1
|
Liu DY, Fang DC. Theoretical Study on the Mechanism of Ru(II)-Catalyzed Intermolecular [3 + 2] Annulation between o-Toluic Acid and 3,5-Bis(trifluoromethyl)benzaldehyde: Octahedral vs Trigonal Bipyramidal. J Org Chem 2024; 89:14061-14072. [PMID: 39312811 DOI: 10.1021/acs.joc.4c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Density functional theory was utilized to investigate the mechanism of Ru(II)-catalyzed aromatic C-H activation and addition of aromatic aldehydes. The proposed catalytic cycle consists of C-H bond activation, aldehyde carbonyl insertion for C-C coupling, lactonization for the formation of the final product, product separation, and catalyst recovery. Our calculations suggest that Ru(OAc)2(PCy3) (referred to as CAT) is the most favorable active catalyst, facilitating the C-H bond activation to form a five-membered ring cycloruthenium intermediate (INT2). Subsequently, the aromatic aldehyde reactant 2a enters the Ru coordination sphere, accelerating the C-C coupling and lactonization for the formation of the final product. The involvement of acetate assists in the final product separation, while INT1 re-enters the Ru coordination sphere to initiate a new catalytic cycle. Utilizing the energetic span model, the apparent activation free energy barrier was computed to be 34.3 kcal mol-1 at 443 K. Furthermore, exploration of the reaction mechanism in the absence of phosphine ligands identified Ru(OAc)2(p-cymene) as the most favorable active catalyst. The derived apparent activation free energy barrier offers a comprehensive explanation for the experimentally observed yields. Additionally, we have examined the disparities between the octahedral and trigonal bipyramidal structures of the catalysts concerning their effects on the reaction mechanisms and apparent activation free energy barriers.
Collapse
Affiliation(s)
- Dan-Yang Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Simon H, Zangarelli A, Bauch T, Ackermann L. Ruthenium(II)-Catalyzed Late-Stage Incorporation of N-Aryl Triazoles and Tetrazoles with Sulfonium Salts via C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202402060. [PMID: 38618872 DOI: 10.1002/anie.202402060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
The late-stage functionalization of active pharmaceutical ingredients is a key challenge in medicinal chemistry. Furthermore, N-aryl triazoles and tetrazoles are important structural motifs with the potential to boost the activity of diverse drug molecules. Using easily accessible dibenzothiophenium salts for the ruthenium-catalyzed C-H arylation, these scaffolds were introduced into a variety of bioactive compounds. Our methodology uses cost-efficient ruthenium, KOAc as a mild base and gives access to a plethora of highly decorated triazole and tetrazole containing drug derivatives.
Collapse
Affiliation(s)
- Hendrik Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Agnese Zangarelli
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Tristan Bauch
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
- Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
3
|
Antoniou IM, Ioannou N, Panagiotou N, Georgiades SN. LED-induced Ru-photoredox Pd-catalyzed C-H arylation of (6-phenylpyridin-2-yl)pyrimidines and heteroaryl counterparts. RSC Adv 2024; 14:12179-12191. [PMID: 38628490 PMCID: PMC11019410 DOI: 10.1039/d4ra02173h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
N-heterocycles are essential building blocks and scaffolds in medicinal chemistry. A Pd-catalyzed, Ru-photoredox-mediated C-H arylation is applied herein, for converting a series of functionality-inclusive (6-phenylpyridin-2-yl)pyrimidines to single arylated derivatives, using phenyldiazonium tetrafluoroborate as aryl source. This green chemistry-compliant transformation is induced by LED light. The drug-like modular substrates are constructed via combination of Biginelli multi-component condensation and Suzuki C-C cross-coupling, in order to strategically install, adjacent to the Ph-ring intended to undergo C-H arylation, a (6-pyridin-2-yl)pyrimidine that plays the role of a chelating directing moiety for the C-H arylation catalyst. The scope has been demonstrated on a series of 26 substrates, comprising diverse Ph-ring substituents and substitution patterns, as well as with 13 different aryl donors. Substrates in which the Ph-ring (arylation acceptor) was replaced by an electron-rich heteroaryl counterpart (2-/3-thiophene or -benzofuran) have also been examined and found to undergo arylation regioselectively. End-product conformations afford interesting motifs for occupying 3D chemical space, as implied by single-crystal X-ray diffraction, which has allowed the elucidation of six structures of aryl derivatives and one of an unprecedented pyrimidine-pyridine-benzofuran carbopalladated complex, believed to be a C-H activation derivative.
Collapse
Affiliation(s)
- Ioakeim M Antoniou
- Department of Chemistry, University of Cyprus 1 Panepistimiou Avenue, Aglandjia 2109 Nicosia Cyprus
| | - Natalia Ioannou
- Department of Chemistry, University of Cyprus 1 Panepistimiou Avenue, Aglandjia 2109 Nicosia Cyprus
| | - Nikos Panagiotou
- Department of Chemistry, University of Cyprus 1 Panepistimiou Avenue, Aglandjia 2109 Nicosia Cyprus
| | - Savvas N Georgiades
- Department of Chemistry, University of Cyprus 1 Panepistimiou Avenue, Aglandjia 2109 Nicosia Cyprus
| |
Collapse
|
4
|
Shah TA, Sarkar T, Kar S, Maharana PK, Talukdar K, Punniyamurthy T. Transition-Metal-Catalyzed Directed C-H Functionalization in/on Water. Chem Asian J 2024; 19:e202300815. [PMID: 37932013 DOI: 10.1002/asia.202300815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 11/08/2023]
Abstract
Directing group assisted C-H bond functionalization using transition-metal-catalysis has emerged as a reliable synthetic tool for the construction of regioselective carbon-carbon/heteroatom bonds. Off late, "in/on water directed transition-metal-catalysis", though still underdeveloped, has appeared as one of the prominent themes in sustainable organic chemistry. This article covers the advancements, mechanistic insights and application of the sustainable directed C-H bond functionalization of (hetero)arenes in/on water in the presence of transition-metal-catalysis.
Collapse
Affiliation(s)
- Tariq A Shah
- Department of Chemistry and Advanced Material Chemistry Center (AMCC), Khalifa University, PO Box, 127788, Abu Dhabi, U.A.E
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Subhradeep Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | | |
Collapse
|
5
|
Findlay MT, Hogg AS, Douglas JJ, Larrosa I. Improving the sustainability of the ruthenium-catalysed N-directed C-H arylation of arenes with aryl halides. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:2394-2400. [PMID: 36960441 PMCID: PMC10026369 DOI: 10.1039/d2gc03860a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Direct C-H functionalisation methodologies represent an opportunity to improve the overall 'green' credentials of organic coupling reactions, improving atom economy and reducing overall step count. Despite this, these reactions frequently run under reaction conditions that leave room for improved sustainability. Herein, we describe a recent advance in our ruthenium-catalysed C-H arylation methodology that aims to address some of the environmental impacts associated with this procedure, including solvent choice, reaction temperature, reaction time, and loading of the ruthenium catalyst. We believe that our findings demonstrate a reaction with improved environmental credentials and showcase it on a multi-gram scale within an industrial setting.
Collapse
Affiliation(s)
- Michael T Findlay
- Department of Chemistry, School of Natural Sciences, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley S Hogg
- Department of Chemistry, School of Natural Sciences, University of Manchester Oxford Road Manchester M13 9PL UK
| | - James J Douglas
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield UK
| | - Igor Larrosa
- Department of Chemistry, School of Natural Sciences, University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
6
|
Gulia N, Fornalski J, Gumienna A, Ambroziak M, Szafert S. Temperature‐Controlled Selective Mono‐ vs. Di‐
ortho
‐Arylation for the Synthesis of Arylhydrazine Derivatives. Chemistry 2022; 28:e202202449. [DOI: 10.1002/chem.202202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Nurbey Gulia
- Faculty of Chemistry University of Wrocław 14 F. Joliot-Curie 50–383 Wrocław Poland
| | - Jarosław Fornalski
- Faculty of Chemistry University of Wrocław 14 F. Joliot-Curie 50–383 Wrocław Poland
| | - Adrianna Gumienna
- Faculty of Chemistry University of Wrocław 14 F. Joliot-Curie 50–383 Wrocław Poland
| | - Małgorzata Ambroziak
- Faculty of Chemistry University of Wrocław 14 F. Joliot-Curie 50–383 Wrocław Poland
| | - Sławomir Szafert
- Faculty of Chemistry University of Wrocław 14 F. Joliot-Curie 50–383 Wrocław Poland
| |
Collapse
|
7
|
Zhang X, Zhang F, Li X, Lu MZ, Meng X, Huang L, Luo H. Direct Synthesis of Biphenyl-2-carbonitriles by Rh(III)-Catalyzed C-H Hiyama Cross-Coupling in Water. Org Lett 2022; 24:5029-5033. [PMID: 35822841 DOI: 10.1021/acs.orglett.2c01754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This method represents an efficient rhodium(III)-catalyzed o-C-H arylation of readily available benzimidate derivatives with diverse arylsilanes in water as a sustainable solvent, enabling the straightforward synthesis of potentially useful biphenyl-2-carbonitrile derivatives. This silicon-based protocol employs benzimidates as both an efficacious directing group and the source of a nitrile group.
Collapse
Affiliation(s)
- Xiuqi Zhang
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Fukuan Zhang
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xiaolan Li
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhenzhou 450001, China
| | - Xin Meng
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Lei Huang
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Haiqing Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
8
|
Cai S, Sun Q, Wang Q, He G, Chen G. Ruthenium-Catalyzed Pyridine-Directed Aryl C-H Glycosylation with Glycosyl Chlorides. J Org Chem 2022; 87:8811-8818. [PMID: 35696353 DOI: 10.1021/acs.joc.2c00815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metal-catalyzed C-H glycosylation reactions with glycosyl chloride donors have emerged as a useful strategy for the synthesis of C-glycosides. Previously, palladium and nickel complexes were reported to catalyze C-H glycosylation reactions using amide-linked bidentate auxiliaries. Herein, a ruthenium-catalyzed ortho C-H glycosylation reaction of arenes with various glycosyl chloride donors using a monodentate pyridine directing group is developed. Preliminary mechanistic studies indicated that two-electron oxidative addition and reductive elimination of ruthenocycle intermediate led to the glycosylation products.
Collapse
Affiliation(s)
- Shaokun Cai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qikai Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Quanquan Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Li X, Chen M, Xie C, Zhang J. Visible Light-Activated Ruthenium-Catalysed Direct Arylation at Ambient Temperature. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Seki M. Development of Novel and Efficient Catalytic Systems for C-H Activation and Application to Practical Synthesis of Pharmaceuticals. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Xu YX, Liang YQ, Cai ZJ, Ji SJ. Ruthenium(II)-Catalyzed Chelation-Assisted Desulfitative Arylation of Benzo[h]quinolines with Arylsulfonyl Chlorides. Org Lett 2022; 24:2601-2606. [PMID: 35357174 DOI: 10.1021/acs.orglett.2c00542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, a novel chelation-assisted C-H arylation reaction of benzo[h]quinoline is described. This transformation, using [RuCl2(p-cymene)]2 as the catalyst and cheap and easily accessible arylsulfonyl chlorides as the arylation source, featured simple reaction conditions, a broad substrate scope, and functional group tolerance. The successful application of some bioactive-molecule-based sulfonyl chlorides further highlighted the potential utility and importance of this desulfitative C-H arylation protocol.
Collapse
Affiliation(s)
- Yi-Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yu-Qing Liang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Zhong-Jian Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.,Suzhou Baolidi Functional Materials Research Institute, Suzhou 215144, China
| |
Collapse
|
12
|
Dharani S, Kalaiarasi G, Lynch VM, Srinivasan K, Prabhakaran R. C–H activation and subsequent C–C bond formation in rigid alkenes catalyzed by Ru( iii) metallates. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pyrazolone derived Ru(iii) complexes were synthesized and applied as catalysts in the C–H activation reaction of α,β-unsaturated carbonyl compounds. In addition to Heck type coupling, ethanol mediated ethoxylation was also witnessed.
Collapse
Affiliation(s)
- S. Dharani
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India
| | - G. Kalaiarasi
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India
| | - Vincent M. Lynch
- Department of Chemistry, University of Texas, Austin, TX 78712-1224, USA
| | - K. Srinivasan
- Department of Physics, Bharathiar University, Coimbatore 641046, India
| | - R. Prabhakaran
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India
| |
Collapse
|
13
|
Shi Y, Huang T, Wang T, Chen J, Liu X, Wu Z, Huang X, Zheng Y, Yang Z, Wu Y. Divergent Construction of Diverse Scaffolds through Catalyst-Controlled C-H Activation Cascades of Quinazolinones and Cyclopropenones. Chemistry 2021; 27:13346-13351. [PMID: 34350649 DOI: 10.1002/chem.202101839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 11/10/2022]
Abstract
A transition-metal-catalyzed C-H activation cascade strategy to rapidly construct diverse quinazolinone derivatives in a one-pot manner is reported. The catalysts play an important role in the different transformations. Additionally, the procedure is scalable, proceeds with high efficiency and good chemo-/regio-selectivity, and tolerates a range of functional groups.
Collapse
Affiliation(s)
- Yuesen Shi
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Tianle Huang
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Ting Wang
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jian Chen
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xuexin Liu
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhouping Wu
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaofang Huang
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yao Zheng
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhongzhen Yang
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yong Wu
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
14
|
Soulé JF, Bruneau C, Darcel C. Pierre Dixneuf: A Pioneering Career in Organometallic Chemistry Highlighting Ruthenium as a Star Metal in Homogeneous Catalysis. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Shapovalov SS, Skabitskii IV. Ruthenium and Nickel Complexes with Cymanthrenenecarboxylic Acid: Synthesis and Structures. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421050055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Zhang N, Ma W, Li J, Liu Y, Zeng M. Solvent‐Free Ruthenium‐Catalyzed Direct Coupling of Phosphines and Aryl Chlorides via C−H Activation: An Efficient and Straight Access to Aryl‐Substituted Biarylphosphines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ni‐Juan Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan P. R. China
| | - Wen‐Tao Ma
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan P. R. China
| | - Jia‐Wei Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan P. R. China
| | - Yue‐Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan P. R. China
| | - Ming‐Hua Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan P. R. China
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 541004 Guilin P. R. China
| |
Collapse
|
17
|
Wang L, Tang P, Li M, Li J, Liu Y, Zeng M. Double Ligands Enabled Ruthenium Catalyzed
ortho
‐C−H Arylation of Dialkyl Biarylphosphines: Straight and Economic Synthesis of Highly Steric and Electron‐Rich Aryl‐Substituted Buchwald‐Type Phosphines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Liang‐Neng Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
| | - Pan‐Ting Tang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
| | - Ming Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
| | - Jia‐Wei Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
| | - Yue‐Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
| | - Ming‐Hua Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 People's Republic of China
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
18
|
Wang CA, Chatani N. Ruthenium(II)-catalyzed Arylation of ortho-C–H Bonds in 2-Aroyl-imidazoles with Aryl Halides. CHEM LETT 2021. [DOI: 10.1246/cl.200886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chen-an Wang
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Wang K, Wei T, Zhang Y, Hou J, Bai R, Xie Y. Metal-free regioselective C-H amination for the synthesis of pyrazole-containing 2 H-indazoles. Org Biomol Chem 2021; 19:1787-1794. [PMID: 33555276 DOI: 10.1039/d0ob02485f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and practical regioselective approach for the C-H amination of 2H-indazoles under transition-metal-free conditions was developed. A series of substrates were tested showing eminent functional group tolerance and affording the C-N functionalization products in good to excellent yields. Mechanism studies revealed that a radical process was involved in this transformation.
Collapse
Affiliation(s)
- Kai Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Tingting Wei
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| | - Yujia Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| | - Jiahao Hou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| | - Renren Bai
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| | - Yuanyuan Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China and College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
20
|
Karlinskii BY, Ananikov VP. Catalytic C-H Functionalization of Unreactive Furan Cores in Bio-Derived Platform Chemicals. CHEMSUSCHEM 2021; 14:558-568. [PMID: 33207076 DOI: 10.1002/cssc.202002397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/17/2020] [Indexed: 06/11/2023]
Abstract
C-H functionalization is one of the most convenient and powerful tools in the arsenal of modern chemistry, deservedly nominated as the "Holy Grail" of organic synthesis. A frequent disadvantage of this method is the need for harsh reaction conditions to carry out transformations of inert C-H bonds, which limits the possibility of its use for modifying less stable substrates. Biomass-derived furan platform chemicals, which have a relatively unstable aromatic furan core and highly reactive side chain substituents, are extremely promising and valuable organic molecules that are currently widely used in a variety of research and industrial fields. The high sensitivity of furan derivatives to acids, strong oxidants, and high temperatures significantly limits the use of classical methods of C-H functionalization for their modification. New methods of catalytic functionalization of non-reactive furan cores are urgently required to obtain a new generation of materials with controlled properties and potentially bioactive substances.
Collapse
Affiliation(s)
- Bogdan Y Karlinskii
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| |
Collapse
|
21
|
Lin Q, Lin Z, Pan M, Zheng Q, Li H, Chen X, Darcel C, Dixneuf PH, Li B. Alkenes as hydrogen trappers to control the regio-selective ruthenium(ii) catalyzed ortho C–H silylation of amides and anilides. Org Chem Front 2021. [DOI: 10.1039/d0qo01031f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A convenient and practical pathway to versatile silylated amides and anilides is described via efficient and selective ruthenium(ii) catalyzed ortho C–H silylation with different alkenes as the hydrogen acceptors.
Collapse
Affiliation(s)
- Qiao Lin
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Zirui Lin
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Mingxing Pan
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Qiaojin Zheng
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Hui Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Christophe Darcel
- Univ. Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes)
- F-35000 Rennes
- France
| | - Pierre H. Dixneuf
- Univ. Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes)
- F-35000 Rennes
- France
| | - Bin Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
- Univ. Rennes
| |
Collapse
|
22
|
Dhawa U, Kaplaneris N, Ackermann L. Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Org Chem Front 2021. [DOI: 10.1039/d1qo00727k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sustainable strategies for the activation of inert C–H bonds towards improved resource-economy.
Collapse
Affiliation(s)
- Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
23
|
Vijayapritha S, Viswanathamurthi P. New half-sandwich (η6-p-cymene)ruthenium(II) complexes with benzothiazole hydrazone Schiff base ligand: Synthesis, structural characterization and catalysis in transamidation of carboxamide with primary amines. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Sarkar W, Bhowmik A, Das S, Sulekha AB, Mishra A, Deb I. Iridium-catalyzed direct C-H arylation of cyclic N-sulfonyl ketimines with arylsiloxanes at ambient temperature. Org Biomol Chem 2020; 18:7074-7078. [PMID: 32691811 DOI: 10.1039/d0ob01212b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An iridium-catalyzed ortho-selective C-H arylation of cyclic N-sulfonyl ketimines has been achieved with environmentally benign aryl siloxanes. The reaction is highly efficient and proceeds at ambient temperature which is the key feature of the methodology considering the weak coordination nature of the substrate as well as the sluggish reactivity of siloxanes. A wide array of pharmaceutically relevant novel biaryls has been synthesized under operationally simple conditions.
Collapse
Affiliation(s)
- Writhabrata Sarkar
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Arup Bhowmik
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Sumit Das
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India. and Academy of Scientific and Innovative Research (AcSIR), India
| | - Aiswarya Balaram Sulekha
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Aniket Mishra
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Indubhusan Deb
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
25
|
Wu J, Qian B, Liu Y, Shang Y. Ruthenium(II)‐Catalyzed C‐H Annulation of Aromatic Acids with Alkynes Using Air as the Sole Oxidant in Water. ChemistrySelect 2020. [DOI: 10.1002/slct.202003022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiaping Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Baiyang Qian
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Yanfei Liu
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| |
Collapse
|
26
|
Rhodium-catalyzed decarbonylation cross-coupling reactions of aromatic aldehydes and arylboronic acids via C C bond activation directed by a guide group chelation. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Zhang J, Liu Y, Jia Q, Wang Y, Ma Y, Szostak M. Ruthenium(II)-Catalyzed C–H Arylation of N,N-Dialkyl Thiobenzamides with Boronic Acids by Sulfur Coordination in 2-MeTHF. Org Lett 2020; 22:6884-6890. [DOI: 10.1021/acs.orglett.0c02410] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Ying Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Qiangqiang Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yue Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Michal Szostak
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
28
|
Su Z, Liu B, Liao H, Lin HW. Synthesis of N-Heterocycles by Reductive Cyclization of Nitroalkenes Using Molybdenum Hexacarbonyl as Carbon Monoxide Surrogate. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zhiyou Su
- Research Center for Marine Drugs; State Key Laboratory of Oncogene and Related Genes; Department of Pharmacy, Ren Ji Hospital, School of Medicine; Shanghai Jiao Tong University; 200127 Shanghai China
| | - Bo Liu
- Research Center for Marine Drugs; State Key Laboratory of Oncogene and Related Genes; Department of Pharmacy, Ren Ji Hospital, School of Medicine; Shanghai Jiao Tong University; 200127 Shanghai China
| | - Hongze Liao
- Research Center for Marine Drugs; State Key Laboratory of Oncogene and Related Genes; Department of Pharmacy, Ren Ji Hospital, School of Medicine; Shanghai Jiao Tong University; 200127 Shanghai China
| | - Hou-Wen Lin
- Research Center for Marine Drugs; State Key Laboratory of Oncogene and Related Genes; Department of Pharmacy, Ren Ji Hospital, School of Medicine; Shanghai Jiao Tong University; 200127 Shanghai China
| |
Collapse
|
29
|
Wang X, Zhang J, He Y, Chen D, Wang C, Yang F, Wang W, Ma Y, Szostak M. Ruthenium(II)-Catalyzed Ortho-C–H Alkylation of Naphthylamines with Diazo Compounds for Synthesis of 2,2-Disubstituted π-Extended 3-Oxindoles in Water. Org Lett 2020; 22:5187-5192. [DOI: 10.1021/acs.orglett.0c01811] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaogang Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yuan He
- Technology Center, China Tobacco Shaanxi Industrial Co., Ltd., Baoji 721013, Shaanxi, China
| | - Di Chen
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Chao Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Fangzhou Yang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Weitao Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Michal Szostak
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
30
|
Wen J, Dong B, Zhu J, Zhao Y, Shi Z. Revealing Silylation of C(sp
2
)/C(sp
3
)–H Bonds in Arylphosphines by Ruthenium Catalysis. Angew Chem Int Ed Engl 2020; 59:10909-10912. [DOI: 10.1002/anie.202003865] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Jian Wen
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Ben Dong
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Jinjun Zhu
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Yue Zhao
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| |
Collapse
|
31
|
Wen J, Dong B, Zhu J, Zhao Y, Shi Z. Revealing Silylation of C(sp
2
)/C(sp
3
)–H Bonds in Arylphosphines by Ruthenium Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jian Wen
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Ben Dong
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Jinjun Zhu
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Yue Zhao
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| |
Collapse
|
32
|
Li M, Yao TY, Sun SZ, Yan TX, Wen LR, Zhang LB. The ruthenium(ii)-catalyzed C–H olefination of indoles with alkynes: the facile construction of tetrasubstituted alkenes under aqueous conditions. Org Biomol Chem 2020; 18:3158-3163. [DOI: 10.1039/d0ob00508h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An environmentally-friendly and facile protocol for the construction of tetrasubstituted alkenes has been established with Ru(ii)-catalyzed C–H bond functionalizations under mild conditions.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Tian-Yu Yao
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Sheng-Zheng Sun
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Ting-Xun Yan
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|
33
|
Liu S, Lin Q, Liao C, Chen J, Zhang K, Liu Q, Li B. Ruthenium(ii)/acetate catalyzed intermolecular dehydrogenative ortho C-H silylation of 2-aryl N-containing heterocycles. Org Biomol Chem 2019; 17:4115-4120. [PMID: 30968915 DOI: 10.1039/c9ob00609e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The first application of a RuHCl(CO)(PPh3)3-OAc catalytic system on the selective intermolecular mono C-H silylation of 2-aryl N-heterocycles using HSiEt3 as the silylating reagent has been described. This protocol features good functional group tolerance and high regioselectivity, and has potential for gram scale-up, which provides a convenient and practical pathway for the synthesis of versatile organosilane compounds. This catalytic system can also be applied to the silylation of challenging sp3 C-H bonds.
Collapse
Affiliation(s)
- Shun Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Rogge T, Ackermann L. Aren‐freie Ruthenium(II/IV)‐katalysierte gegabelte Arylierungen für oxidative C‐H/C‐H‐Funktionalisierungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Torben Rogge
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
35
|
Rogge T, Ackermann L. Arene-Free Ruthenium(II/IV)-Catalyzed Bifurcated Arylation for Oxidative C-H/C-H Functionalizations. Angew Chem Int Ed Engl 2019; 58:15640-15645. [PMID: 31476098 DOI: 10.1002/anie.201909457] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/20/2019] [Indexed: 02/02/2023]
Abstract
Experimental and computational studies provide detailed insight into the selectivity- and reactivity-controlling factors in bifurcated ruthenium-catalyzed direct C-H arylations and dehydrogenative C-H/C-H functionalizations. Thorough investigations revealed the importance of arene-ligand-free complexes for the formation of biscyclometalated intermediates within a ruthenium(II/IV/II) mechanistic manifold.
Collapse
Affiliation(s)
- Torben Rogge
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
36
|
Late-stage peptide C-H alkylation for bioorthogonal C-H activation featuring solid phase peptide synthesis. Nat Commun 2019; 10:3553. [PMID: 31391461 PMCID: PMC6685959 DOI: 10.1038/s41467-019-11395-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 07/13/2019] [Indexed: 01/09/2023] Open
Abstract
Methods for the late-stage diversification of structurally complex peptides hold enormous potential for advances in drug discovery, agrochemistry and pharmaceutical industries. While C-H arylations emerged for peptide modifications, they are largely limited to highly reactive, expensive and/or toxic reagents, such as silver(I) salts, in superstoichiometric quantities. In sharp contrast, we herein establish the ruthenium(II)-catalyzed C-H alkylation on structurally complex peptides. The additive-free ruthenium(II)carboxylate C-H activation manifold is characterized by ample substrate scope, racemization-free conditions and the chemo-selective tolerance of otherwise reactive functional groups, such as electrophilic ketone, bromo, ester, amide and nitro substituents. Mechanistic studies by experiment and computation feature an acid-enabled C-H ruthenation, along with a notable protodemetalation step. The transformative peptide C-H activation regime sets the stage for peptide ligation in solution and proves viable in a bioorthogonal fashion for C-H alkylations on user-friendly supports by means of solid phase peptide syntheses.
Collapse
|
37
|
Zhao Q, Zhang J, Szostak M. Ruthenium(0)-Catalyzed Cross-Coupling of Anilines with Organoboranes by Selective Carbon–Nitrogen Cleavage. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02440] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Qun Zhao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jin Zhang
- College of Chemistry and Chemical Engineering and Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi’an 710021, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- College of Chemistry and Chemical Engineering and Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi’an 710021, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
38
|
Binnani C, Mandal SC, Pathak B, Singh SK. Ruthenium‐Catalyzed C‐H Bond Activation/Arylation Accelerated by Biomass‐Derived Ligands. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chinky Binnani
- Catalysis Group Discipline of Chemistry Indian Institute of Technology Indore Simrol, Indore 453552 Madhya Pradesh India
| | - Shyama Charan Mandal
- Computational Materials Designing Group Discipline of Chemistry Indian Institute of Technology Indore Simrol, Indore 453552 Madhya Pradesh India
| | - Biswarup Pathak
- Computational Materials Designing Group Discipline of Chemistry Indian Institute of Technology Indore Simrol, Indore 453552 Madhya Pradesh India
| | - Sanjay K. Singh
- Catalysis Group Discipline of Chemistry Indian Institute of Technology Indore Simrol, Indore 453552 Madhya Pradesh India
| |
Collapse
|
39
|
Wang L, Xu G, Xiao J, Tao M, Zhang W. Quaternary Ammonium-Based Functionalized Polyacrylonitrile Fibers with Polarity Tunable Inner Surface Microenvironment for C–C Bond Forming Reactions under Continuous Flow Conditions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lu Wang
- Department of Chemistry, School of Sciences, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Gang Xu
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, School of Resource and Environment, Anhui Agriculture University, Hefei 230036, P.R. China
| | - Jian Xiao
- Department of Chemistry, School of Sciences, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Minli Tao
- Department of Chemistry, School of Sciences, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Wenqin Zhang
- Department of Chemistry, School of Sciences, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
40
|
Pu F, Liu Z, Zhang L, Fan J, Shi X. Switchable C−H Alkylation of Aromatic Acids with Maleimides in Water: Carboxyl as a Diverse Directing Group. ChemCatChem 2019. [DOI: 10.1002/cctc.201900444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fan Pu
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 P.R. China
| | - Zhong‐Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 P.R. China
| | - Lin‐Yan Zhang
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 P.R. China
| | - Juan Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 P.R. China
| | - Xian‐Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 P.R. China
| |
Collapse
|
41
|
Yetra SR, Rogge T, Warratz S, Struwe J, Peng W, Vana P, Ackermann L. Mizellare Katalyse für Ruthenium(II)‐katalysierte C‐H‐Arylierung: Schwache Koordination ermöglicht C‐H‐Aktivierung in H
2
O. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Santhivardhana Reddy Yetra
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Torben Rogge
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Svenja Warratz
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Julia Struwe
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Wentao Peng
- Institut für Physikalische ChemieGeorg-August-Universität Göttingen Tammannstraße 6 37077 Göttingen Deutschland
| | - Philipp Vana
- Institut für Physikalische ChemieGeorg-August-Universität Göttingen Tammannstraße 6 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
42
|
Yetra SR, Rogge T, Warratz S, Struwe J, Peng W, Vana P, Ackermann L. Micellar Catalysis for Ruthenium(II)-Catalyzed C-H Arylation: Weak-Coordination-Enabled C-H Activation in H 2 O. Angew Chem Int Ed Engl 2019; 58:7490-7494. [PMID: 30860636 DOI: 10.1002/anie.201901856] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/04/2019] [Indexed: 11/06/2022]
Abstract
Chemoselective C-H arylations were accomplished through micellar catalysis by a versatile single-component ruthenium catalyst. The strategy provided expedient access to C-H-arylated ferrocenes with wide functional-group tolerance and ample scope through weak chelation assistance. The sustainability of the C-H arylation was demonstrated by outstanding atom-economy and recycling studies. Detailed computational studies provided support for a facile C-H activation through thioketone assistance.
Collapse
Affiliation(s)
- Santhivardhana Reddy Yetra
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Torben Rogge
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Julia Struwe
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Wentao Peng
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077, Göttingen, Germany
| | - Philipp Vana
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
43
|
Debbarma S, Sk MR, Modak B, Maji MS. On-Water Cp*Ir(III)-Catalyzed C–H Functionalization for the Synthesis of Chromones through Annulation of Salicylaldehydes with Diazo-Ketones. J Org Chem 2019; 84:6207-6216. [DOI: 10.1021/acs.joc.9b00418] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Suvankar Debbarma
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Md Raja Sk
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Biswabrata Modak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
44
|
Abstract
The past decades have witnessed rapid development in organic synthesis via catalysis, particularly the reactions through C–H bond functionalization. Transition metals such as Pd, Rh and Ru constitute a crucial catalyst in these C–H bond functionalization reactions. This process is highly attractive not only because it saves reaction time and reduces waste,but also, more importantly, it allows the reaction to be performed in a highly region specific manner. Indeed, several organic compounds could be readily accessed via C–H bond functionalization with transition metals. In the recent past, tremendous progress has been made on C–H bond functionalization via ruthenium catalysis, including less expensive but more stable ruthenium(II) catalysts. The ruthenium-catalysed C–H bond functionalization, viz. arylation, alkenylation, annulation, oxygenation, and halogenation involving C–C, C–O, C–N, and C–X bond forming reactions, has been described and presented in numerous reviews. This review discusses the recent development of C–H bond functionalization with various ruthenium-based catalysts. The first section of the review presents arylation reactions covering arylation directed by N–Heteroaryl groups, oxidative arylation, dehydrative arylation and arylation involving decarboxylative and sp3-C–H bond functionalization. Subsequently, the ruthenium-catalysed alkenylation, alkylation, allylation including oxidative alkenylation and meta-selective C–H bond alkylation has been presented. Finally, the oxidative annulation of various arenes with alkynes involving C–H/O–H or C–H/N–H bond cleavage reactions has been discussed.
Collapse
|
45
|
Liu S, Zhang S, Lin Q, Huang Y, Li B. Ruthenium(II) Acetate Catalyzed Synthesis of Silylated Oxazoles via C-H Silylation and Dehalogenation. Org Lett 2019; 21:1134-1138. [PMID: 30707034 DOI: 10.1021/acs.orglett.9b00085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient ruthenium(II)-catalyzed intermolecular selective ortho C-H silylation of 2-aryloxazoles has been described for the first time, which provides a convenient and practical pathway for the synthesis of versatile organosilane compounds with good functional group tolerance and regioselectivity. This catalytic system could be also applied to the dehalogenation of Cl or Br group.
Collapse
Affiliation(s)
- Shun Liu
- School of Biotechnology and Health Sciences , Wuyi University , 22 Dongchengcun , Jiangmen 529020 , P.R. China
| | - Shiling Zhang
- School of Biotechnology and Health Sciences , Wuyi University , 22 Dongchengcun , Jiangmen 529020 , P.R. China
| | - Qiao Lin
- School of Biotechnology and Health Sciences , Wuyi University , 22 Dongchengcun , Jiangmen 529020 , P.R. China
| | - Yiqi Huang
- School of Biotechnology and Health Sciences , Wuyi University , 22 Dongchengcun , Jiangmen 529020 , P.R. China
| | - Bin Li
- School of Biotechnology and Health Sciences , Wuyi University , 22 Dongchengcun , Jiangmen 529020 , P.R. China
| |
Collapse
|
46
|
Liu Z, Xian Y, Lan J, Luo Y, Ma W, You J. Fusion of Aromatic Ring to Azoarenes: One-Pot Access to 5,6-Phenanthroliniums for Mitochondria-Targeted Far-Red/NIR Fluorescent Probes. Org Lett 2019; 21:1037-1041. [DOI: 10.1021/acs.orglett.8b04072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zheng Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yonghua Xian
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yuanyuan Luo
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Weixin Ma
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
47
|
Zhou F, Li CJ. En route to metal-mediated and metal-catalysed reactions in water. Chem Sci 2019; 10:34-46. [PMID: 30746071 PMCID: PMC6334721 DOI: 10.1039/c8sc04271c] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/03/2018] [Indexed: 01/11/2023] Open
Abstract
This perspective report presents the key approaches for the development of various organometallic reactions in aqueous media. In view of future sustainability, the efficient use of natural resources, such as renewable biomass-based feedstocks, constitutes an important aspect for sustainable chemical industry. The exploration and discovery of efficient organometallic reactions or equivalents in water enrich the toolbox of organic chemists for the direct conversion of biomass-derived feedstocks into high-valued chemicals and the direct modification of biomolecules in their native aqueous environment, which contributes to future sustainability.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Chemistry , FRQNT Center for Green Chemistry and Catalysis , McGill University , Montreal , Quebec H3A 0B8 , Canada .
| | - Chao-Jun Li
- Department of Chemistry , FRQNT Center for Green Chemistry and Catalysis , McGill University , Montreal , Quebec H3A 0B8 , Canada .
| |
Collapse
|
48
|
Zhao Q, Zhang J, Szostak M. Ruthenium(0)-sequential catalysis for the synthesis of sterically hindered amines by C–H arylation/hydrosilylation. Chem Commun (Camb) 2019; 55:9003-9006. [DOI: 10.1039/c9cc04072b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report sequential ruthenium(0)-catalysis for the synthesis of sterically-hindered amines via direct C–H arylation of simple imines and imine hydrosilylation.
Collapse
Affiliation(s)
- Qun Zhao
- Department of Chemistry
- Rutgers University
- Newark
- USA
| | - Jin Zhang
- College of Chemistry and Chemical Engineering and Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry
- Ministry of Education
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
| | - Michal Szostak
- College of Chemistry and Chemical Engineering and Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry
- Ministry of Education
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
| |
Collapse
|
49
|
Gou XY, Li Y, Wang XG, Liu HC, Zhang BS, Zhao JH, Zhou ZZ, Liang YM. Ruthenium-catalyzed ortho-selective CAr–H amination of heteroaryl arenes with di-tert-butyldiaziridinone. Chem Commun (Camb) 2019; 55:5487-5490. [DOI: 10.1039/c9cc02499a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Application of an oxidative amination reagent (di-tert-butyldiaziridinone) to the Ru3(CO)12-catalyzed ortho-selective CAr–H amination reaction is described.
Collapse
Affiliation(s)
- Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation
- Chinese University of Hong Kong
- Shatin
- China
| | - Xin-Gang Wang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Hong-Chao Liu
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Bo-Sheng Zhang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Jia-Hui Zhao
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Zhao-Zhao Zhou
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
50
|
Shome S, Singh SP. Reactions in Water - A Greener Approach Using Ruthenium Catalysts. CHEM REC 2018; 19:1935-1951. [PMID: 30537344 DOI: 10.1002/tcr.201800142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 12/18/2022]
Abstract
Reactions using transition metals as catalysts have emerged as an efficient method in the recent times. However, the selection of solvent plays a crucial role in this regard. Several solvents used traditionally suffer majorly with problems of toxicity; high boiling point etc. leading to drastic reaction conditions. Water being a non-toxic, non-inflammable and environmentally benign can replace the hazardous organic solvents in laboratory as well as industry. Maintaining a minimum catalyst loading percentage we can advantageously avail high levels of selectivity. Water was found to be a good solvent medium for several metal catalysed reactions. An intramolecular deprotonation mechanism is followed by the ruthenium (II) catalysts in water; thereby, facilitating the catalytic action of the metal. These studies can help the industrial chemists to utilize water as a solvent for their reactions towards improvement of their waste management procedure. This review mainly focuses on the several recent developments in the above direction.
Collapse
Affiliation(s)
- Sanchari Shome
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007
- Academy of Scientific and Innovative Research (AcSIR, New Delhi
| | - Surya Prakash Singh
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007
- Academy of Scientific and Innovative Research (AcSIR, New Delhi
| |
Collapse
|