1
|
Bennion MC, Burch MA, Dennis DG, Lech ME, Neuhaus K, Fendler NL, Parris MR, Cuadra JE, Dixon CF, Mukosera GT, Blauch DN, Hartmann L, Snyder NL, Ruppel JV. Synthesis of Porphyrin and Bacteriochlorin Glycoconjugates through CuAAC Reaction Tuning. European J Org Chem 2019; 2019:6496-6503. [PMID: 33041648 PMCID: PMC7546392 DOI: 10.1002/ejoc.201901128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 02/06/2023]
Abstract
Rapid and reproducible access to a series of unique porphyrin and bacteriochlorin glycoconjugates, including meso-glycosylated porphyrins and bacteriochlorins, and beta-glycosylated porphyrins, via copper catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) is reported for the first time. The work presented highlights the system-dependent reaction conditions required for glycosylation to porphyrins and bacteriochlorins based on the unique electronic properties of each ring system. Attenuated reaction conditions were used to synthesize fifteen new glycosylated porphyrin and bacteriochlorin analogs in 74 - 99% yield, and were extended to solid support to produce the first oligo(amidoamine)-based porphyrin glycoconjugate. These compounds hold significant potential as next generation water soluble catalysts and photodynamic therapy/photodynamic inactivation (PDT/PDI) agents.
Collapse
Affiliation(s)
- Matthew C Bennion
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Morgan A Burch
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - David G Dennis
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Melissa E Lech
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Kira Neuhaus
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
- Department of Organic and Macromolecular Chemistry Heinrich-Heine-University Düsseldorf Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nikole L Fendler
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - Matthew R Parris
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Jessica E Cuadra
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Charlie F Dixon
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - George T Mukosera
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - David N Blauch
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry Heinrich-Heine-University Düsseldorf Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L Snyder
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - Joshua V Ruppel
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| |
Collapse
|
2
|
Ogura Y, Onishi A, Nishimura T, Tanida J. Optically controlled release of DNA based on nonradiative relaxation process of quenchers. BIOMEDICAL OPTICS EXPRESS 2016; 7:2142-53. [PMID: 27375933 PMCID: PMC4918571 DOI: 10.1364/boe.7.002142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/27/2016] [Accepted: 05/03/2016] [Indexed: 06/02/2023]
Abstract
Optically controlled release of a DNA strand based on a nonradiative relaxation process of black hole quenchers (BHQs), which are a sort of dark quenchers, is presented. BHQs act as efficient energy sources because they relax completely via a nonradiative process, i.e., without fluorescent emission-based energy losses. A DNA strand is modified with BHQs and the release of its complementary strand is controlled by excitation of the BHQs. Experimental results showed that up to 50% of the target strands were released, and these strands were capable of inducing subsequent reactions. The controlled release was localized on a substrate within an area of no more than 5 micrometers in diameter.
Collapse
Affiliation(s)
- Yusuke Ogura
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, 5650871,
Japan
| | - Atsushi Onishi
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, 5650871,
Japan
| | - Takahiro Nishimura
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, 5650871,
Japan
| | - Jun Tanida
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, 5650871,
Japan
| |
Collapse
|
3
|
Jadhav S, Yim CB, Rajander J, Grönroos TJ, Solin O, Virta P. Solid-Supported Porphyrins Useful for the Synthesis of Conjugates with Oligomeric Biomolecules. Bioconjug Chem 2016; 27:1023-9. [PMID: 26898631 DOI: 10.1021/acs.bioconjchem.6b00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
meso-Tris(pyridin-4-yl)(4-carboxyphenyl)porphyrin and 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (Photochlor, HPPH) were amide-coupled to 1R,2S,3R,4R-2,3-dihydroxy-4-(hydromethyl)-1-aminocyclopentane and immobilized via an ester linkage to long chain alkyl amine-derivatized controlled pore glass (LCAA-CPG). The applicability of these supports (5 and 6) for the synthesis of porphyrin conjugates with oligomeric biomolecules was demonstrated using an automated phosphoramidite coupling chemistry. Cleavage from the support with concentrated ammonia gave the products, viz., porphyrin conjugates of oligonucleotides (7-9) and dendritic glycoclusters (10-13) and a cyclooctyne derivative (14) in 23-58% yield. In addition, the synthesized cyclooctyne derivative of meso-tris(pyridin-4-yl)(4-carboxyphenyl)porphyrin (14) was conjugated with an azidopropyl-modified hyaluronic acid (19). The hyaluronic acid-porphyrin conjugate (15) was radiolabeled with (64)Cu and its (15[(64)Cu]) receptor binding affinity to CD44-expressing tumor cells was evaluated.
Collapse
Affiliation(s)
- Satish Jadhav
- Department of Chemistry, University of Turku , FI-20014 Turku, Finland
| | - Cheng-Bin Yim
- Turku PET Centre, Åbo Akademi University , FI-20520 Turku, Finland
| | - Johan Rajander
- Turku PET Centre, Åbo Akademi University , FI-20520 Turku, Finland
| | - Tove J Grönroos
- Turku PET Centre, University of Turku , FI-20520 Turku, Finland.,Medicity Research Laboratory, University of Turku , FI-20520 Turku, Finland
| | - Olof Solin
- Department of Chemistry, University of Turku , FI-20014 Turku, Finland.,Turku PET Centre, University of Turku , FI-20520 Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku , FI-20014 Turku, Finland
| |
Collapse
|
4
|
Huang H, Song W, Rieffel J, Lovell JF. Emerging applications of porphyrins in photomedicine. FRONTIERS IN PHYSICS 2015; 3:23. [PMID: 28553633 PMCID: PMC5445930 DOI: 10.3389/fphy.2015.00023] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biomedical applications of porphyrins and related molecules have been extensively pursued in the context of photodynamic therapy. Recent advances in nanoscale engineering have opened the door for new ways that porphyrins stand to potentially benefit human health. Metalloporphyrins are inherently suitable for many types of medical imaging and therapy. Traditional nanocarriers such as liposomes, dendrimers and silica nanoparticles have been explored for photosensitizer delivery. Concurrently, entirely new classes of porphyrin nanostructures are being developed, such as smart materials that are activated by specific biochemicals encountered at disease sites. Techniques have been developed that improve treatments by combining biomaterials with photosensitizers and functional moieties such as peptides, DNA and antibodies. Compared to simpler structures, these more complex and functional designs can potentially decrease side effects and lead to safer and more efficient phototherapies. This review examines recent research on porphyrin-derived materials in multimodal imaging, drug delivery, bio-sensing, phototherapy and probe design, demonstrating their bright future for biomedical applications.
Collapse
Affiliation(s)
- Haoyuan Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Wentao Song
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - James Rieffel
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
5
|
Latorre A, Posch C, Garcimartín Y, Ortiz-Urda S, Somoza Á. Single-point mutation detection in RNA extracts using gold nanoparticles modified with hydrophobic molecular beacon-like structures. Chem Commun (Camb) 2014; 50:3018-20. [PMID: 24496380 DOI: 10.1039/c3cc47862a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoparticles functionalized with oligonucleotides that bear a cholesterol group are used as gene sensors. The hydrophobic molecule is buried inside the nanostructure but when the complementary RNA sequence is present the structure unfolds exposing the cholesterol group to the water molecules. This rearrangement leads to the aggregation of the nanostructures.
Collapse
Affiliation(s)
- Alfonso Latorre
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), & CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología" Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | |
Collapse
|
6
|
Feng S, Shang Y, Wu F, Ding F, Li B, Xu J, Xu L, Zhou X. DNA nanomachines as evolved molecular beacons for in vitro and in vivo detection. Talanta 2013; 120:141-7. [PMID: 24468353 DOI: 10.1016/j.talanta.2013.11.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 11/30/2022]
Abstract
Modern biosensors require high sensitivity, great signal enhancement and extensive applicability for detection and diagnostic purposes. Traditional molecular beacons (MBs) do not meet these requirements because of the lack of signal amplification. The current amplification pathways using enzymes, DNAzymes and nanoparticles are usually quite sophisticated and are limited to specific applications. Herein, we developed simple biosensors based on the structure of kissing-hairpin. Through hybridization amplification of these nanomachines, the evolved MBs could greatly enhance the detected signals (approximately 10-fold higher than the signals generated by traditional molecular beacons), reduce the sensing limits for targets and, remarkably, distinguish single-base mismatches specifically for nucleic acid detection. In addition, these new MBs can be directly applied in living cells. By introducing aptamer sequences, these novel sensors can also detect proteins and small molecules. These properties were exemplified by the detection of both the β-actin gene and thrombin. The simplicity, sensitivity and flexibility of these devices make them appropriate for more expansive applications.
Collapse
Affiliation(s)
- Shuo Feng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Ye Shang
- College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Fan Wu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Fei Ding
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Bin Li
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Jiahui Xu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Liang Xu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, 430072, PR China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, PR China.
| |
Collapse
|
7
|
Zhang Y, Lovell JF. Porphyrins as theranostic agents from prehistoric to modern times. Theranostics 2012; 2:905-15. [PMID: 23082102 PMCID: PMC3475213 DOI: 10.7150/thno.4908] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023] Open
Abstract
Long before humans roamed the planet, porphyrins in blood were serving not only as indispensable oxygen carriers, but also as the bright red contrast agent that unmistakably indicates injury sites. They have proven valuable as whole body imaging modalities have emerged, with endogenous hemoglobin porphyrins being used for new approaches such as functional magnetic resonance imaging and photoacoustic imaging. With the capability for both near infrared fluorescence imaging and phototherapy, porphyrins were the first exogenous agents that were employed with intrinsic multimodal theranostic character. Porphyrins have been used as tumor-specific diagnostic fluorescence imaging agents since 1924, as positron emission agents since 1951, and as magnetic resonance (MR) contrast agents since 1987. Exogenous porphyrins remain in clinical use for photodynamic therapy. Because they can chelate a wide range of metals, exogenous porphyrins have demonstrated potential for use in radiotherapy and multimodal imaging modalities. Going forward, intrinsic porphyrin biocompatibility and multimodality will keep new applications of this class of molecules at the forefront of theranostic research.
Collapse
|
8
|
Jin H, Chen J, Lovell JF, Zhang Z, Zheng G. Synthesis and Development of Lipoprotein-Based Nanocarriers for Light-Activated Theranostics. Isr J Chem 2012. [DOI: 10.1002/ijch.201100054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
10
|
Abstract
![]()
Over hundreds of millions of years, animals have evolved endogenous lipoprotein nanoparticles for shuttling hydrophobic molecules to different parts of the body. In the last 70 years, scientists have developed an understanding of lipoprotein function, often in relationship to lipid transport and heart disease. Such biocompatible, lipid–protein complexes are also ideal for loading and delivering cancer therapeutic and diagnostic agents, which means that lipoprotein and lipoprotein-inspired nanoparticles also offer opportunities for cancer theranostics. By mimicking the endogenous shape and structure of lipoproteins, the nanocarrier can remain in circulation for an extended period of time, while largely evading the reticuloendothelial cells in the body’s defenses. The small size (less than 30 nm) of the low-density (LDL) and high-density (HDL) classes of lipoproteins allows them to maneuver deeply into tumors. Furthermore, lipoproteins can be targeted to their endogenous receptors, when those are implicated in cancer, or to other cancer receptors. In this Account, we review the field of lipoprotein-inspired nanoparticles related to the delivery of cancer imaging and therapy agents. LDL has innate cancer targeting potential and has been used to incorporate diverse hydrophobic molecules and deliver them to tumors. Nature’s method of rerouting LDL in atherosclerosis provides a strategy to extend the cancer targeting potential of lipoproteins beyond its narrow purview. Although LDL has shown promise as a drug nanocarrier for cancer imaging and therapy, increasing evidence indicates that HDL, the smallest lipoprotein, may also be of use for drug targeting and uptake into cancer cells. We also discuss how synthetic HDL-like nanoparticles, which do not include human or recombinant proteins, can deliver molecules directly to the cytoplasm of certain cancer cells, effectively bypassing the endosomal compartment. This strategy could allow HDL-like nanoparticles to be used to deliver drugs that have increased activity in the cytoplasm. Lipoprotein nanoparticles have evolved to be ideal delivery vehicles, and because of that specialized function, they have the potential to improve cancer theranostics.
Collapse
Affiliation(s)
- Kenneth K. Ng
- Institute of Biomaterials and Biomedical Engineering, ‡Department of Medical Biophysics, and §Ontario Cancer Institute, University of Toronto, Ontario M5G 1L7, Canada
| | - Jonathan F. Lovell
- Institute of Biomaterials and Biomedical Engineering, ‡Department of Medical Biophysics, and §Ontario Cancer Institute, University of Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Institute of Biomaterials and Biomedical Engineering, ‡Department of Medical Biophysics, and §Ontario Cancer Institute, University of Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
11
|
Jin H, Lovell JF, Chen J, Ng K, Cao W, Ding L, Zhang Z, Zheng G. Cytosolic delivery of LDL nanoparticle cargo using photochemical internalization. Photochem Photobiol Sci 2011; 10:810-6. [DOI: 10.1039/c0pp00350f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|