them from surrounding tissues and (ii) assess whether different peripheral nerve subtypes are characterized by unique molecular profiles. Four different nerves for which are known to carry various nerve fiber types were harvested from a fresh cadaveric donor: mixed, motor and sensory (sciatic and femoral); cutaneous, sensory (sural); and autonomic (vagus). Tissue samples were harvested to include the nerve bundles in addition to surrounding connective tissue. Samples were flash-frozen, embedded in optimal cutting temperature compound in cross-section, and sectioned at 14 μm. Following DESI-MSI analysis, identical tissue sections were stained with hematoxylin and eosin. In this proof-of-concept study, a combination of multivariate and univariate statistical methods was used to evaluate molecular differences between the nerve and adjacent tissue and between nerve subtypes. The acquired mass spectral profiles of the peripheral nerve samples presented trends in ion abundances that seemed to be characteristic of nerve tissue and spatially corresponded to the associated histology of the tissue sections. Principal component analysis (PCA) supported the separation of the samples into distinct nerve and adjacent tissue classes. This classification was further supported by the K-means clustering analysis, which showed separation of the nerve and background ions. Differences in ion expression were confirmed using ANOVA which identified statistically significant differences in ion expression between the nerve subtypes. The PCA plot suggested some separation of the nerve subtypes into four classes which corresponded with the nerve types. This was supported by the K-means clustering. Some overlap in classes was noted in these two clustering analyses. This study provides emerging evidence that DESI-MSI is an effective tool for metabolomic profiling of peripheral nerves. Our results suggest that peripheral nerves have molecular profiles that are distinct from the surrounding connective tissues and that DESI-MSI may be able to discriminate between nerve subtypes. DESI-MSI of peripheral nerves may be a valuable technique that could be used to improve our understanding of peripheral nerve anatomy and physiology. The ability to utilize ambient mass spectrometry techniques in real time could also provide an unprecedented advantage for surgical decision making, including in nerve-sparing procedures in the future.
Collapse
Affiliation(s)
- Diane Tomalty
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Olivia Giovannetti
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Leah Velikonja
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Jasica Munday
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Martin Kaufmann
- Department of SurgeryQueen's UniversityKingstonOntarioCanada
- Gastrointestinal Diseases Research UnitKingston Health Sciences CenterKingstonOntarioCanada
| | - Natasha Iaboni
- Department of Pathology and Molecular MedicineQueen's UniversityKingstonOntarioCanada
| | - Amoon Jamzad
- School of ComputingQueen's UniversityKingstonOntarioCanada
| | - Rachel Rubino
- Division of Cancer Biology and GeneticsQueen's Cancer Research InstituteKingstonOntarioCanada
| | | | - Parvin Mousavi
- School of ComputingQueen's UniversityKingstonOntarioCanada
| | - Christopher J. B. Nicol
- Department of Pathology and Molecular MedicineQueen's UniversityKingstonOntarioCanada
- Division of Cancer Biology and GeneticsQueen's Cancer Research InstituteKingstonOntarioCanada
| | - John F. Rudan
- Department of SurgeryQueen's UniversityKingstonOntarioCanada
| | - Michael A. Adams
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
5
|
Mondal S, Sthanikam Y, Kumar A, Nandy A, Chattopadhyay S, Koner D, Rukmangadha N, Narendra H, Banerjee S. Mass Spectrometry Imaging of Lumpectomy Specimens Deciphers Diacylglycerols as Potent Biomarkers for the Diagnosis of Breast Cancer. Anal Chem 2023; 95:8054-8062. [PMID: 37167069 DOI: 10.1021/acs.analchem.3c01019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Detecting breast tumor markers with a fast turnaround time from frozen sections should foster intraoperative histopathology in breast-conserving surgery, reducing the need for a second operation. Hence, rapid label-free discrimination of the spatially resolved molecular makeup between cancer and adjacent normal breast tissue is of growing importance. We performed desorption electrospray ionization mass spectrometry imaging (DESI-MSI) of fresh-frozen excision specimens, including cancer and paired adjacent normal sections, obtained from the lumpectomy of 73 breast cancer patients. The results demonstrate that breast cancer tissue posits sharp metabolic upregulation of diacylglycerol, a lipid second messenger that activates protein kinase C for promoting tumor growth. We identified four specific sn-1,2-diacylglycerols that outperformed all other lipids simultaneously mapped by the positive ion mode DESI-MSI for distinguishing cancers from adjacent normal specimens. This result contrasts with several previous DESI-MSI studies that probed metabolic dysregulation of glycerophospholipids, sphingolipids, and free fatty acids for cancer diagnoses. A random forest-based supervised machine learning considering all detected ion signals also deciphered the highest diagnostic potential of these four diacylglycerols with the top four importance scores. This led us to construct a classifier with 100% overall prediction accuracy of breast cancer by using the parsimonious set of four diacylglycerol biomarkers only. The metabolic pathway analysis suggested that increased catabolism of phosphatidylcholine in breast cancer contributes to diacylglycerol overexpression. These results open up opportunities for mapping diacylglycerol signaling in breast cancer in the context of novel therapeutic and diagnostic developments, including the intraoperative assessment of breast cancer margin status.
Collapse
Affiliation(s)
- Supratim Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Yeswanth Sthanikam
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Anubhav Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Abhijit Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Sutirtha Chattopadhyay
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Debasish Koner
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Nandyala Rukmangadha
- Department of Pathology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, India
| | - Hulikal Narendra
- Department of Surgical Oncology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, India
| | - Shibdas Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| |
Collapse
|
6
|
Soudah T, Zoabi A, Margulis K. Desorption electrospray ionization mass spectrometry imaging in discovery and development of novel therapies. MASS SPECTROMETRY REVIEWS 2023; 42:751-778. [PMID: 34642958 DOI: 10.1002/mas.21736] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) is one of the least specimen destructive ambient ionization mass spectrometry tissue imaging methods. It enables rapid simultaneous mapping, measurement, and identification of hundreds of molecules from an unmodified tissue sample. Over the years, since its first introduction as an imaging technique in 2005, DESI-MSI has been extensively developed as a tool for separating tissue regions of various histopathologic classes for diagnostic applications. Recently, DESI-MSI has also emerged as a versatile technique that enables drug discovery and can guide the efficient development of drug delivery systems. For example, it has been increasingly employed for uncovering unique patterns of in vivo drug distribution, the discovery of potentially treatable biochemical pathways, revealing novel druggable targets, predicting therapeutic sensitivity of diseased tissues, and identifying early tissue response to pharmacological treatment. These and other recent advances in implementing DESI-MSI as the tool for the development of novel therapies are highlighted in this review.
Collapse
Affiliation(s)
- Terese Soudah
- The Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amani Zoabi
- The Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Katherine Margulis
- The Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Bormotov DS, Shamraeva MA, Kuzin AA, Shamarina EV, Eliferov VA, Silkin SV, Zhdanova EV, Pekov SI, Popov IA. Ambient ms profiling of meningiomas: intraoperative oncometabolite-based monitoring. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The primary method of initial treatment of meningiomas is radical neurosurgical intervention. Various methods of intraoperative diagnostics currently in development aim to improve resection efficiency; we focus on methods based on molecular profiling using ambient ionization mass spectrometry. Such methods have been proven effective on various tumors, but the specifics of the molecular structure and the mechanical properties of meningiomas raise the question of applicability of protocols developed for other conditions for this particular task. The study aimed to compare the potential clinical use of three methods of ambient ionization in meningioma sample analysis: spray from tissue, inline cartridge extraction, and touch spherical sampler probe spray. To this end, lipid and metabolic profiles of meningioma tissues removed in the course of planned neurosurgical intervention have been analyzed. It is shown that in clinical practice, the lipid components of the molecular profile are best analyzed using the inline cartridge extraction method, distinguished by its ease of implementation and highest informational value. Analysis of oncometabolites with low molecular mass is optimally performed with the touch spherical sampler probe spray method, which scores high in both sensitivity and mass-spectrometric complex productivity.
Collapse
Affiliation(s)
- DS Bormotov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - MA Shamraeva
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - AA Kuzin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - EV Shamarina
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - VA Eliferov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - SV Silkin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - EV Zhdanova
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - SI Pekov
- Skoltech, Moscow, Russia; Siberian State Medical University, Tomsk, Russia
| | - IA Popov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
8
|
Morato NM, Brown HM, Garcia D, Middlebrooks EH, Jentoft M, Chaichana K, Quiñones-Hinojosa A, Cooks RG. High-throughput analysis of tissue microarrays using automated desorption electrospray ionization mass spectrometry. Sci Rep 2022; 12:18851. [PMID: 36344609 PMCID: PMC9640715 DOI: 10.1038/s41598-022-22924-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Tissue microarrays (TMAs) are commonly used for the rapid analysis of large numbers of tissue samples, often in morphological assessments but increasingly in spectroscopic analysis, where specific molecular markers are targeted via immunostaining. Here we report the use of an automated high-throughput system based on desorption electrospray ionization (DESI) mass spectrometry (MS) for the rapid generation and online analysis of high-density (6144 samples/array) TMAs, at rates better than 1 sample/second. Direct open-air analysis of tissue samples (hundreds of nanograms) not subjected to prior preparation, plus the ability to provide molecular characterization by tandem mass spectrometry (MS/MS), make this experiment versatile and applicable to both targeted and untargeted analysis in a label-free manner. These capabilities are demonstrated in a proof-of-concept study of frozen brain tissue biopsies where we showcase (i) a targeted MS/MS application aimed at identification of isocitrate dehydrogenase mutation in glioma samples and (ii) an untargeted MS tissue type classification using lipid profiles and correlation with tumor cell percentage estimates from histopathology. The small sample sizes and large sample numbers accessible with this methodology make for a powerful analytical system that facilitates the identification of molecular markers for later use in intraoperative applications to guide precision surgeries and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Nicolás M. Morato
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue Center for Cancer Research, and Bindley Bioscience Center, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 USA
| | - Hannah Marie Brown
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue Center for Cancer Research, and Bindley Bioscience Center, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 USA ,grid.4367.60000 0001 2355 7002Present Address: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO USA
| | - Diogo Garcia
- grid.417467.70000 0004 0443 9942Department of Neurosurgery, Mayo Clinic, Jacksonville, FL USA
| | - Erik H. Middlebrooks
- grid.417467.70000 0004 0443 9942Department of Neurosurgery, Mayo Clinic, Jacksonville, FL USA ,grid.417467.70000 0004 0443 9942Department of Radiology, Mayo Clinic, Jacksonville, FL USA
| | - Mark Jentoft
- grid.417467.70000 0004 0443 9942Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA
| | - Kaisorn Chaichana
- grid.417467.70000 0004 0443 9942Department of Neurosurgery, Mayo Clinic, Jacksonville, FL USA
| | | | - R. Graham Cooks
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue Center for Cancer Research, and Bindley Bioscience Center, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 USA
| |
Collapse
|
9
|
Lin M, Blevins MS, Sans M, Brodbelt JS, Eberlin LS. Deeper Understanding of Solvent-Based Ambient Ionization Mass Spectrometry: Are Molecular Profiles Primarily Dictated by Extraction Mechanisms? Anal Chem 2022; 94:14734-14744. [PMID: 36228313 DOI: 10.1021/acs.analchem.2c03360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solvent-based ambient ionization mass spectrometry (MS) techniques provide a powerful approach for direct chemical analysis and molecular profiling of biological tissues. While molecular profiling of tissues has been widely used for disease diagnosis, little is understood about how the interplay among solvent properties, matrix effects, and ion suppression can influence the detection of biological molecules. Here, we perform a systematic investigation of the extraction processes of lipids using an ambient ionization droplet microsampling platform to investigate how the physicochemical properties of the solvent systems and extraction time influence molecular extraction and detection. Direct molecular profiling and quantitative liquid chromatography-mass spectrometry (LC-MS) of discrete solvent droplets after surface sampling were investigated to provide insights into extraction and ionization mechanisms. The results of this study suggest that intermolecular interactions such as hydrogen bonding play a major role in extraction and detection of lipids using solvent-based ambient ionization techniques. In addition, extraction time was observed to impact the molecular profiles obtained, suggesting optimization of this parameter can be performed to favor detection of specific analytes.
Collapse
Affiliation(s)
- Monica Lin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Molly S Blevins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Marta Sans
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States.,Department of Surgery, Baylor College of Medicine, Houston, Texas77030, United States
| |
Collapse
|
10
|
Recent Advances of Ambient Mass Spectrometry Imaging and Its Applications in Lipid and Metabolite Analysis. Metabolites 2021; 11:metabo11110780. [PMID: 34822438 PMCID: PMC8625079 DOI: 10.3390/metabo11110780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
Ambient mass spectrometry imaging (AMSI) has attracted much attention in recent years. As a kind of unlabeled molecular imaging technique, AMSI can enable in situ visualization of a large number of compounds in biological tissue sections in ambient conditions. In this review, the developments of various AMSI techniques are discussed according to one-step and two-step ionization strategies. In addition, recent applications of AMSI for lipid and metabolite analysis (from 2016 to 2021) in disease diagnosis, animal model research, plant science, drug metabolism and toxicology research, etc., are summarized. Finally, further perspectives of AMSI in spatial resolution, sensitivity, quantitative ability, convenience and software development are proposed.
Collapse
|
11
|
Chen R, Brown HM, Cooks RG. Metabolic profiles of human brain parenchyma and glioma for rapid tissue diagnosis by targeted desorption electrospray ionization mass spectrometry. Anal Bioanal Chem 2021; 413:6213-6224. [PMID: 34373931 PMCID: PMC8522078 DOI: 10.1007/s00216-021-03593-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Desorption electrospray ionization mass spectrometry (DESI-MS) is well suited for intraoperative tissue analysis since it requires little sample preparation and offers rapid and sensitive molecular diagnostics. Currently, intraoperative assessment of the tumor cell percentage of glioma biopsies can be made by measuring a single metabolite, N-acetylaspartate (NAA). The inclusion of additional biomarkers will likely improve the accuracy when distinguishing brain parenchyma from glioma by DESI-MS. To explore this possibility, mass spectra were recorded for extracts from 32 unmodified human brain samples with known pathology. Statistical analysis of data obtained from full-scan and multiple reaction monitoring (MRM) profiles identified discriminatory metabolites, namely gamma-aminobutyric acid (GABA), creatine, glutamic acid, carnitine, and hexane-1,2,3,4,5,6-hexol (abbreviated as hexol), as well as the established biomarker NAA. Brain parenchyma was readily differentiated from glioma based on these metabolites as measured both in full-scan mass spectra and by the intensities of their characteristic MRM transitions. New DESI-MS methods (5 min acquisition using full scans and MS/MS), developed to measure ion abundance ratios among these metabolites, were tested using smears of 29 brain samples. Ion abundance ratios based on signals for GABA, creatine, carnitine, and hexol all had sensitivities > 90%, specificities > 80%, and accuracies > 85%. Prospectively, the implementation of diagnostic ion abundance ratios should strengthen the discriminatory power of individual biomarkers and enhance method robustness against signal fluctuations, resulting in an improved DESI-MS method of glioma diagnosis.
Collapse
Affiliation(s)
- Rong Chen
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Hannah Marie Brown
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA.
| |
Collapse
|
12
|
Ajith A, Sthanikam Y, Banerjee S. Chemical analysis of the human brain by imaging mass spectrometry. Analyst 2021; 146:5451-5473. [PMID: 34515699 DOI: 10.1039/d1an01109j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Analysis of the chemical makeup of the brain enables a deeper understanding of several neurological processes. Molecular imaging that deciphers the spatial distribution of neurochemicals with high specificity and sensitivity is an exciting avenue in this aspect. The past two decades have witnessed a significant surge of mass spectrometry imaging (MSI) that can simultaneously map the distribution of hundreds to thousands of biomolecules in the tissue specimen at a fairly high resolution, which is otherwise beyond the scope of other molecular imaging techniques. In this review, we have documented the evolution of MSI technologies in imaging the anatomical distribution of neurochemicals in the human brain in the context of several neuro diseases. This review also addresses the potential of MSI to be a next-generation molecular imaging technique with its promising applications in neuropathology.
Collapse
Affiliation(s)
- Akhila Ajith
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India.
| | - Yeswanth Sthanikam
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India.
| | - Shibdas Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India.
| |
Collapse
|
13
|
Brown HM, Alfaro CM, Pirro V, Dey M, Hattab EM, Cohen-Gadol AA, Cooks RG. Intraoperative Mass Spectrometry Platform for IDH Mutation Status Prediction, Glioma Diagnosis, and Estimation of Tumor Cell Infiltration. J Appl Lab Med 2021; 6:902-916. [PMID: 33523209 PMCID: PMC8266740 DOI: 10.1093/jalm/jfaa233] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Surgical tumor resection is the primary treatment option for diffuse glioma, the most common malignant brain cancer. The intraoperative diagnosis of gliomas from tumor core samples can be improved by use of molecular diagnostics. Further, residual tumor at surgical margins is a primary cause of tumor recurrence and malignant progression. This study evaluates a desorption electrospray ionization mass spectrometry (DESI-MS) system for intraoperative isocitrate dehydrogenase (IDH) mutation assessment, estimation of tumor cell infiltration as tumor cell percentage (TCP), and disease status. This information could be used to enhance the extent of safe resection and so potentially improve patient outcomes. METHODS A mobile DESI-MS instrument was modified and used in neurosurgical operating rooms (ORs) on a cohort of 49 human subjects undergoing craniotomy with tumor resection for suspected diffuse glioma. Small tissue biopsies (ntotal = 203) from the tumor core and surgical margins were analyzed by DESI-MS in the OR and classified using univariate and multivariate statistical methods. RESULTS Assessment of IDH mutation status using DESI-MS/MS to measure 2-hydroxyglutarate (2-HG) ion intensities from tumor cores yielded a sensitivity, specificity, and overall diagnostic accuracy of 89, 100, and 94%, respectively (ncore = 71). Assessment of TCP (categorized as low or high) in tumor margin and core biopsies using N-acetyl-aspartic acid (NAA) intensity provided a sensitivity, specificity, and accuracy of 91, 76, and 83%, respectively (ntotal = 203). TCP assessment using lipid profile deconvolution provided sensitivity, specificity, and accuracy of 76, 85, and 81%, respectively (ntotal = 203). Combining the experimental data and using PCA-LDA predictions of disease status, the sensitivity, specificity, and accuracy in predicting disease status are 63%, 83%, and 74%, respectively (ntotal = 203). CONCLUSIONS The DESI-MS system allowed for identification of IDH mutation status, glioma diagnosis, and estimation of tumor cell infiltration intraoperatively in a large human glioma cohort. This methodology should be further refined for clinical diagnostic applications.
Collapse
Affiliation(s)
| | - Clint M. Alfaro
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Valentina Pirro
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Mahua Dey
- Department of Neurological Surgery, Indiana University School of Medicine, Goodman Campbell Brain and Spine, Indianapolis, IN, USA
| | - Eyas M. Hattab
- Department of Pathology and Laboratory Medicine, University of Louisville, KY, USA
| | - Aaron A. Cohen-Gadol
- Department of Neurological Surgery, Indiana University School of Medicine, Goodman Campbell Brain and Spine, Indianapolis, IN, USA
| | - R. Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
14
|
Otsuka Y. Direct Liquid Extraction and Ionization Techniques for Understanding Multimolecular Environments in Biological Systems (Secondary Publication). Mass Spectrom (Tokyo) 2021; 10:A0095. [PMID: 34249586 PMCID: PMC8246329 DOI: 10.5702/massspectrometry.a0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
A combination of direct liquid extraction using a small volume of solvent and electrospray ionization allows the rapid measurement of complex chemical components in biological samples and visualization of their distribution in tissue sections. This review describes the development of such techniques and their application to biological research since the first reports in the early 2000s. An overview of electrospray ionization, ion suppression in samples, and the acceleration of specific chemical reactions in charged droplets is also presented. Potential future applications for visualizing multimolecular environments in biological systems are discussed.
Collapse
Affiliation(s)
- Yoichi Otsuka
- Graduate School of Science, Osaka University, 1–1 Machikaneyama-cho, Toyonaka, Osaka 560–0043, Japan
- JST, PRESTO, 4–1–8 Honcho, Kawaguchi, Saitama 332–0012, Japan
| |
Collapse
|
15
|
Jaroch K, Modrakowska P, Bojko B. Glioblastoma Metabolomics-In Vitro Studies. Metabolites 2021; 11:315. [PMID: 34068300 PMCID: PMC8153257 DOI: 10.3390/metabo11050315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
In 2016, the WHO introduced new guidelines for the diagnosis of brain gliomas based on new genomic markers. The addition of these new markers to the pre-existing diagnostic methods provided a new level of precision for the diagnosis of glioma and the prediction of treatment effectiveness. Yet, despite this new classification tool, glioblastoma (GBM), a grade IV glioma, continues to have one of the highest mortality rates among central nervous system tumors. Metabolomics is a particularly promising tool for the analysis of GBM tumors and potential methods of treating them, as it is the only "omics" approach that is capable of providing a metabolic signature of a tumor's phenotype. With careful experimental design, cell cultures can be a useful matrix in GBM metabolomics, as they ensure stable conditions and, under proper conditions, are capable of capturing different tumor phenotypes. This paper reviews in vitro metabolomic profiling studies of high-grade gliomas, with a particular focus on sample-preparation techniques, crucial metabolites identified, cell culture conditions, in vitro-in vivo extrapolation, and pharmacometabolomics. Ultimately, this review aims to elucidate potential future directions for in vitro GBM metabolomics.
Collapse
Affiliation(s)
| | | | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, dr A. Jurasza 2 Street, 85-089 Bydgoszcz, Poland; (K.J.); (P.M.)
| |
Collapse
|
16
|
Manoli E, Mason S, Ford L, Adebesin A, Bodai Z, Darzi A, Kinross J, Takats Z. Validation of Ultrasonic Harmonic Scalpel for Real-Time Tissue Identification Using Rapid Evaporative Ionization Mass Spectrometry. Anal Chem 2021; 93:5906-5916. [PMID: 33787247 PMCID: PMC8153397 DOI: 10.1021/acs.analchem.1c00270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In this study, we integrate rapid
evaporative ionization mass spectrometry
(REIMS) with the Harmonic scalpel, an advanced laparoscopic surgical
instrument that utilizes ultrasound energy to dissect and coagulate
tissues. It provides unparalleled manipulation capability to surgeons
and has superseded traditional electrosurgical tools particularly
in abdominal surgery, but is yet to be validated with REIMS. The REIMS
platform coupled with the Harmonic device was shown to produce tissue-specific
lipid profiles through the analysis of porcine tissues in both negative
and positive ionization modes. Comparison with other methods of electrosurgical
dissection, such as monopolar electrosurgery and CO2 laser,
showed spectral differences in the profile dependent on the energy
device used. The Harmonic device demonstrated major spectral differences
in the phospholipid region of m/z 600–1000 compared with the monopolar electrosurgical and
CO2 laser-generated spectra. Within the Harmonic REIMS
spectra, high intensities of diglycerides and triglycerides were observed.
In contrast, monopolar electrosurgical and laser spectra demonstrated
high abundances of glycerophospholipids. The Harmonic scalpel was
able to differentiate between the liver, muscle, colon, and small
intestine, demonstrating 100% diagnostic accuracy. The validation
of the Harmonic device–mass spectrometry combination will allow
the platform to be used safely and robustly for real-time in vivo surgical tissue identification in a variety of clinical
applications.
Collapse
Affiliation(s)
- Eftychios Manoli
- Department of Surgery and Cancer, Imperial College London, St Marys Hospital, London W2 1NY, United Kingdom
| | - Sam Mason
- Department of Surgery and Cancer, Imperial College London, St Marys Hospital, London W2 1NY, United Kingdom
| | - Lauren Ford
- Department of Surgery and Cancer, Imperial College London, St Marys Hospital, London W2 1NY, United Kingdom
| | - Afeez Adebesin
- Department of Surgery and Cancer, Imperial College London, St Marys Hospital, London W2 1NY, United Kingdom
| | - Zsolt Bodai
- Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Ara Darzi
- Department of Surgery and Cancer, Imperial College London, St Marys Hospital, London W2 1NY, United Kingdom
| | - James Kinross
- Department of Surgery and Cancer, Imperial College London, St Marys Hospital, London W2 1NY, United Kingdom
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
17
|
Cholesterol was identified as a biomarker in human melanocytic nevi using DESI and DESI/PI mass spectrometry imaging. Talanta 2021; 231:122380. [PMID: 33965043 DOI: 10.1016/j.talanta.2021.122380] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 01/16/2023]
Abstract
The rapid differentiation between diseased tissue and healthy normal tissue is of great importance for the intraoperative diagnosis. Herein, desorption electrospray ionization (DESI) and DESI/post-photoionization (DESI/PI) mass spectrometry imaging were combined to in situ visualize the distribution of biochemicals within the tissue regions of human melanocytic nevi under the ambient condition with a spatial resolution of around 200 μm. Plenty of polar and nonpolar lipids were found to be specifically distributed in melanocytic nevi with statistical significance and could be used to differentiate the healthy normal tissue and melanocytic nevi. Cholesterol was further confirmed to be a potential biomarker for melanocytic nevi diagnosis by multivariate statistical analysis and immunohistochemistry of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and translocator protein (TSPO) enzymes. This work provides a visual way for the diagnosis of human melanocytic nevi by lipid profiling, which benefits the understanding of the pathological mechanism of melanocytic nevi and provides a new insight to control melanin growth from the synthesis, transport, and metabolism of cholesterol.
Collapse
|
18
|
Suzuki K, Yoshimura K, Kawataki T, Hanihara M, Takeda S, Kinouchi H. Prediction of Pathological and Radiological Nature of Glioma by Mass Spectrometry Combined With Machine Learning. NEUROSURGERY OPEN 2021. [DOI: 10.1093/neuopn/okaa026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Chelliah SS, Paul EAL, Kamarudin MNA, Parhar I. Challenges and Perspectives of Standard Therapy and Drug Development in High-Grade Gliomas. Molecules 2021; 26:1169. [PMID: 33671796 PMCID: PMC7927069 DOI: 10.3390/molecules26041169] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Despite their low incidence rate globally, high-grade gliomas (HGG) remain a fatal primary brain tumor. The recommended therapy often is incapable of resecting the tumor entirely and exclusively targeting the tumor leads to tumor recurrence and dismal prognosis. Additionally, many HGG patients are not well suited for standard therapy and instead, subjected to a palliative approach. HGG tumors are highly infiltrative and the complex tumor microenvironment as well as high tumor heterogeneity often poses the main challenges towards the standard treatment. Therefore, a one-fit-approach may not be suitable for HGG management. Thus, a multimodal approach of standard therapy with immunotherapy, nanomedicine, repurposing of older drugs, use of phytochemicals, and precision medicine may be more advantageous than a single treatment model. This multimodal approach considers the environmental and genetic factors which could affect the patient's response to therapy, thus improving their outcome. This review discusses the current views and advances in potential HGG therapeutic approaches and, aims to bridge the existing knowledge gap that will assist in overcoming challenges in HGG.
Collapse
Affiliation(s)
- Shalini Sundramurthi Chelliah
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Ervin Ashley Lourdes Paul
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Ishwar Parhar
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| |
Collapse
|
20
|
Neumann EK, Djambazova KV, Caprioli RM, Spraggins JM. Multimodal Imaging Mass Spectrometry: Next Generation Molecular Mapping in Biology and Medicine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2401-2415. [PMID: 32886506 PMCID: PMC9278956 DOI: 10.1021/jasms.0c00232] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Imaging mass spectrometry has become a mature molecular mapping technology that is used for molecular discovery in many medical and biological systems. While powerful by itself, imaging mass spectrometry can be complemented by the addition of other orthogonal, chemically informative imaging technologies to maximize the information gained from a single experiment and enable deeper understanding of biological processes. Within this review, we describe MALDI, SIMS, and DESI imaging mass spectrometric technologies and how these have been integrated with other analytical modalities such as microscopy, transcriptomics, spectroscopy, and electrochemistry in a field termed multimodal imaging. We explore the future of this field and discuss forthcoming developments that will bring new insights to help unravel the molecular complexities of biological systems, from single cells to functional tissue structures and organs.
Collapse
Affiliation(s)
- Elizabeth K Neumann
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Katerina V Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| |
Collapse
|
21
|
Ivanov DG, Pekov SI, Bocharov KV, Bormotov DS, Spasskiy AI, Zhvansky ES, Sorokin AA, Eliferov VA, Zavorotnyuk DS, Tkachenko SI, Khaliullin IG, Kuksin AY, Shurkhay VA, Kononikhin AS, Nikolaev EN, Popov IA. Novel Mass Spectrometric Utilities for Assisting in Oncological Surgery. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2020. [DOI: 10.1134/s1990793120030173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Using Phosphatidylinositol Phosphorylation as Markers for Hyperglycemic Related Breast Cancer. Int J Mol Sci 2020; 21:ijms21072320. [PMID: 32230859 PMCID: PMC7177416 DOI: 10.3390/ijms21072320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Studies have suggested that type 2 diabetes (T2D) is associated with a higher incidence of breast cancer and related mortality rates. T2D postmenopausal women have an ~20% increased chance of developing breast cancer, and women with T2D and breast cancer have a 50% increase in mortality compared to breast cancer patients without diabetes. This correlation has been attributed to the general activation of insulin receptor signaling, glucose metabolism, phosphatidylinositol (PI) kinases, and growth pathways. Furthermore, the presence of breast cancer specific PI kinase and/or phosphatase mutations enhance metastatic breast cancer phenotypes. We hypothesized that each of the breast cancer subtypes may have characteristic PI phosphorylation profiles that are changed in T2D conditions. Therefore, we sought to characterize the PI phosphorylation when equilibrated in normal glycemic versus hyperglycemic serum conditions. Our results suggest that hyperglycemia leads to: 1) A reduction in PI3P and PIP3, with increased PI4P that is later converted to PI(3,4)P2 at the cell surface in hormone receptor positive breast cancer; 2) a reduction in PI3P and PI4P with increased PIP3 surface expression in human epidermal growth factor receptor 2-positive (HER2+) breast cancer; and 3) an increase in di- and tri-phosphorylated PIs due to turnover of PI3P in triple negative breast cancer. This study begins to describe some of the crucial changes in PIs that play a role in T2D related breast cancer incidence and metastasis.
Collapse
|
23
|
Banerjee S. Empowering Clinical Diagnostics with Mass Spectrometry. ACS OMEGA 2020; 5:2041-2048. [PMID: 32064364 PMCID: PMC7016904 DOI: 10.1021/acsomega.9b03764] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/21/2020] [Indexed: 05/20/2023]
Abstract
The unmet need for highly accurate methods of disease diagnosis poses new challenges for developments in laboratory medicine. Advances in mass spectrometry (MS)-based disease biomarker discoveries are continuously expanding the clinical diagnostic landscape. Although a number of MS-based in vitro diagnostics are already adopted in routine clinical practices, more are expected to undergo transition from bench to bedside in the near future. The ultrahigh sensitivity, specificity, and low turnaround time in molecular detection by MS make this technology highly powerful in disease detection and therapy monitoring. This mini-review highlights how MS has created a new paradigm in clinical diagnosis, which is growing in importance for public health.
Collapse
|
24
|
Sans M, Krieger A, Wygant BR, Garza KY, Mullins CB, Eberlin LS. Spatially Controlled Molecular Analysis of Biological Samples Using Nanodroplet Arrays and Direct Droplet Aspiration. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:418-428. [PMID: 32031393 DOI: 10.1021/jasms.9b00077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mass spectrometry (MS) has emerged as a valuable technology for molecular and spatial evaluation of biological samples. Ambient ionization MS techniques, in particular, allow direct analysis of tissue samples with minimal pretreatment. Here, we describe the design and optimization of an alternative ambient liquid extraction MS approach for metabolite and lipid profiling and imaging from biological samples. The system combines a piezoelectric picoliter dispenser to form solvent nanodroplets onto the sample surface with controlled and tunable spatial resolution and a conductive capillary to directly aspirate/ionize the nanodroplets for efficient analyte transmission and detection. Using this approach, we performed spatial profiling of mouse brain tissue sections with different droplet sizes (390, 420, and 500 μm). MS analysis of normal and cancerous human brain and ovarian tissues yielded rich metabolic profiles that were characteristic of disease state and enabled visualization of tissue regions with different histologic composition. This method was also used to analyze the lipid profiles of human ovarian cell lines. Overall, our results demonstrate the capabilities of this system for spatially controlled MS analysis of biological samples.
Collapse
Affiliation(s)
- Marta Sans
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Anna Krieger
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Bryan R Wygant
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Kyana Y Garza
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - C Buddie Mullins
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
- McKetta Department of Chemical Engineering , University of Texas at Austin , Austin , Texas 78712 United States
| | - Livia S Eberlin
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
25
|
Cordeiro FB, Jarmusch AK, León M, Ferreira CR, Pirro V, Eberlin LS, Hallett J, Miglino MA, Cooks RG. Mammalian ovarian lipid distributions by desorption electrospray ionization-mass spectrometry (DESI-MS) imaging. Anal Bioanal Chem 2020; 412:1251-1262. [PMID: 31953714 DOI: 10.1007/s00216-019-02352-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 02/03/2023]
Abstract
Merging optical images of tissue sections with the spatial distributions of molecules seen by imaging mass spectrometry is a powerful approach to better understand the metabolic roles of the mapped molecules. Here, we use histologically friendly desorption electrospray ionization-mass spectrometry (DESI-MS) to map the lipid distribution in tissue sections of ovaries from cows (N = 8), sows (N = 3), and mice (N = 12). Morphologically friendly DESI-MS imaging allows the same sections to be examined for morphological information. Independent of the species, ovarian follicles, corpora lutea, and stroma could be differentiated by principal component analysis, showing that lipid profiles are well conserved among species. As examples of specific findings, arachidonic acid and the phosphatidylinositol PI(38:4), were both found concentrated in the follicles and corpora lutea, structures that promoted ovulation and implantation, respectively. Adrenic acid was spatially located in the corpora lutea, suggesting the importance of this fatty acid in the ovary luteal phase. In summary, lipid information captured by DESI-MS imaging could be related to ovarian structures and data were all conserved among cows, sows, and mice. Further application of DESI-MS imaging to either physiological or pathophysiological models of reproductive conditions will likely expand knowledge of the roles of specific lipids and pathways in ovarian activity and mammalian fertility. Graphical abstract Desorption electrospray ionization-mass spectrometry (DESI-MS) is performed directly from frozen ovarian tissue sections placed onto glass slides. Because the desorption and ionization process of small molecules is so gentle, the tissue architecture is preserved. The sample can then be stained and tissue morphology information can be overlaid with the chemical information obtained by DESI-MS.
Collapse
Affiliation(s)
- Fernanda Bertuccez Cordeiro
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, 090112, Guayaquil, Ecuador
| | - Alan K Jarmusch
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN, 47907, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Marisol León
- Surgery Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, 05508-270, Brazil
| | - Christina Ramires Ferreira
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN, 47907, USA.
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907-1393, USA.
| | - Valentina Pirro
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN, 47907, USA
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Judy Hallett
- Purdue Center for Cancer Research Transgenic Mouse Core Facility, Purdue University, 201 S. University Street, West Lafayette, IN, 47907, USA
| | - Maria Angelica Miglino
- Surgery Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, 05508-270, Brazil
| | - Robert Graham Cooks
- Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
26
|
Alfaro CM, Pirro V, Keating MF, Hattab EM, Cooks RG, Cohen-Gadol AA. Intraoperative assessment of isocitrate dehydrogenase mutation status in human gliomas using desorption electrospray ionization-mass spectrometry. J Neurosurg 2020; 132:180-187. [PMID: 30611146 DOI: 10.3171/2018.8.jns181207] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/14/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors describe a rapid intraoperative ambient ionization mass spectrometry (MS) method for determining isocitrate dehydrogenase (IDH) mutation status from glioma tissue biopsies. This method offers new glioma management options and may impact extent of resection goals. Assessment of the IDH mutation is key for accurate glioma diagnosis, particularly for differentiating diffuse glioma from other neoplastic and reactive inflammatory conditions, a challenge for the standard intraoperative diagnostic consultation that relies solely on morphology. METHODS Banked glioma specimens (n = 37) were analyzed by desorption electrospray ionization-MS (DESI-MS) to develop a diagnostic method to detect the known altered oncometabolite in IDH-mutant gliomas, 2-hydroxyglutarate (2HG). The method was used intraoperatively to analyze tissue smears obtained from glioma patients undergoing resection and to rapidly diagnose IDH mutation status (< 5 minutes). Fifty-one tumor core biopsies from 25 patients (14 wild type [WT] and 11 mutant) were examined and data were analyzed using analysis of variance and receiver operating characteristic curve analysis. RESULTS The optimized DESI-MS method discriminated between IDH-WT and IDH-mutant gliomas, with an average sensitivity and specificity of 100%. The average normalized DESI-MS 2HG signal was an order of magnitude higher in IDH-mutant glioma than in IDH-WT glioma. The DESI 2HG signal intensities correlated with independently measured 2HG concentrations (R2 = 0.98). In 1 case, an IDH1 R132H-mutant glioma was misdiagnosed as a demyelinating condition by frozen section histology during the intraoperative consultation, and no resection was performed pending the final pathology report. A second craniotomy and tumor resection was performed after the final pathology provided a diagnosis most consistent with an IDH-mutant glioblastoma. During the second craniotomy, high levels of 2HG in the tumor core biopsies were detected. CONCLUSIONS This study demonstrates the capability to differentiate rapidly between IDH-mutant gliomas and IDH-WT conditions by DESI-MS during tumor resection. DESI-MS analysis of tissue smears is simple and can be easily integrated into the standard intraoperative pathology consultation. This approach may aid in solving differential diagnosis problems associated with low-grade gliomas and could influence intraoperative decisions regarding extent of resection, ultimately improving patient outcome. Research is ongoing to expand the patient cohort, systematically validate the DESI-MS method, and investigate the relationships between 2HG and tumor heterogeneity.
Collapse
Affiliation(s)
- Clint M Alfaro
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Valentina Pirro
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Michael F Keating
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Eyas M Hattab
- 2Department of Pathology and Laboratory Medicine, University of Louisville, Kentucky; and
| | - R Graham Cooks
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Aaron A Cohen-Gadol
- 3Department of Neurological Surgery, Indiana University School of Medicine, Goodman Campbell Brain and Spine, Indianapolis, Indiana
| |
Collapse
|
27
|
Pieterse CL, de Kock MB, Robertson WD, Eggers HC, Miller RJD. Rapid deconvolution of low-resolution time-of-flight data using Bayesian inference. J Chem Phys 2019; 151:244307. [DOI: 10.1063/1.5129343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Cornelius L. Pieterse
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michiel B. de Kock
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Stellenbosch University, Matieland 7602, South Africa
| | - Wesley D. Robertson
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Hans C. Eggers
- Department of Physics, Stellenbosch University, Matieland 7602, South Africa
- National Institute for Theoretical Physics, Matieland 7602, South Africa
| | - R. J. Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Ontario, Toronto M5S 3H6, Canada
| |
Collapse
|
28
|
Pekov SI, Eliferov VA, Sorokin AA, Shurkhay VA, Zhvansky ES, Vorobyev AS, Potapov AA, Nikolaev EN, Popov IA. Inline cartridge extraction for rapid brain tumor tissue identification by molecular profiling. Sci Rep 2019; 9:18960. [PMID: 31831871 PMCID: PMC6908710 DOI: 10.1038/s41598-019-55597-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
The development of perspective diagnostic techniques in medicine requires efficient high-throughput biological sample analysis methods. Here, we present an inline cartridge extraction that facilitates the screening rate of mass spectrometry shotgun lipidomic analysis of tissue samples. We illustrate the method by its application to tumor tissue identification in neurosurgery. In perspective, this high-performance method provides new possibilities for the investigation of cancer pathogenesis and metabolic disorders.
Collapse
Affiliation(s)
- Stanislav I Pekov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Vasily A Eliferov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Anatoly A Sorokin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Vsevolod A Shurkhay
- Federal State Autonomous Institution «N.N. Burdenko National Scientific and Practical Center for Neurosurgery» of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - Evgeny S Zhvansky
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Alexander S Vorobyev
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Alexander A Potapov
- Federal State Autonomous Institution «N.N. Burdenko National Scientific and Practical Center for Neurosurgery» of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - Eugene N Nikolaev
- Skolkovo Institute of Science and Technology, Skolkovo, Russian Federation.
| | - Igor A Popov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation.
| |
Collapse
|
29
|
Darienzo RE, Wang J, Chen O, Sullivan M, Mironava T, Kim H, Tannenbaum R. Surface-Enhanced Raman Spectroscopy Characterization of Breast Cell Phenotypes: Effect of Nanoparticle Geometry. ACS APPLIED NANO MATERIALS 2019; 2:6960-6970. [PMID: 34308266 PMCID: PMC8297918 DOI: 10.1021/acsanm.9b01436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of surface-enhanced Raman spectroscopy (SERS) to delineate between the breast epithelial cell lines MCF10A, SK-BR-3, and MDA-MB-231 is explored utilizing varied morphologies of gold nanoparticles. The nanoparticles studied had spherical, star-like, and quasi-fractal (nanocaltrop) morphologies and possessed varying degrees of surface inhomogeneity and complexity. The efficacy of Raman enhancement of these nanoparticles was a function of their size, their surface morphology, and the associated density of "hot spots," as well as their cellular uptake. The spherical and star-like nanoparticles provided strong signal enhancement that allowed for the discernment among the three cell phenotypes based solely on the acquired Raman spectra. The presence of overlapping Raman band spectral regions, as well as unique spectral bands, suggests that the underlying biological differences between these cells can be accessed without the need for tagging the nanoparticles or for specific cell targeting, demonstrating the potential ubiquity of this technique in imaging any cancer. This work provides clear evidence for the potential application of SERS as a tool for mapping cancerous lesions, possibly during surgery and under histopathological analysis.
Collapse
Affiliation(s)
- Richard E. Darienzo
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jingming Wang
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, 11794, United States
| | - Olivia Chen
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Maurinne Sullivan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Tatsiana Mironava
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Hyungjin Kim
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, 11794, United States
| | - Rina Tannenbaum
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
30
|
Proof of concept for identifying cystic fibrosis from perspiration samples. Proc Natl Acad Sci U S A 2019; 116:24408-24412. [PMID: 31740593 DOI: 10.1073/pnas.1909630116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The gold standard for cystic fibrosis (CF) diagnosis is the determination of chloride concentration in sweat. Current testing methodology takes up to 3 h to complete and has recognized shortcomings on its diagnostic accuracy. We present an alternative method for the identification of CF by combining desorption electrospray ionization mass spectrometry and a machine-learning algorithm based on gradient boosted decision trees to analyze perspiration samples. This process takes as little as 2 min, and we determined its accuracy to be 98 ± 2% by cross-validation on analyzing 277 perspiration samples. With the introduction of statistical bootstrap, our method can provide a confidence estimate of our prediction, which helps diagnosis decision-making. We also identified important peaks by the feature selection algorithm and assigned the chemical structure of the metabolites by high-resolution and/or tandem mass spectrometry. We inspected the correlation between mild and severe CFTR gene mutation types and lipid profiles, suggesting a possible way to realize personalized medicine with this noninvasive, fast, and accurate method.
Collapse
|
31
|
Neumann EK, Comi TJ, Rubakhin SS, Sweedler JV. Lipid Heterogeneity between Astrocytes and Neurons Revealed by Single‐Cell MALDI‐MS Combined with Immunocytochemical Classification. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812892] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elizabeth K. Neumann
- Department of Chemistry and Beckman Institute for Advanced Science and technologyUniversity of Illinois at Urbana-Champaign 405 N. Matthews Ave. Urbana IL 61801 USA
| | - Troy J. Comi
- Department of Chemistry and Beckman Institute for Advanced Science and technologyUniversity of Illinois at Urbana-Champaign 405 N. Matthews Ave. Urbana IL 61801 USA
| | - Stanislav S. Rubakhin
- Department of Chemistry and Beckman Institute for Advanced Science and technologyUniversity of Illinois at Urbana-Champaign 405 N. Matthews Ave. Urbana IL 61801 USA
| | - Jonathan V. Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and technologyUniversity of Illinois at Urbana-Champaign 405 N. Matthews Ave. Urbana IL 61801 USA
| |
Collapse
|
32
|
Neumann EK, Comi TJ, Rubakhin SS, Sweedler JV. Lipid Heterogeneity between Astrocytes and Neurons Revealed by Single-Cell MALDI-MS Combined with Immunocytochemical Classification. Angew Chem Int Ed Engl 2019; 58:5910-5914. [PMID: 30811763 DOI: 10.1002/anie.201812892] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/18/2019] [Indexed: 12/15/2022]
Abstract
Transcriptomics characterizes cells based on their potential molecular repertoire whereas direct mass spectrometry (MS) provides information on the actual compounds present within cells. Single-cell matrix-assisted laser desorption/ionization (MALDI) MS can measure the chemical contents of individual cells but spectra are difficult to correlate to conventional cell types, limiting the metabolic information obtained. We present a protocol that combines MALDI-MS with immunocytochemistry to assay over a thousand individual rat brain cells. The approach entwines the wealth of knowledge obtained by immunocytochemical profiling with mass spectral information on the predominant lipids within each cell. While many lipid species showed a high degree of similarity between neurons and astrocytes, seventeen significantly differed between the two cell types, including four phosphatidylethanolamines elevated in astrocytes and nine phosphatidylcholines in neurons.
Collapse
Affiliation(s)
- Elizabeth K Neumann
- Department of Chemistry and Beckman Institute for Advanced Science and technology, University of Illinois at Urbana-Champaign, 405 N. Matthews Ave., Urbana, IL, 61801, USA
| | - Troy J Comi
- Department of Chemistry and Beckman Institute for Advanced Science and technology, University of Illinois at Urbana-Champaign, 405 N. Matthews Ave., Urbana, IL, 61801, USA
| | - Stanislav S Rubakhin
- Department of Chemistry and Beckman Institute for Advanced Science and technology, University of Illinois at Urbana-Champaign, 405 N. Matthews Ave., Urbana, IL, 61801, USA
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and technology, University of Illinois at Urbana-Champaign, 405 N. Matthews Ave., Urbana, IL, 61801, USA
| |
Collapse
|
33
|
Woolman M, Kuzan-Fischer CM, Ferry I, Kiyota T, Luu B, Wu M, Munoz DG, Das S, Aman A, Taylor MD, Rutka JT, Ginsberg HJ, Zarrine-Afsar A. Picosecond Infrared Laser Desorption Mass Spectrometry Identifies Medulloblastoma Subgroups on Intrasurgical Timescales. Cancer Res 2019; 79:2426-2434. [DOI: 10.1158/0008-5472.can-18-3411] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/13/2019] [Accepted: 03/14/2019] [Indexed: 11/16/2022]
|
34
|
Mass spectrometry-based intraoperative tumor diagnostics. Future Sci OA 2019; 5:FSO373. [PMID: 30906569 PMCID: PMC6426168 DOI: 10.4155/fsoa-2018-0087] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/08/2019] [Indexed: 02/08/2023] Open
Abstract
In surgical oncology, decisions regarding the amount of tissue to be removed can have important consequences: the decision between preserving sufficient healthy tissue and eliminating all tumor cells is one to be made intraoperatively. This review discusses the latest technical innovations for a more accurate tumor margin localization based on mass spectrometry. Highlighting the latest mass spectrometric inventions, real-time diagnosis seems to be within reach; focusing on the intelligent knife, desorption electrospray ionization, picosecond infrared laser and MasSpec pen, the current technical status is evaluated critically concerning its scientific and medical practice.
Collapse
|
35
|
Luberto C, Haley JD, Del Poeta M. Imaging with mass spectrometry, the next frontier in sphingolipid research? A discussion on where we stand and the possibilities ahead. Chem Phys Lipids 2019; 219:1-14. [PMID: 30641043 DOI: 10.1016/j.chemphyslip.2019.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
Abstract
In the last ten years, mass spectrometry (MS) has become the favored analytical technique for sphingolipid (SPL) analysis and measurements. Indeed MS has the unique ability to both acquire sensitive and quantitative measurements and to resolve the molecular complexity characteristic of SPL molecules, both across the different SPL families and within the same SPL family. Currently, two complementary MS-based approaches are used for lipid research: analysis of lipid extracts, mainly by infusion electrospray ionization (ESI), and mass spectrometry imaging (MSI) from a sample surface (i.e. intact tissue sections, cells, model membranes, thin layer chromatography plates) (Fig. 1). The first allows for sensitive and quantitative information about total lipid molecular species from a given specimen from which lipids have been extracted and chromatographically separated prior to the analysis; the second, albeit generally less quantitative and less specific in the identification of molecular species due to the complexity of the sample, allows for spatial information of lipid molecules from biological specimens. In the field of SPL research, MS analysis of lipid extracts from biological samples has been commonly utilized to implicate the role of these lipids in specific biological functions. On the other hand, the utilization of MSI in SPL research represents a more recent development that has started to provide interesting descriptive observations regarding the distribution of specific classes of SPLs within tissues. Thus, it is the aim of this review to discuss how MSI technology has been employed to extend the study of SPL metabolism and the type of information that has been obtained from model membranes, single cells and tissues. We envision this discussion as a complementary compendium to the excellent technical reviews recently published about the specifics of MSI technologies, including their application to SPL analysis (Fuchs et al., 2010; Berry et al., 2011; Ellis et al., 2013; Eberlin et al., 2011; Kraft and Klitzing, 2014).
Collapse
Affiliation(s)
- Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States.
| | - John D Haley
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States; Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States; Veterans Administrations Medical Center, Northport, NY, United States
| |
Collapse
|
36
|
Franklin ET, Betancourt SK, Randolph CE, McLuckey SA, Xia Y. In-depth structural characterization of phospholipids by pairing solution photochemical reaction with charge inversion ion/ion chemistry. Anal Bioanal Chem 2019; 411:4739-4749. [PMID: 30613841 DOI: 10.1007/s00216-018-1537-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/25/2018] [Accepted: 12/03/2018] [Indexed: 11/25/2022]
Abstract
Shotgun lipid analysis based on electrospray ionization-tandem mass spectrometry (ESI-MS/MS) is increasingly used in lipidomic studies. One challenge for the shotgun approach is the discrimination of lipid isomers and isobars. Gas-phase charge inversion via ion/ion reactions has been used as an effective method to identify multiple isomeric/isobaric components in a single MS peak by exploiting the distinctive functionality of different lipid classes. In doing so, fatty acyl chain information can be obtained without recourse to condensed-phase separations or derivatization. This method alone, however, cannot provide carbon-carbon double bond (C=C) location information from fatty acyl chains. Herein, we provide an enhanced method pairing photochemical derivatization of C=C via the Paternò-Büchi reaction with charge inversion ion/ion tandem mass spectrometry. This method was able to provide gas-phase separation of phosphatidylcholines and phosphatidylethanolamines, the fatty acyl compositions, and the C=C location within each fatty acyl chain. We have successfully applied this method to bovine liver lipid extracts and identified 40 molecular species of glycerophospholipids with detailed structural information including head group, fatty acyl composition, and C=C location. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Elissia T Franklin
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Stella K Betancourt
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Caitlin E Randolph
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA.
| | - Yu Xia
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA.
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
37
|
Banerjee S. Ambient ionization mass spectrometry imaging for disease diagnosis: Excitements and challenges. J Biosci 2018; 43:731-738. [PMID: 30207318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tissue analysis in histology is extremely important and also considered to be a gold standard to diagnose and prognosticate several diseases including cancer. Intraoperative evaluation of surgical margin of tumor also relies on frozen section histopathology, which is time consuming, challenging and often subjective. Recent development in the ambient ionization mass spectrometry imaging (MSI) technique has enabled us to simultaneously visualize hundreds to thousands of molecules (ion images) in the biopsy specimen, which are strikingly different and more powerful than the single optical tissue image analysis in conventional histopathology. This paper will highlight the emergence of the desorption electrospray ionization MSI (DESI-MSI) technique, which is label-free, requires minimal or no sample preparation and operates under ambient conditions. DESI-MSI can record ion images of lipid/metabolite distributions on biopsy specimens, providing a wealth of diagnostic information based on differential distributions of these molecular species in healthy and unhealthy tissues. Remarkable success of this technology in rapidly evaluating the cancer margin intraoperatively with very high accuracy also promises to bring this imaging technique from bench to bedside.
Collapse
Affiliation(s)
- Shibdas Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Karakambadi Road, Tirupati 517 507, India,
| |
Collapse
|
38
|
Banerjee S. Ambient ionization mass spectrometry imaging for disease diagnosis: Excitements and challenges. J Biosci 2018. [DOI: 10.1007/s12038-018-9785-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Nikitin PV, Potapov AA, Ryzhova MV, Shurkhay VA, Kulikov EE, Zhvanskiy ES, Popov IA, Nikolaev EN. [The role of lipid metabolism disorders, atypical isoforms of protein kinase C, and mutational status of cytosolic and mitochondrial forms of isocitrate dehydrogenase in carcinogenesis of glial tumors]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2018; 82:112-120. [PMID: 29927433 DOI: 10.17116/neiro2018823112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The relationship between molecular genetic and metabolic disorders is one of the challenges of modern oncology. In this review, we consider lipid metabolism and its changes as one of the factors of oncogenesis of glial tumors. Also, we demonstrate that the genome and the metabolome are interconnected by a large number of links, and the metabolic pathways, during their reorganization, are able to drastically affect the genetic structure of the cell and, in particular, cause its tumor transformation. Our own observations and analysis of the literature data allow us to conclude that mass spectrometry is a highly accurate current method for assessing metabolic disorders at the cellular level. The use of mass spectrometry during surgery allows the neurosurgeon to obtain real-time data on the level of specific molecular markers in the resected tissue, thereby bringing intraoperative navigation techniques to the molecular level. The generation of molecular fingerprints for each tumor significantly complements the available neuroimaging, molecular genetic, and immunohistochemical data.
Collapse
Affiliation(s)
- P V Nikitin
- Burdenko Neurosurgery Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - A A Potapov
- Burdenko Neurosurgery Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - M V Ryzhova
- Burdenko Neurosurgery Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - V A Shurkhay
- Burdenko Neurosurgery Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047; Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Region, Russia, 141701
| | - E E Kulikov
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Region, Russia, 141701; Federal Research Center 'Fundamentals of Biotechnology', Leninskiy Prospect, 33/2, Moscow, Russia, 119071
| | - E S Zhvanskiy
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Region, Russia, 141701
| | - I A Popov
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Region, Russia, 141701
| | - E N Nikolaev
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Region, Russia, 141701; Skolkovo Institute of Science and Technology, Nobelya Str., 3, Moscow, Russia, 143026; Institute of Energy Problems of Chemical Physics, Leninskiy Prospect, 38/2, Moscow, Russia, 119334
| |
Collapse
|
40
|
Cooks RG, Yan X. Mass Spectrometry for Synthesis and Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:1-28. [PMID: 29894228 DOI: 10.1146/annurev-anchem-061417-125820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mass spectrometry is the science and technology of ions. As such, it is concerned with generating ions, measuring their properties, following their reactions, isolating them, and using them to build and transform materials. Instrumentation is an essential element of these activities, and analytical applications are one driving force. Work from the Aston Laboratories at Purdue University's Department of Chemistry is described here, with an emphasis on accelerated reactions of ions in solution and small-scale synthesis; ion/surface collision processes, including surface-induced dissociation (SID) and ion soft landing; and applications to tissue imaging. Our special interest in chirality and the chemistry behind the origins of life is also featured together with the exciting area of tissue diagnostics.
Collapse
Affiliation(s)
- R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA;
| | - Xin Yan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA;
- Current affiliation: Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
41
|
Deng J, Li W, Yang Q, Liu Y, Fang L, Guo Y, Guo P, Lin L, Yang Y, Luan T. Biocompatible Surface-Coated Probe for in Vivo, in Situ, and Microscale Lipidomics of Small Biological Organisms and Cells Using Mass Spectrometry. Anal Chem 2018; 90:6936-6944. [DOI: 10.1021/acs.analchem.8b01218] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiewei Deng
- State Key Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou 510275, China
| | - Wenying Li
- State Key Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou 510275, China
| | - Qiuxia Yang
- Guangdong Engineering and Technology Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Yaohui Liu
- Guangdong Engineering and Technology Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Ling Fang
- State Key Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou 510275, China
- Instrumental Analysis & Research Center, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou 510275, China
| | - Yunhua Guo
- Instrumental Analysis & Research Center, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou 510275, China
| | - Pengran Guo
- Guangdong Engineering and Technology Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Li Lin
- State Key Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou 510275, China
| | - Yunyun Yang
- Guangdong Engineering and Technology Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou 510275, China
| |
Collapse
|
42
|
Cahill JF, Kertesz V, Porta T, LeBlanc JCY, Heeren RMA, Van Berkel GJ. Solvent effects on differentiation of mouse brain tissue using laser microdissection 'cut and drop' sampling with direct mass spectral analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:414-422. [PMID: 29297944 DOI: 10.1002/rcm.8053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 05/12/2023]
Abstract
RATIONALE Laser microdissection-liquid vortex capture/electrospray ionization mass spectrometry (LMD-LVC/ESI-MS) has potential for on-line classification of tissue but an investigation into what analytical conditions provide best spectral differentiation has not been conducted. The effects of solvent, ionization polarity, and spectral acquisition parameters on differentiation of mouse brain tissue regions are described. METHODS Individual 40 × 40 μm microdissections from cortex, white, grey, granular, and nucleus regions of mouse brain tissue were analyzed using different capture/ESI solvents, in positive and negative ion mode ESI, using time-of-flight (TOF)-MS and sequential window acquisitions of all theoretical spectra (SWATH)-MS (a permutation of tandem-MS), and combinations thereof. Principal component analysis-linear discriminant analysis (PCA-LDA), applied to each mass spectral dataset, was used to determine the accuracy of differentiation of mouse brain tissue regions. RESULTS Mass spectral differences associated with capture/ESI solvent composition manifested as altered relative distributions of ions rather than the presence or absence of unique ions. In negative ion mode ESI, 80/20 (v/v) methanol/water yielded spectra with low signal/noise ratios relative to other solvents. PCA-LDA models acquired using 90/10 (v/v) methanol/chloroform differentiated tissue regions with 100% accuracy while data collected using methanol misclassified some samples. The combination of SWATH-MS and TOF-MS data improved differentiation accuracy. CONCLUSIONS Combined TOF-MS and SWATH-MS data differentiated white, grey, granular, and nucleus mouse tissue regions with greater accuracy than when solely using TOF-MS data. Using 90/10 (v/v) methanol/chloroform, tissue regions were perfectly differentiated. These results will guide future studies looking to utilize the potential of LMD-LVC/ESI-MS for tissue and disease differentiation.
Collapse
Affiliation(s)
- John F Cahill
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA
| | - Vilmos Kertesz
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA
| | - Tiffany Porta
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | | | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Gary J Van Berkel
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA
| |
Collapse
|
43
|
D’Hue C, Moore M, Summerlin DJ, Jarmusch A, Alfaro C, Mantravadi A, Bewley A, Farwell DG, Cooks RG. Feasibility of desorption electrospray ionization mass spectrometry for diagnosis of oral tongue squamous cell carcinoma. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:133-141. [PMID: 29078250 PMCID: PMC5757369 DOI: 10.1002/rcm.8019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 05/15/2023]
Abstract
RATIONALE Desorption electrospray ionization mass spectrometry (DESI-MS) has demonstrated utility in differentiating tumor from adjacent normal tissue in both urologic and neurosurgical specimens. We sought to evaluate if this technique had similar accuracy in differentiating oral tongue squamous cell carcinoma (SCC) from adjacent normal epithelium due to current issues with late diagnosis of SCC in advanced stages. METHODS Fresh frozen samples of SCC and adjacent normal tissue were obtained by surgical resection. Resections were analyzed using DESI-MS sometimes by a blinded technologist. Normative spectra were obtained for separate regions containing SCC or adjacent normal epithelium. Principal Component Analysis and Linear Discriminant Analysis (PCA-LDA) of spectra were used to predict SCC versus normal tongue epithelium. Predictions were compared with pathology to assess accuracy in differentiating oral SCC from adjacent normal tissue. RESULTS Initial PCA score and loading plots showed clear separation of SCC and normal epithelial tissue using DESI-MS. PCA-LDA resulted in accuracy rates of 95% for SCC versus normal and 93% for SCC, adjacent normal and normal. Additional samples were blindly analyzed with PCA-LDA pixel-by-pixel predicted classifications as SCC or normal tongue epithelial tissue and compared against histopathology. The m/z 700-900 prediction model showed a 91% accuracy rate. CONCLUSIONS DESI-MS accurately differentiated oral SCC from adjacent normal epithelium. Classification of all typical tissue types and pixel predictions with additional classifications should increase confidence in the validation model.
Collapse
Affiliation(s)
- Cedric D’Hue
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084
| | - Michael Moore
- University of California at Davis, Comprehensive Cancer Center, Department of Otolaryngology-Head and Neck Surgery, 2521 Stockton Blvd., Suite 7200, Sacramento, CA 95817
| | - Don-John Summerlin
- Indiana University Health Pathology Laboratory, 350 West 11th Street, Room 4022, Indianapolis, IN 46202-4108
| | - Alan Jarmusch
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084
| | - Clint Alfaro
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084
| | - Avinash Mantravadi
- Indiana University Department of Otolaryngology-Head and Neck Surgery, 550 N. University Blvd. Rm 3170, Indianapolis, IN 46202
| | - Arnaud Bewley
- University of California at Davis, Comprehensive Cancer Center, Department of Otolaryngology-Head and Neck Surgery, 2521 Stockton Blvd., Suite 7200, Sacramento, CA 95817
| | - D. Gregory Farwell
- University of California at Davis, Comprehensive Cancer Center, Department of Otolaryngology-Head and Neck Surgery, 2521 Stockton Blvd., Suite 7200, Sacramento, CA 95817
| | - R. Graham Cooks
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084
| |
Collapse
|
44
|
Kurreck A, Vandergrift LA, Fuss TL, Habbel P, Agar NYR, Cheng LL. Prostate cancer diagnosis and characterization with mass spectrometry imaging. Prostate Cancer Prostatic Dis 2017; 21:297-305. [PMID: 29209003 PMCID: PMC5988647 DOI: 10.1038/s41391-017-0011-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
Background Prostate cancer (PCa), the most common cancer and second leading cause of cancer death in American men, presents the clinical challenge of distinguishing between indolent and aggressive tumors for proper treatment. PCa presents significant alterations in metabolic pathways that can potentially be measured using techniques like mass spectrometry (MS) or mass spectrometry imaging (MSI) and used to characterize PCa aggressiveness. MS quantifies metabolomic, proteomic, and lipidomic profiles of biological systems that can be further visualized for their spatial distributions through MSI. Methods PubMed was queried for all publications relating to MS and MSI in human prostate cancer from April 2007 to April 2017. With the goal of reviewing the utility of MSI in diagnosis and prognostication of human PCa, MSI articles that reported investigations of PCa-specific metabolites or metabolites indicating PCa aggressiveness were selected for inclusion. Articles were included that covered MS and MSI principles, limitations, and applications in PCa. Results We identified nine key studies on MSI in intact human prostate tissue specimens that determined metabolites which could either differentiate between benign and malignant prostate tissue or indicate prostate cancer aggressiveness. These MSI-detected biomarkers show promise in reliably identifying PCa and determining disease aggressiveness. Conclusions MSI represents an innovative technique with the ability to interrogate cancer biomarkers in relation to tissue pathologies and investigate tumor aggressiveness. We propose MSI as a powerful adjuvant histopathology imaging tool for prostate tissue evaluations, where clinical translation of this ex vivo technique could make possible the use of MSI for personalized medicine in diagnosis and prognosis of prostate cancer. Moreover, the knowledge provided from this technique can majorly contribute to the understanding of molecular pathogenesis of PCa and other malignant diseases.
Collapse
Affiliation(s)
- Annika Kurreck
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Hematology and Oncology, Charité Medical University of Berlin, Berlin, Germany
| | - Lindsey A Vandergrift
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Taylor L Fuss
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Piet Habbel
- Department of Hematology and Oncology, Charité Medical University of Berlin, Berlin, Germany
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leo L Cheng
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Chen LC, Yoshimura K, Ninomiya S, Takeda S, Hiraoka K. Towards Practical Endoscopic Mass Spectrometry. ACTA ACUST UNITED AC 2017; 6:S0070. [PMID: 28852605 DOI: 10.5702/massspectrometry.s0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022]
Abstract
In this paper, we briefly review the remote mass spectrometric techniques that are viable to perform "endoscopic mass spectrometry," i.e., in-situ and in-vivo MS analysis inside the cavity of human or animal body. We also report our experience with a moving string sampling probe for the remote sample collection and the transportation of adhered sample to an ion source near the mass spectrometer. With a miniaturization of the probe, the method described here has the potential to be fit directly into a medical endoscope.
Collapse
Affiliation(s)
- Lee Chuin Chen
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Satoshi Ninomiya
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Kenzo Hiraoka
- Clean Energy Research Center, University of Yamanashi
| |
Collapse
|
46
|
Abstract
Since the introduction of desorption electrospray ionization (DESI) mass spectrometry (MS), ambient MS methods have seen increased use in a variety of fields from health to food science. Increasing its popularity in metabolomics, ambient MS offers limited sample preparation, rapid and direct analysis of liquids, solids, and gases, in situ and in vivo analysis, and imaging. The metabolome consists of a constantly changing collection of small (<1.5 kDa) molecules. These include endogenous molecules that are part of primary metabolism pathways, secondary metabolites with specific functions such as signaling, chemicals incorporated in the diet or resulting from environmental exposures, and metabolites associated with the microbiome. Characterization of the responsive changes of this molecule cohort is the principal goal of any metabolomics study. With adjustments to experimental parameters, metabolites with a range of chemical and physical properties can be selectively desorbed and ionized and subsequently analyzed with increased speed and sensitivity. This review covers the broad applications of a variety of ambient MS techniques in four primary fields in which metabolomics is commonly employed.
Collapse
Affiliation(s)
- Chaevien S. Clendinen
- School of Chemistry and Biochemistry & Petit Institute for Bioengineering & Bioscience (IBB), Georgia Institute of Technology, 901 Atlantic Drive NW. Atlanta, GA
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry & Petit Institute for Bioengineering & Bioscience (IBB), Georgia Institute of Technology, 901 Atlantic Drive NW. Atlanta, GA
| |
Collapse
|
47
|
Sorokin A, Zhvansky E, Shurkhay V, Bocharov K, Popov I, Levin N, Zubtsov D, Bormotov D, Kostyukevich Y, Potapov A, Nikolaev E. Feature selection algorithm for spray-from-tissue mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:237-241. [PMID: 29028388 DOI: 10.1177/1469066717721843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Detection of the brain tumor margins is one of the most significant problems in neurosurgery. Several mass spectrometry-based approaches have been proposed recently for tumor boundary detection. One of them, spray from tissue does not require sample preparation but needs special algorithms for analysis of its spectra. Here we proposed the feature selection algorithm designed for analysis of spray-from-tissue data.
Collapse
Affiliation(s)
- Anatoly Sorokin
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Evgeny Zhvansky
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
- 2 Institute for Energy Problems of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - Vsevolod Shurkhay
- 3 Federal State Autonomous Institution "N.N. Burdenko National Scientific and Practical Center for Neurosurgery" of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Konstantin Bocharov
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
- 2 Institute for Energy Problems of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - Igor Popov
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
- 4 Emanuel Institute for Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - Nikita Levin
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Dmitry Zubtsov
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Denis Bormotov
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Yury Kostyukevich
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
- 2 Institute for Energy Problems of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander Potapov
- 3 Federal State Autonomous Institution "N.N. Burdenko National Scientific and Practical Center for Neurosurgery" of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Eugene Nikolaev
- 1 Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
- 2 Institute for Energy Problems of Chemical Physics of the Russian Academy of Sciences, Moscow, Russia
- 4 Emanuel Institute for Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia
- 5 Skolkovo Institute of Science and Technology, Skolkovo, Russia
| |
Collapse
|
48
|
Chen LC, Naito T, Tsutsui S, Yamada Y, Ninomiya S, Yoshimura K, Takeda S, Hiraoka K. In vivo endoscopic mass spectrometry using a moving string sampling probe. Analyst 2017; 142:2735-2740. [DOI: 10.1039/c7an00650k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A novel moving string sampling probe and sample transportation system for performing in situ and in vivo endoscopic MS.
Collapse
Affiliation(s)
- Lee Chuin Chen
- Interdisciplinary Graduate School of Medicine and Engineering
- University of Yamanashi
- Kofu
- 400-8511 Japan
| | - Tsubasa Naito
- Interdisciplinary Graduate School of Medicine and Engineering
- University of Yamanashi
- Kofu
- 400-8511 Japan
| | - Satoru Tsutsui
- Interdisciplinary Graduate School of Medicine and Engineering
- University of Yamanashi
- Kofu
- 400-8511 Japan
| | - Yuki Yamada
- Interdisciplinary Graduate School of Medicine and Engineering
- University of Yamanashi
- Kofu
- 400-8511 Japan
| | - Satoshi Ninomiya
- Interdisciplinary Graduate School of Medicine and Engineering
- University of Yamanashi
- Kofu
- 400-8511 Japan
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology
- Interdisciplinary Graduate School of Medicine and Engineering
- University of Yamanashi
- Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology
- Interdisciplinary Graduate School of Medicine and Engineering
- University of Yamanashi
- Japan
| | - Kenzo Hiraoka
- Clean Energy Research Center
- University of Yamanashi
- Kofu
- 400-8511 Japan
| |
Collapse
|
49
|
Ouyang Y, Liu J, Nie B, Dong N, Chen X, Chen L, Wei Y. Differential diagnosis of human lung tumors using surface desorption atmospheric pressure chemical ionization imaging mass spectrometry. RSC Adv 2017. [DOI: 10.1039/c7ra11839b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Differential diagnosis of human lung cancer in untreated tissue is achieved by DAPCI-MSI combined with multivariate statistical analysis.
Collapse
Affiliation(s)
- Yongzhong Ouyang
- School of Environmental and Chemical Engineering
- Foshan University
- Foshan
- P. R. China
| | - Junwen Liu
- School of Chemistry, Biological and Materials Sciences
- East China University of Technology
- Nanchang
- P. R. China
| | - Baohua Nie
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan
- P. R. China
| | - Naiping Dong
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
| | - Xin Chen
- School of Environmental and Chemical Engineering
- Foshan University
- Foshan
- P. R. China
| | - Linfei Chen
- School of Chemistry, Biological and Materials Sciences
- East China University of Technology
- Nanchang
- P. R. China
| | - YiPing Wei
- Department of Cardiothoracic Surgery
- Second Affiliated Hospital of Nanchang University
- Nanchang
- P. R. China
| |
Collapse
|
50
|
Huang KT, Ludy S, Calligaris D, Dunn IF, Laws E, Santagata S, Agar NYR. Rapid Mass Spectrometry Imaging to Assess the Biochemical Profile of Pituitary Tissue for Potential Intraoperative Usage. Adv Cancer Res 2016; 134:257-282. [PMID: 28110653 DOI: 10.1016/bs.acr.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pituitary adenomas are relatively common intracranial neoplasms that are frequently treated with surgical resection. Rapid visualization of pituitary tissue remains a challenge as current techniques either produce little to no information on hormone-secreting function or are too slow to practically aid in intraoperative or even perioperative decision-making. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) represents a powerful method by which molecular maps of tissue samples can be created, yielding a two-dimensional representation of the expression patterns of small molecules and proteins from biologic samples. In this chapter, we review the use of MALDI MSI, its application to the characterization of the pituitary gland, and its potential applications for guiding the management of pituitary adenomas.
Collapse
Affiliation(s)
- K T Huang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - S Ludy
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - D Calligaris
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - I F Dunn
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - E Laws
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - S Santagata
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - N Y R Agar
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|