1
|
Cheng PM, Jia T, Li CY, Qi MQ, Du MH, Su HF, Sun QF, Long LS, Zheng LS, Kong XJ. Bottom-up construction of chiral metal-peptide assemblies from metal cluster motifs. Nat Commun 2024; 15:9034. [PMID: 39426962 PMCID: PMC11490616 DOI: 10.1038/s41467-024-53320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
The exploration of artificial metal-peptide assemblies (MPAs) is one of the most exciting fields because of their great potential for simulating the dynamics and functionality of natural proteins. However, unfavorable enthalpy changes make forming discrete complexes with large and adaptable cavities from flexible peptide ligands challenging. Here, we present a strategy integrating metal-cluster building blocks and peptides to create chiral metal-peptide assemblies and get a family of enantiopure [R-/S-Ni3L2]n (n = 2, 3, 6) MPAs, including the R-/S-Ni6L4 capsule, the S-Ni9L6 trigonal prism, and the R-/S-Ni18L12 octahedron cage. X-ray crystallography shows MPA formation reactions are highly solvent-condition-dependent, resulting in significant changes in ligand conformation and discrete cavity sizes. Moreover, we demonstrate that a structure transformation from Ni18L12 to Ni9L6 in the presence of benzopyrone molecules depends on the peptide conformational selection in crystallization. This work reveals that a metal-cluster building block approach enables facile bottom-up construction of artificial metal-peptide assemblies.
Collapse
Affiliation(s)
- Pei-Ming Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Tao Jia
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chong-Yang Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ming-Qiang Qi
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hai-Feng Su
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| |
Collapse
|
2
|
Duan M, Lv C, Zang J, Leng X, Zhao G, Zhang T. Metals at the Helm: Revolutionizing Protein Assembly and Applications. Macromol Biosci 2024:e2400126. [PMID: 39239781 DOI: 10.1002/mabi.202400126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Indexed: 09/07/2024]
Abstract
Protein assembly is an essential process in biological systems, where proteins self-assemble into complex structures with diverse functions. Inspired by the exquisite control over protein assembly in nature, scientists have been exploring ways to design and assemble protein structures with precise control over their topologies and functions. One promising approach for achieving this goal is through metal coordination, which utilizes metal-binding motifs to mediate protein-protein interactions and assemble protein complexes with controlled stoichiometry and geometry. Metal coordination provides a modular and tunable approach for protein assembly and de novo structure design, where the metal ion acts as a molecular glue that holds the protein subunits together in a specific orientation. Metal-coordinated protein assemblies have shown great potential for developing functional metalloproteinase, novel biomaterials and integrated drug delivery systems. In this review, an overview of the recent advances in protein assemblies benefited from metal coordination is provided, focusing on various protein arrangements in different dimensions including protein oligomers, protein nanocage and higher-order protein architectures. Moreover, the key metal-binding motifs and strategies used to assemble protein structures with precise control over their properties are highlighted. The potential applications of metal-mediated protein assemblies in biotechnology and biomedicine are also discussed.
Collapse
Affiliation(s)
- Maoping Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaojing Leng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tuo Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
3
|
Zhu S, Niu Y, Zhou W, Liu Y, Liu J, Liu X, Lu L, Yu C. Mitochondrial copper overload promotes renal fibrosis via inhibiting pyruvate dehydrogenase activity. Cell Mol Life Sci 2024; 81:340. [PMID: 39120696 PMCID: PMC11335263 DOI: 10.1007/s00018-024-05358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/15/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Copper is a trace element essential for numerous biological activities, whereas the mitochondria serve as both major sites of intracellular copper utilization and copper reservoir. Here, we investigated the impact of mitochondrial copper overload on the tricarboxylic acid cycle, renal senescence and fibrosis. We found that copper ion levels are significantly elevated in the mitochondria in fibrotic kidney tissues, which are accompanied by reduced pyruvate dehydrogenase (PDH) activity, mitochondrial dysfunction, cellular senescence and renal fibrosis. Conversely, lowering mitochondrial copper levels effectively restore PDH enzyme activity, improve mitochondrial function, mitigate cellular senescence and renal fibrosis. Mechanically, we found that mitochondrial copper could bind directly to lipoylated dihydrolipoamide acetyltransferase (DLAT), the E2 component of the PDH complex, thereby changing the interaction between the subunits of lipoylated DLAT, inducing lipoylated DLAT protein dimerization, and ultimately inhibiting PDH enzyme activity. Collectively, our study indicates that mitochondrial copper overload could inhibit PDH activity, subsequently leading to mitochondrial dysfunction, cellular senescence and renal fibrosis. Reducing mitochondrial copper overload might therefore serve as a strategy to rescue renal fibrosis.
Collapse
Affiliation(s)
- Saiya Zhu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yangyang Niu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wenqian Zhou
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuqing Liu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jing Liu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xi Liu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Limin Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Yixueyuan Road, Shanghai, 200032, China.
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
4
|
Lee EJ, Gladkov N, Miller JE, Yeates TO. Design of Ligand-Operable Protein-Cages That Open Upon Specific Protein Binding. ACS Synth Biol 2024; 13:157-167. [PMID: 38133598 DOI: 10.1021/acssynbio.3c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Protein nanocages have diverse applications in medicine and biotechnology, including molecular delivery. However, although numerous studies have demonstrated the ability of protein nanocages to encapsulate various molecular species, limited methods are available for subsequently opening a nanocage for cargo release under specific conditions. A modular platform with a specific protein-target-based mechanism of nanocage opening is notably lacking. To address this important technology gap, we present a new class of designed protein cages, the Ligand-Operable Cage (LOC). LOCs primarily comprise a protein nanocage core and a fused surface binding adaptor. The geometry of the LOC is designed so that binding of a target protein ligand (or multiple copies thereof) to the surface binder is sterically incompatible with retention of the assembled state of the cage. Therefore, the tight binding of a target ligand drives cage disassembly by mass action, subsequently exposing the encapsulated cargo. LOCs are modular; direct substitution of the surface binder sequence can reprogram the nanocage to open in response to any target protein ligand of interest. We demonstrate these design principles using both a natural and a designed protein cage as the core, with different proteins acting as the triggering ligand and with different reporter readouts─fluorescence unquenching and luminescence─for cage disassembly. These developments advance the critical problem of targeted molecular delivery and detection.
Collapse
Affiliation(s)
- Eric J Lee
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Nika Gladkov
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Justin E Miller
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, United States
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, United States
- UCLA-DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Mallik BB, Stanislaw J, Alawathurage TM, Khmelinskaia A. De Novo Design of Polyhedral Protein Assemblies: Before and After the AI Revolution. Chembiochem 2023; 24:e202300117. [PMID: 37014094 DOI: 10.1002/cbic.202300117] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
Self-assembling polyhedral protein biomaterials have gained attention as engineering targets owing to their naturally evolved sophisticated functions, ranging from protecting macromolecules from the environment to spatially controlling biochemical reactions. Precise computational design of de novo protein polyhedra is possible through two main types of approaches: methods from first principles, using physical and geometrical rules, and more recent data-driven methods based on artificial intelligence (AI), including deep learning (DL). Here, we retrospect first principle- and AI-based approaches for designing finite polyhedral protein assemblies, as well as advances in the structure prediction of such assemblies. We further highlight the possible applications of these materials and explore how the presented approaches can be combined to overcome current challenges and to advance the design of functional protein-based biomaterials.
Collapse
Affiliation(s)
- Bhoomika Basu Mallik
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Jenna Stanislaw
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Tharindu Madhusankha Alawathurage
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Alena Khmelinskaia
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
- Current address: Department of Chemistry, Ludwig Maximillian University, 80539, Munich, Germany
| |
Collapse
|
6
|
Dowling QM, Park YJ, Gerstenmaier N, Yang EC, Wargacki A, Hsia Y, Fries CN, Ravichandran R, Walkey C, Burrell A, Veesler D, Baker D, King NP. Hierarchical design of pseudosymmetric protein nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545393. [PMID: 37398374 PMCID: PMC10312784 DOI: 10.1101/2023.06.16.545393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions 1-3. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry 4,5. Inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials. We computationally designed pseudosymmetric heterooligomeric components and used them to create discrete, cage-like protein assemblies with icosahedral symmetry containing 240, 540, and 960 subunits. At 49, 71, and 96 nm diameter, these nanoparticles are the largest bounded computationally designed protein assemblies generated to date. More broadly, by moving beyond strict symmetry, our work represents an important step towards the accurate design of arbitrary self-assembling nanoscale protein objects.
Collapse
Affiliation(s)
- Quinton M Dowling
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Neil Gerstenmaier
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Erin C Yang
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adam Wargacki
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Yang Hsia
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Chelsea N Fries
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Carl Walkey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anika Burrell
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Oohora K. Supramolecular assembling systems of hemoproteins using chemical modifications. J INCL PHENOM MACRO 2023. [DOI: 10.1007/s10847-023-01181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
|
8
|
Oohora K, Hayashi T. Preparation of Cage-Like Micellar Assemblies of Engineered Hemoproteins. Methods Mol Biol 2023; 2671:95-108. [PMID: 37308640 DOI: 10.1007/978-1-0716-3222-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural protein assemblies have encouraged scientists to create large supramolecular systems consisting of various protein motifs. In the case of hemoproteins containing heme as a cofactor, several approaches have been reported to form artificial assemblies with various structures such as fibers, sheets, networks, and cages. This chapter describes the design, preparation, and characterization of cage-like micellar assemblies for chemically modified hemoproteins including hydrophilic protein units attached to hydrophobic molecules. Detailed procedures are described for constructing specific systems using cytochrome b562 and hexameric tyrosine-coordinated heme protein as hemoprotein units with heme-azobenzene conjugate and poly-N-isopropylacrylamide as attached molecules.
Collapse
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Japan.
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Japan.
| |
Collapse
|
9
|
Miller JE, Srinivasan Y, Dharmaraj NP, Liu A, Nguyen PL, Taylor SD, Yeates TO. Designing Protease-Triggered Protein Cages. J Am Chem Soc 2022; 144:12681-12689. [PMID: 35802879 DOI: 10.1021/jacs.2c02165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins that self-assemble into enclosed polyhedral cages, both naturally and by design, are garnering attention for their prospective utility in the fields of medicine and biotechnology. Notably, their potential for encapsulation and surface display are attractive for experiments that require protection and targeted delivery of cargo. The ability to control their opening or disassembly would greatly advance the development of protein nanocages into widespread molecular tools. Toward the development of protein cages that disassemble in a systematic manner and in response to biologically relevant stimuli, here we demonstrate a modular protein cage system that is opened by highly sequence-specific proteases, based on sequence insertions at strategically chosen loop positions in the protein cage subunits. We probed the generality of the approach in the context of protein cages built using the two prevailing methods of construction: genetic fusion between oligomeric components and (non-covalent) computational interface design between oligomeric components. Our results suggest that the former type of cage may be more amenable than the latter for endowing proteolytically controlled disassembly. We show that a successfully designed cage system, based on oligomeric fusion, is modular with regard to its triggering protease. One version of the cage is targeted by an asparagine protease implicated in cancer and Alzheimer's disease, whereas the second version is responsive to the blood-clotting protease, thrombin. The approach demonstrated here should guide future efforts to develop therapeutic vectors to treat disease states where protease induction or mis-regulation occurs.
Collapse
Affiliation(s)
- Justin E Miller
- UCLA Molecular Biology Institute, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States.,UCLA-DOE Institute for Genomics and Proteomics, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States
| | - Yashes Srinivasan
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Nithin P Dharmaraj
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Andrew Liu
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Phillip L Nguyen
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Scott D Taylor
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Todd O Yeates
- UCLA Molecular Biology Institute, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States.,UCLA-DOE Institute for Genomics and Proteomics, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States.,UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
10
|
Kakkis A, Golub E, Choi TS, Tezcan FA. Redox- and metal-directed structural diversification in designed metalloprotein assemblies. Chem Commun (Camb) 2022; 58:6958-6961. [PMID: 35642584 DOI: 10.1039/d2cc02440c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe a designed protein building block whose self-assembly behaviour is dually gated by the redox state of disulphide bonds and the identity of exogenous metal ions. This protein construct is shown - through extensive structural and biophysical characterization - to access five distinct oligomeric states, exemplifying how the complex interplay between hydrophobic, metal-ligand, and reversible covalent interactions could be harnessed to obtain multiple, responsive protein architectures from a single building block.
Collapse
Affiliation(s)
- Albert Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Eyal Golub
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
12
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
13
|
Subramanian RH, Zhu J, Bailey JB, Chiong JA, Li Y, Golub E, Tezcan FA. Design of metal-mediated protein assemblies via hydroxamic acid functionalities. Nat Protoc 2021; 16:3264-3297. [PMID: 34050338 DOI: 10.1038/s41596-021-00535-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/15/2021] [Indexed: 02/05/2023]
Abstract
The self-assembly of proteins into sophisticated multicomponent assemblies is a hallmark of all living systems and has spawned extensive efforts in the construction of novel synthetic protein architectures with emergent functional properties. Protein assemblies in nature are formed via selective association of multiple protein surfaces through intricate noncovalent protein-protein interactions, a challenging task to accurately replicate in the de novo design of multiprotein systems. In this protocol, we describe the application of metal-coordinating hydroxamate (HA) motifs to direct the metal-mediated assembly of polyhedral protein architectures and 3D crystalline protein-metal-organic frameworks (protein-MOFs). This strategy has been implemented using an asymmetric cytochrome cb562 monomer through selective, concurrent association of Fe3+ and Zn2+ ions to form polyhedral cages. Furthermore, the use of ditopic HA linkers as bridging ligands with metal-binding protein nodes has allowed the construction of crystalline 3D protein-MOF lattices. The protocol is divided into two major sections: (1) the development of a Cys-reactive HA molecule for protein derivatization and self-assembly of protein-HA conjugates into polyhedral cages and (2) the synthesis of ditopic HA bridging ligands for the construction of ferritin-based protein-MOFs using symmetric metal-binding protein nodes. Protein cages are analyzed using analytical ultracentrifugation, transmission electron microscopy and single-crystal X-ray diffraction techniques. HA-mediated protein-MOFs are formed in sitting-drop vapor diffusion crystallization trays and are probed via single-crystal X-ray diffraction and multi-crystal small-angle X-ray scattering measurements. Ligand synthesis, construction of HA-mediated assemblies, and post-assembly analysis as described in this protocol can be performed by a graduate-level researcher within 6 weeks.
Collapse
Affiliation(s)
- Rohit H Subramanian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Jie Zhu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Jake B Bailey
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Jerika A Chiong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Eyal Golub
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA. .,Materials Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Khmelinskaia A, Wargacki A, King NP. Structure-based design of novel polyhedral protein nanomaterials. Curr Opin Microbiol 2021; 61:51-57. [PMID: 33784513 DOI: 10.1016/j.mib.2021.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
Organizing matter at the atomic scale is a central goal of nanotechnology. Bottom-up approaches, in which molecular building blocks are programmed to assemble via supramolecular interactions, are a proven and versatile route to new and useful nanomaterials. Although a wide variety of molecules have been used as building blocks, proteins have several intrinsic features that present unique opportunities for designing nanomaterials with sophisticated functions. There has been tremendous recent progress in designing proteins to fold and assemble to highly ordered structures. Here we review the leading approaches to the design of closed polyhedral protein assemblies, highlight the importance of considering the assembly process itself, and discuss various applications and future directions for the field. We emphasize throughout the exciting opportunities presented by recent advances as well as challenges that remain.
Collapse
Affiliation(s)
- Alena Khmelinskaia
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Adam Wargacki
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Neil P King
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA.
| |
Collapse
|
15
|
Oohora K, Hirayama S, Mashima T, Hayashi T. Supramolecular dimerization of a hexameric hemoprotein via multiple pyrene-pyrene interactions. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619500949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein assemblies are being investigated as a new-class of biomaterials. A supramolecular assembly of a mutant hexameric tyrosine coordinated hemoprotein (HTHP) modified with a pyrene derivative is described. Cysteine was first introduced as a site-specific reaction point at position V44 which is located at the bottom surface of the cylindrical structure of HTHP. [Formula: see text]-(1-pyrenyl)maleimide was then reacted with the mutant. The modification was confirmed by MALDI-TOF mass spectrometry and UV-vis absorption spectroscopy, indicating that approximately 90% cysteine residues are attached via the pyrene derivative. Size exclusion chromatography (SEC) measurements for pyrene-attached HTHP include a single peak which elutes earlier than the unmodified HTHP. Further investigation by SEC and dynamic light scattering (DLS) measurements indicate the desired size corresponding to the dimer of the hemoprotein hexamers. The multivalent effect of pyrene–pyrene interactions including hydrophobic and [Formula: see text]–[Formula: see text] stacking interactions appears to be responsible for including formation of the stable dimer of the hexamers. Interestingly, the assembly dissociates to the hexamer by removal of heme. In the case of the apo-form of pyrene-attached HTHP, the pyrene moiety appears to be incorporated into the heme pocket because the modification point is located at the adjacent residue of the Tyr45 coordinating to heme in the holo-form of HTHP. Subsequent addition of heme into the apo-form of pyrene-attached HTHP regenerates the dimer of the hexamers. The present study demonstrates a unique heme-dependent system in which HTHP is assembled to form a dimer of hexamers in the presence of heme and disassembled by removal of heme.
Collapse
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Shota Hirayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Tsuyoshi Mashima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
16
|
Constructing protein polyhedra via orthogonal chemical interactions. Nature 2020; 578:172-176. [PMID: 31969701 PMCID: PMC7007351 DOI: 10.1038/s41586-019-1928-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 11/19/2019] [Indexed: 01/10/2023]
Abstract
A large fraction of proteins naturally exist as symmetrical homooligomers or homopolymers1. The emergent structural and functional properties of such protein assemblies have inspired extensive efforts in biomolecular design2-5. As synthesized by ribosomes, proteins are inherently asymmetric. Thus, they must acquire multiple surface patches that selectively associate to generate different symmetry elements needed to form higher-order architectures1,6 – a daunting task for protein design. Here we introduce an inorganic chemical approach to address this outstanding problem, whereby multiple modes of protein-protein interactions and symmetry are simultaneously achieved by selective, “one-pot” coordination of soft and hard metal ions. We show that a monomeric protein (protomer) appropriately modified with biologically inspired hydroxamate groups and Zn-binding motifs assembles through concurrent Fe3+ and Zn2+ coordination into discrete dodecameric and hexameric cages. Closely resembling natural polyhedral protein architectures7,8 and unique among designed systems9-13, our artificial cages possess tightly packed shells devoid of large apertures, yet they can assemble and disassemble in response to diverse stimuli owing to their heterobimetallic construction on minimal interprotein-bonding footprints. With stoichiometries ranging from [2 Fe:9 Zn:6 protomer] to [8 Fe:21 Zn:12 protomer], these protein cages represent some of the compositionally most complex protein assemblies–or inorganic coordination complexes–obtained by design.
Collapse
|
17
|
Porous crystals as scaffolds for structural biology. Curr Opin Struct Biol 2020; 60:85-92. [PMID: 31896427 DOI: 10.1016/j.sbi.2019.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/15/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022]
Abstract
Molecular scaffolds provide routes to otherwise inaccessible organized states of matter. Scaffolds that are crystalline can be observed in atomic detail using diffraction, along with any guest molecules that have adopted coherent structures therein. This approach, scaffold-assisted structure determination, is not yet routine. However, with varying degrees of guest immobilization, porous crystal scaffolds have recently been decorated with guest molecules. Herein we analyze recent milestones, compare the relative advantages and challenges of different types of scaffold crystals, and weigh the merits of diverse guest installation strategies.
Collapse
|
18
|
Miyamoto T, Hayashi Y, Yoshida K, Watanabe H, Uchihashi T, Yonezawa K, Shimizu N, Kamikubo H, Hirota S. Construction of a Quadrangular Tetramer and a Cage-Like Hexamer from Three-Helix Bundle-Linked Fusion Proteins. ACS Synth Biol 2019; 8:1112-1120. [PMID: 30966743 DOI: 10.1021/acssynbio.9b00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Self-assembled protein nanostructures have gained interest, owing to their potential applications in biomaterials; however, successful design and construction of protein nanostructures are limited. Herein, we constructed fusion protein 1 by linking the C-terminus of a dimerization domain and the N-terminus of another dimerization domain with a three-helix bundle protein, where it self-assembled mainly into tetramers. By replacing the C-terminal dimerization domain of 1 with a trimerization domain (fusion protein 2), hexamers were mainly obtained. According to ab initio structural models reconstructed from the small-angle X-ray scattering data, the tetramer of 1 and hexamer of 2 adopted quadrangle and cage-like structures, respectively, although they were combinations of different conformations. High-speed atomic force microscopy observations indicated that the tetramer and hexamer exhibit conformational dynamics. These results show that the present method utilizing three-helix bundle-linked fusion proteins is useful in the construction of protein nanostructures.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yugo Hayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Keito Yoshida
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hiroki Watanabe
- Exploratory Research Center on Life and Living Systems, Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems, Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Physics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kento Yonezawa
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Nobutaka Shimizu
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Hironari Kamikubo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
19
|
Pulsipher KW, Bulos JA, Villegas JA, Saven JG, Dmochowski IJ. A protein-protein host-guest complex: Thermostable ferritin encapsulating positively supercharged green fluorescent protein. Protein Sci 2019; 27:1755-1766. [PMID: 30051936 DOI: 10.1002/pro.3483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/14/2023]
Abstract
We characterize the encapsulation of supercharged green fluorescent protein, GFP(+36), by thermophilic ferritin from Archaeoglobus fulgidus (AfFtn). The AfFtn-GFP(+36) assembly is rapid, nearly stoichiometric, and robust. Using a more stably assembled mutant AfFtn, we show that encapsulation can occur in the presence of mostly assembled cages, in addition to encapsulation starting from AfFtn individual subunits. Assembly and encapsulation do not occur with non-supercharged GFP or the alternately supercharged GFP(-30), highlighting the role of complementary electrostatic interactions between the cargo and AfFtn cage interior. We also present a method for verifying protein-protein encapsulation, using nickel nitrilotriacetic acid agarose resin. AfFtn-supercharged protein host-guest complexes could find applications in enzyme studies, protein separations, and in vivo protein stabilization and targeted delivery.
Collapse
Affiliation(s)
- Katherine W Pulsipher
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Joshua A Bulos
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - José A Villegas
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
20
|
Cannon KA, Ochoa JM, Yeates TO. High-symmetry protein assemblies: patterns and emerging applications. Curr Opin Struct Biol 2019; 55:77-84. [PMID: 31005680 DOI: 10.1016/j.sbi.2019.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
The accelerated elucidation of three-dimensional structures of protein complexes, both natural and designed, is providing new examples of large supramolecular assemblies with intriguing shapes. Those with high symmetry - based on the geometries of the Platonic solids - are particularly notable as their innately closed forms create interior spaces with varying degrees of enclosure. We survey known protein assemblies of this type and discuss their geometric features. The results bear on issues of protein function and evolution, while also guiding novel bioengineering applications. Recent successes using high-symmetry protein assemblies for applications in interior encapsulation and exterior display are highlighted.
Collapse
Affiliation(s)
- Kevin A Cannon
- UCLA Department of Chemistry and Biochemistry, United States; UCLA-DOE Institute for Genomics and Proteomics, United States
| | - Jessica M Ochoa
- UCLA Department of Chemistry and Biochemistry, United States; UCLA Molecular Biology Institute, United States
| | - Todd O Yeates
- UCLA Department of Chemistry and Biochemistry, United States; UCLA-DOE Institute for Genomics and Proteomics, United States; UCLA Molecular Biology Institute, United States.
| |
Collapse
|
21
|
Oohora K, Kajihara R, Fujimaki N, Uchihashi T, Hayashi T. A ring-shaped hemoprotein trimer thermodynamically controlled by the supramolecular heme-heme pocket interaction. Chem Commun (Camb) 2019; 55:1544-1547. [PMID: 30565588 DOI: 10.1039/c8cc09314h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Engineered cytochrome b562, a small hemoprotein, with an externally-attached heme moiety via a moderately long linker at a suitable position predominantly forms a thermodynamically stable ring-shaped trimer in dilute solution. In an equilibrium between supramolecular polymerization and depolymerization, the ring-shaped trimer is kinetically trapped even in a concentrated solution.
Collapse
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.
| | | | | | | | | |
Collapse
|
22
|
Alcala-Torano R, Walther M, Sommer DJ, Park CK, Ghirlanda G. Rational design of a hexameric protein assembly stabilized by metal chelation. Biopolymers 2018; 109:e23233. [PMID: 30191549 DOI: 10.1002/bip.23233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/15/2018] [Accepted: 07/05/2018] [Indexed: 12/27/2022]
Abstract
Protein-based self-assembled nanostructures hold tremendous promise as smart materials. One strategy to control the assembly of individual protein modules takes advantage of the directionality and high affinity bonding afforded by metal chelation. Here, we describe the use of 2,2'-bipyridine units (Bpy) as side chains to template the assembly of large structures (MW approx. 35 000 Da) in a metal-dependent manner. The structures are trimers of independently folded 3-helix bundles, and are held together by 2 Me(Bpy)3 complexes. The assemblies are stable to thermal denaturation, and are more than 90% helical at 90°C. Circular dichroism spectroscopy shows that one of the 2 possible (Bpy)3 enantiomers is favored over the other. Because of the sequence pliability of the starting peptides, these constructs could find use to organize functional groups at controlled positions within a supramolecular assembly.
Collapse
Affiliation(s)
| | - Mathieu Walther
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| | - Dayn J Sommer
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| | - Chad K Park
- Department of Biochemistry, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
23
|
Oohora K, Fujimaki N, Kajihara R, Watanabe H, Uchihashi T, Hayashi T. Supramolecular Hemoprotein Assembly with a Periodic Structure Showing Heme-Heme Exciton Coupling. J Am Chem Soc 2018; 140:10145-10148. [PMID: 30067348 DOI: 10.1021/jacs.8b06690] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A supramolecular assembly of units of cytochrome b562 with externally attached heme having intermolecular linkages formed via the heme-heme pocket interaction was investigated in an effort to construct a well-defined structure. The engineered site for surface attachment of heme at Cys80 in an N80C mutant of cytochrome b562 provides the primary basis for the formation of the periodic assembly structure, which is characterized herein by circular dichroism (CD) spectroscopy and high-speed atomic force microscopy (AFM). This assembly represents the first example of the observation of a split-type Cotton effect by heme-heme exciton coupling in an artificial hemoprotein assembly system. Molecular dynamics simulations validated by simulated CD spectra, AFM images, and mutation experiments reveal that the assembly has a periodic helical structure with 3 nm pitches, suggesting the formation of the assembled structure is driven not only by the heme-heme pocket interaction but also by additional secondary hydrogen bonding and/or electrostatic interactions at the protein interfaces of the assembly.
Collapse
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering , Osaka University , Suita 565-0871 , Japan.,Frontier Research Base for Global Young Researchers, Graduate School of Engineering , Osaka University , Suita 565-0871 , Japan.,PRESTO, Japan Science and Technology Agency (JST) , Kawaguchi 332-0012 , Japan
| | - Nishiki Fujimaki
- Department of Applied Chemistry, Graduate School of Engineering , Osaka University , Suita 565-0871 , Japan
| | - Ryota Kajihara
- Department of Applied Chemistry, Graduate School of Engineering , Osaka University , Suita 565-0871 , Japan
| | - Hiroki Watanabe
- Department of Physics , Nagoya University , Nagoya 464-8602 , Japan
| | | | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering , Osaka University , Suita 565-0871 , Japan
| |
Collapse
|
24
|
Solvent Composition Drives the Rebinding Kinetics of Nitric Oxide to Microperoxidase. Sci Rep 2018; 8:5281. [PMID: 29588445 PMCID: PMC5869715 DOI: 10.1038/s41598-018-22944-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/27/2018] [Indexed: 12/25/2022] Open
Abstract
The rebinding kinetics of NO after photodissociation from microperoxidase (Mp-9) is studied in different solvent environments. In mixed glycerol/water (G/W) mixtures the dissociating ligand rebinds with a yield close to 1 due to the cavities formed by the solvent whereas in pure water the ligand can diffuse into the solvent after photodissociation. In the G/W mixture, only geminate rebinding on the sub-picosecond and 5 ps time scales was found and the rebinding fraction is unity which compares well with available experiments. Contrary to that, simulations in pure water find two time scales – ~10 ps and ~200 ps - indicating that both, geminate rebinding and rebinding after diffusion of NO in the surrounding water contribute. The rebinding fraction is around 0.63 within 1 ns which is in stark contrast with experiment. Including ions (Na and Cl) at 0.15 M concentration in water leads to rebinding kinetics tending to that in the glycerol/water mixture and yields agreement with experiments. The effect of temperature is also probed and found to be non-negligible. The present simulations suggest that NO rebinding in Mp is primarily driven by thermal fluctuations which is consistent with recent resonance Raman spectroscopy experiments and simulations on MbNO.
Collapse
|
25
|
Oda A, Nagao S, Yamanaka M, Ueda I, Watanabe H, Uchihashi T, Shibata N, Higuchi Y, Hirota S. Construction of a Triangle-Shaped Trimer and a Tetrahedron Using an α-Helix-Inserted Circular Permutant of Cytochrome c
555. Chem Asian J 2018; 13:964-967. [DOI: 10.1002/asia.201800252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Akiya Oda
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Satoshi Nagao
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Masaru Yamanaka
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Ikki Ueda
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Hiroki Watanabe
- Department of Physics; Nagoya University; Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Takayuki Uchihashi
- Department of Physics; Nagoya University; Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Naoki Shibata
- Department of Life Science; Graduate School of Life Science; University of Hyogo; 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
- RIKEN SPring-8 Center; 1-1-1 Koto Sayo-cho Sayo-gun, Hyogo 679-5148 Japan
| | - Yoshiki Higuchi
- Department of Life Science; Graduate School of Life Science; University of Hyogo; 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
- RIKEN SPring-8 Center; 1-1-1 Koto Sayo-cho Sayo-gun, Hyogo 679-5148 Japan
| | - Shun Hirota
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama Ikoma Nara 630-0192 Japan
| |
Collapse
|
26
|
Huber TR, McPherson EC, Keating CE, Snow CD. Installing Guest Molecules at Specific Sites within Scaffold Protein Crystals. Bioconjug Chem 2017; 29:17-22. [DOI: 10.1021/acs.bioconjchem.7b00668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Thaddaus R. Huber
- Department of Chemical and
Biological Engineering, Colorado State University, 1301 Campus Delivery Fort Collins, Colorado 80523, United States
| | - Eli C. McPherson
- Department of Chemical and
Biological Engineering, Colorado State University, 1301 Campus Delivery Fort Collins, Colorado 80523, United States
| | - Carolyn E. Keating
- Department of Chemical and
Biological Engineering, Colorado State University, 1301 Campus Delivery Fort Collins, Colorado 80523, United States
| | - Christopher D. Snow
- Department of Chemical and
Biological Engineering, Colorado State University, 1301 Campus Delivery Fort Collins, Colorado 80523, United States
| |
Collapse
|
27
|
Bailey JB, Zhang L, Chiong JA, Ahn S, Tezcan FA. Synthetic Modularity of Protein-Metal-Organic Frameworks. J Am Chem Soc 2017; 139:8160-8166. [PMID: 28590729 DOI: 10.1021/jacs.7b01202] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previously, we adopted the construction principles of metal-organic frameworks (MOFs) to design a 3D crystalline protein lattice in which pseudospherical ferritin nodes decorated on their C3 symmetric vertices with Zn coordination sites were connected via a ditopic benzene-dihydroxamate linker. In this work, we have systematically varied both the metal ions presented at the vertices of the ferritin nodes (Zn(II), Ni(II), and Co(II)) and the synthetic dihydroxamate linkers, which yielded an expanded library of 15 ferritin-MOFs with the expected body-centered (cubic or tetragonal) lattice arrangements. Crystallographic and small-angle X-ray scattering (SAXS) analyses indicate that lattice symmetries and dimensions of ferritin-MOFs can be dictated by both the metal and linker components. SAXS measurements on bulk crystalline samples reveal that some ferritin-MOFs can adopt multiple lattice conformations, suggesting dynamic behavior. This work establishes that the self-assembly of ferritin-MOFs is highly robust and that the synthetic modularity that underlies the structural diversity of conventional MOFs can also be applied to the self-assembly of protein-based crystalline materials.
Collapse
Affiliation(s)
- Jake B Bailey
- Department of Chemistry and Biochemistry, University of California at San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ling Zhang
- Department of Chemistry and Biochemistry, University of California at San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jerika A Chiong
- Department of Chemistry and Biochemistry, University of California at San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sunhyung Ahn
- Department of Chemistry and Biochemistry, University of California at San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California at San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
28
|
Nastri F, Chino M, Maglio O, Bhagi-Damodaran A, Lu Y, Lombardi A. Design and engineering of artificial oxygen-activating metalloenzymes. Chem Soc Rev 2016; 45:5020-54. [PMID: 27341693 PMCID: PMC5021598 DOI: 10.1039/c5cs00923e] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many efforts are being made in the design and engineering of metalloenzymes with catalytic properties fulfilling the needs of practical applications. Progress in this field has recently been accelerated by advances in computational, molecular and structural biology. This review article focuses on the recent examples of oxygen-activating metalloenzymes, developed through the strategies of de novo design, miniaturization processes and protein redesign. Considerable progress in these diverse design approaches has produced many metal-containing biocatalysts able to adopt the functions of native enzymes or even novel functions beyond those found in Nature.
Collapse
Affiliation(s)
- Flavia Nastri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
- IBB, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
29
|
Nepal M, Sheedlo MJ, Das C, Chmielewski J. Accessing Three-Dimensional Crystals with Incorporated Guests through Metal-Directed Coiled-Coil Peptide Assembly. J Am Chem Soc 2016; 138:11051-7. [PMID: 27500907 DOI: 10.1021/jacs.6b06708] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Manish Nepal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Michael J. Sheedlo
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
30
|
Zhang H, Lee J, Lammer AD, Chi X, Brewster JT, Lynch VM, Li H, Zhang Z, Sessler JL. Self-Assembled Pyridine-Dipyrrolate Cages. J Am Chem Soc 2016; 138:4573-9. [DOI: 10.1021/jacs.6b00564] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huacheng Zhang
- Department
of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Juhoon Lee
- Department
of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Aaron D. Lammer
- Department
of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Xiaodong Chi
- Department
of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - James T. Brewster
- Department
of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Vincent M. Lynch
- Department
of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Hao Li
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhan Zhang
- Department
of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
- Institute
for Supramolecular and Catalytic Chemistry, Shanghai University, Shanghai 200444 China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
- Institute
for Supramolecular and Catalytic Chemistry, Shanghai University, Shanghai 200444 China
| |
Collapse
|
31
|
Kandemir B, Chakraborty S, Guo Y, Bren KL. Semisynthetic and Biomolecular Hydrogen Evolution Catalysts. Inorg Chem 2015; 55:467-77. [DOI: 10.1021/acs.inorgchem.5b02054] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Banu Kandemir
- Department of Chemistry, University of Rochester, Rochester New York 14627-0216, United States
| | - Saikat Chakraborty
- Department of Chemistry, University of Rochester, Rochester New York 14627-0216, United States
| | - Yixing Guo
- Department of Chemistry, University of Rochester, Rochester New York 14627-0216, United States
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester New York 14627-0216, United States
| |
Collapse
|
32
|
Miyamoto T, Kuribayashi M, Nagao S, Shomura Y, Higuchi Y, Hirota S. Domain-swapped cytochrome cb562 dimer and its nanocage encapsulating a Zn-SO 4 cluster in the internal cavity. Chem Sci 2015; 6:7336-7342. [PMID: 28791095 PMCID: PMC5519777 DOI: 10.1039/c5sc02428e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/22/2015] [Indexed: 01/01/2023] Open
Abstract
Three domain-swapped cytochrome cb562 dimers formed a unique cage structure with a Zn–SO4 cluster inside the cavity.
Protein nanostructures have been gaining in interest, along with developments in new methods for construction of novel nanostructures. We have previously shown that c-type cytochromes and myoglobin form oligomers by domain swapping. Herein, we show that a four-helix bundle protein cyt cb562, with the cyt b562 heme attached to the protein moiety by two Cys residues insertion, forms a domain-swapped dimer. Dimeric cyt cb562 did not dissociate to monomers at 4 °C, whereas dimeric cyt b562 dissociated under the same conditions, showing that heme attachment to the protein moiety stabilizes the domain-swapped structure. According to X-ray crystallographic analysis of dimeric cyt cb562, the two helices in the N-terminal region of one protomer interacted with the other two helices in the C-terminal region of the other protomer, where Lys51–Asp54 served as a hinge loop. The heme coordination structure of the dimer was similar to that of the monomer. In the crystal, three domain-swapped cyt cb562 dimers formed a unique cage structure with a Zn–SO4 cluster inside the cavity. The Zn–SO4 cluster consisted of fifteen Zn2+ and seven SO42– ions, whereas six additional Zn2+ ions were detected inside the cavity. The cage structure was stabilized by coordination of the amino acid side chains of the dimers to the Zn2+ ions and connection of two four-helix bundle units through the conformation-adjustable hinge loop. These results show that domain swapping can be applied in the construction of unique protein nanostructures.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Mai Kuribayashi
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Satoshi Nagao
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Yasuhito Shomura
- Graduate School of Science and Engineering , Ibaraki University , 4-12-1, Nakanarusawa , Hitachi , Ibaraki 316-8511 , Japan
| | - Yoshiki Higuchi
- Department of Life Science , Graduate School of Life Science , University of Hyogo , 3-2-1 Koto, Kamigori-cho, Ako-gun , Hyogo 678-1297 , Japan.,RIKEN SPring-8 Center , 1-1-1 Koto, Sayo-cho, Sayo-gun , Hyogo 679-5148 , Japan
| | - Shun Hirota
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| |
Collapse
|
33
|
Lai YT, Jiang L, Chen W, Yeates TO. On the predictability of the orientation of protein domains joined by a spanning alpha-helical linker. Protein Eng Des Sel 2015; 28:491-9. [DOI: 10.1093/protein/gzv035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 11/14/2022] Open
|
34
|
Abstract
Protein crystals have been functionalized for applications in preparation of inorganic materials, asymmetric catalysis and accumulation of functional compounds.
Collapse
Affiliation(s)
- Satoshi Abe
- Department of Biomolecular Engineering
- Graduate School of Bioscience and Biotechnology
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Takafumi Ueno
- Department of Biomolecular Engineering
- Graduate School of Bioscience and Biotechnology
- Tokyo Institute of Technology
- Midori-ku
- Japan
| |
Collapse
|
35
|
Abstract
From the catalytic reactions that sustain the global oxygen, nitrogen, and carbon cycles to the stabilization of DNA processing proteins, transition metal ions and metallocofactors play key roles in biology. Although the exquisite interplay between metal ions and protein scaffolds has been studied extensively, the fact that the biological roles of the metals often stem from their placement in the interfaces between proteins and protein subunits is not always recognized. Interfacial metal ions stabilize permanent or transient protein-protein interactions, enable protein complexes involved in cellular signaling to adopt distinct conformations in response to environmental stimuli, and catalyze challenging chemical reactions that are uniquely performed by multisubunit protein complexes. This review provides a structural survey of transition metal ions and metallocofactors found in protein-protein interfaces, along with a series of selected examples that illustrate their diverse biological utility and significance.
Collapse
Affiliation(s)
- Woon Ju Song
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; emails: , ,
| | | | | | | |
Collapse
|
36
|
Kier BL, Andersen NH. Captides: rigid junctions between beta sheets and small molecules. J Pept Sci 2014; 20:704-15. [PMID: 24909552 DOI: 10.1002/psc.2657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 12/15/2022]
Abstract
An extensive series of covalently linked small molecule-peptide adducts based on a terminally capped-beta hairpin motif is reported. The constructs can be prepared by standard solid-phase Fmoc chemistry with one to four peptide chains linked to small molecule hubs bearing carboxylic acid moieties. The key feature of interest is the precise, buried environment of the small molecule, and its rigid orientation relative to one or more short but fully structured peptide chain(s). Most of this study employs a minimalist nine residue 'captide', a capped β-turn, but we illustrate general applicability to peptides which can terminate in a beta strand. The non-peptide portion of these adducts can include nearly any molecule bearing one or more carboxylic acid groups. Fold-dependent rigidity sets this strategy apart from the currently available bioconjugation methods, which typically engender significant flexibility between peptide and tag. Applications to catalyst enhancement, drug design, higher-order assembly, and FRET calibration rulers are discussed.
Collapse
Affiliation(s)
- Brandon L Kier
- University of Washington - Chemistry, Bagley Hall Room 205 Box 351700, Seattle, WA, 98195-1700, USA
| | | |
Collapse
|
37
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
38
|
Sontz PA, Song WJ, Tezcan FA. Interfacial metal coordination in engineered protein and peptide assemblies. Curr Opin Chem Biol 2014; 19:42-9. [PMID: 24780278 DOI: 10.1016/j.cbpa.2013.12.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/29/2022]
Abstract
Metal ions are frequently found in natural protein-protein interfaces, where they stabilize quaternary or supramolecular protein structures, mediate transient protein-protein interactions, and serve as catalytic centers. Paralleling these natural roles, coordination chemistry of metal ions is being increasingly utilized in creative ways toward engineering and controlling the assembly of functional supramolecular peptide and protein architectures. Here we provide a brief overview of this emerging branch of metalloprotein/peptide engineering and highlight a few select examples from the recent literature that best capture the diversity and future potential of approaches that are being developed.
Collapse
Affiliation(s)
- Pamela A Sontz
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
| | - Woon Ju Song
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
39
|
|
40
|
Medina-Morales A, Perez A, Brodin JD, Tezcan FA. In vitro and cellular self-assembly of a Zn-binding protein cryptand via templated disulfide bonds. J Am Chem Soc 2013; 135:12013-22. [PMID: 23905754 DOI: 10.1021/ja405318d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Simultaneously strong and reversible through redox chemistry, disulfide bonds play a unique and often irreplaceable role in the formation of biological and synthetic assemblies. In an approach inspired by supramolecular chemistry, we report here that engineered noncovalent interactions on the surface of a monomeric protein can template its assembly into a unique cryptand-like protein complex ((C81/C96)RIDC14) by guiding the selective formation of multiple disulfide bonds across different interfaces. Owing to its highly interconnected framework, (C81/C96)RIDC14 is well preorganized for metal coordination in its interior, can support a large internal cavity surrounding the metal sites, and can withstand significant alterations in inner-sphere metal coordination. (C81/C96)RIDC14 self-assembles with high fidelity and yield in the periplasmic space of E. coli cells, where it can successfully compete for Zn(II) binding.
Collapse
Affiliation(s)
- Annette Medina-Morales
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0356, USA
| | | | | | | |
Collapse
|
41
|
Artificial Metalloenzymes Constructed From Hierarchically-Assembled Proteins. Chem Asian J 2013; 8:1646-60. [DOI: 10.1002/asia.201300347] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 01/20/2023]
|
42
|
Patterson DP, Desai AM, Holl MMB, Marsh ENG. Evaluation of a symmetry-based strategy for assembling protein complexes. RSC Adv 2011; 1:1004-1012. [PMID: 23293744 PMCID: PMC3536532 DOI: 10.1039/c1ra00282a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We evaluate a strategy for assembling proteins into large cage-like structures, based on the symmetry associated with the native protein's quaternary structure. Using a trimeric protein, KDPG aldolase, as a building block, two fusion proteins were designed that could assemble together upon mixing. The fusion proteins, designated A-(+) and A-(-), comprise the aldolase domain, a short, flexible spacer sequence, and a sequence designed to form a heterodimeric antiparallel coiled-coil between A-(+) and A-(-). The flexible spacer is included to minimize constraints on the ability of the fusion proteins to assemble into larger structures. On incubating together, A-(+) and A-(-) assembled into a mixture of complexes that were analyzed by size exclusion chromatography coupled to multi-angle laser light scattering, analytical ultracentrifugation, transmission electron microscopy and atomic force microscopy. Our analysis indicates that, despite the inherent flexibility of the assembly strategy, the proteins assemble into a limited number of globular structures. Dimeric and tetrameric complexes of A-(+) and A-(-) predominate, with some evidence for the formation of larger assemblies; e.g. octameric A-(+): A-(-) complexes.
Collapse
Affiliation(s)
| | - Ankur M. Desai
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark M. Banaszak Holl
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - E. Neil G. Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
43
|
Laganowsky A, Zhao M, Soriaga AB, Sawaya MR, Cascio D, Yeates TO. An approach to crystallizing proteins by metal-mediated synthetic symmetrization. Protein Sci 2011; 20:1876-90. [PMID: 21898649 DOI: 10.1002/pro.727] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 12/31/2022]
Abstract
Combining the concepts of synthetic symmetrization with the approach of engineering metal-binding sites, we have developed a new crystallization methodology termed metal-mediated synthetic symmetrization. In this method, pairs of histidine or cysteine mutations are introduced on the surface of target proteins, generating crystal lattice contacts or oligomeric assemblies upon coordination with metal. Metal-mediated synthetic symmetrization greatly expands the packing and oligomeric assembly possibilities of target proteins, thereby increasing the chances of growing diffraction-quality crystals. To demonstrate this method, we designed various T4 lysozyme (T4L) and maltose-binding protein (MBP) mutants and cocrystallized them with one of three metal ions: copper (Cu²⁺, nickel (Ni²⁺), or zinc (Zn²⁺). The approach resulted in 16 new crystal structures--eight for T4L and eight for MBP--displaying a variety of oligomeric assemblies and packing modes, representing in total 13 new and distinct crystal forms for these proteins. We discuss the potential utility of the method for crystallizing target proteins of unknown structure by engineering in pairs of histidine or cysteine residues. As an alternate strategy, we propose that the varied crystallization-prone forms of T4L or MBP engineered in this work could be used as crystallization chaperones, by fusing them genetically to target proteins of interest.
Collapse
Affiliation(s)
- Arthur Laganowsky
- Institute for Genomics and Proteomics, UCLA-DOE, Los Angeles, California 90095-1570, USA
| | | | | | | | | | | |
Collapse
|
44
|
Yarman A, Peng L, Wu Y, Bandodkar A, Gajovic-Eichelmann N, Wollenberger U, Hofrichter M, Ullrich R, Scheibner K, Scheller FW. Can peroxygenase and microperoxidase substitute cytochrome P450 in biosensors. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12566-011-0023-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Koshiyama T, Shirai M, Hikage T, Tabe H, Tanaka K, Kitagawa S, Ueno T. Post-Crystal Engineering of Zinc-Substituted Myoglobin to Construct a Long-Lived Photoinduced Charge-Separation System. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201008004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Koshiyama T, Shirai M, Hikage T, Tabe H, Tanaka K, Kitagawa S, Ueno T. Post-crystal engineering of zinc-substituted myoglobin to construct a long-lived photoinduced charge-separation system. Angew Chem Int Ed Engl 2011; 50:4849-52. [PMID: 21495132 DOI: 10.1002/anie.201008004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 02/14/2011] [Indexed: 12/30/2022]
Affiliation(s)
- Tomomi Koshiyama
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University iCeMS Lab Funai Center, Kyoto University Katsura, Kyoto 615-8510, Japan
| | | | | | | | | | | | | |
Collapse
|