1
|
Ren H, Zhang Q, Wang Z, Zhang G, Liu H, Guo W, Mukamel S, Jiang J. Machine learning recognition of protein secondary structures based on two-dimensional spectroscopic descriptors. Proc Natl Acad Sci U S A 2022; 119:e2202713119. [PMID: 35476517 PMCID: PMC9171355 DOI: 10.1073/pnas.2202713119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Protein secondary structure discrimination is crucial for understanding their biological function. It is not generally possible to invert spectroscopic data to yield the structure. We present a machine learning protocol which uses two-dimensional UV (2DUV) spectra as pattern recognition descriptors, aiming at automated protein secondary structure determination from spectroscopic features. Accurate secondary structure recognition is obtained for homologous (97%) and nonhomologous (91%) protein segments, randomly selected from simulated model datasets. The advantage of 2DUV descriptors over one-dimensional linear absorption and circular dichroism spectra lies in the cross-peak information that reflects interactions between local regions of the protein. Thanks to their ultrafast (∼200 fs) nature, 2DUV measurements can be used in the future to probe conformational variations in the course of protein dynamics.
Collapse
Affiliation(s)
- Hao Ren
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Qian Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Zhengjie Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Guozhen Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hongzhang Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Shaul Mukamel
- Department of Chemistry and Physics & Astronomy, University of California, Irvine, CA 92697
| | - Jun Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
2
|
Maiuri M, Garavelli M, Cerullo G. Ultrafast Spectroscopy: State of the Art and Open Challenges. J Am Chem Soc 2019; 142:3-15. [DOI: 10.1021/jacs.9b10533] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margherita Maiuri
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| |
Collapse
|
3
|
Abstract
After presenting the basic theoretical models of excitation energy transfer and charge transfer, I describe some of the novel experimental methods used to probe them. Finally, I discuss recent results concerning ultrafast energy and charge transfer in biological systems, in chemical systems and in photovoltaics based on sensitized transition metal oxides.
Collapse
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Lausanne Centre for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Affiliation(s)
- Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Borrego-Varillas R, Nenov A, Ganzer L, Oriana A, Manzoni C, Tolomelli A, Rivalta I, Mukamel S, Garavelli M, Cerullo G. Two-dimensional UV spectroscopy: a new insight into the structure and dynamics of biomolecules. Chem Sci 2019. [DOI: 10.1039/c9sc03871j] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Two-dimensional ultraviolet spectroscopy has the potential to deliver rich structural and dynamical information on biomolecules such as DNA and proteins.
Collapse
Affiliation(s)
| | - A. Nenov
- Dipartimento di Chimica Industriale
- Universitá degli Studi di Bologna
- I-40136 Bologna
- Italy
| | - L. Ganzer
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| | - A. Oriana
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| | - C. Manzoni
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| | - A. Tolomelli
- Dipartimento di Chimica
- Universitá degli Studi di Bologna
- I-40126 Bologna
- Italy
| | - I. Rivalta
- Dipartimento di Chimica Industriale
- Universitá degli Studi di Bologna
- I-40136 Bologna
- Italy
| | - S. Mukamel
- Department of Chemistry
- Department of Physics and Astronomy
- University of California
- Irvine
- USA
| | - M. Garavelli
- Dipartimento di Chimica Industriale
- Universitá degli Studi di Bologna
- I-40136 Bologna
- Italy
| | - G. Cerullo
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| |
Collapse
|
6
|
|
7
|
Ultraviolet Transient Absorption Spectrometer with Sub-20-fs Time Resolution. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8060989] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Towards Accurate Simulation of Two-Dimensional Electronic Spectroscopy. Top Curr Chem (Cham) 2018; 376:24. [DOI: 10.1007/s41061-018-0201-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/24/2018] [Indexed: 10/14/2022]
|
9
|
Morzan UN, Alonso de Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrin DA. Spectroscopy in Complex Environments from QM–MM Simulations. Chem Rev 2018; 118:4071-4113. [DOI: 10.1021/acs.chemrev.8b00026] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Uriel N. Morzan
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Diego J. Alonso de Armiño
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Nicolás O. Foglia
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Francisco Ramírez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Mariano C. González Lebrero
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Damián A. Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Darío A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
10
|
Anda A, Abramavičius D, Hansen T. Two-dimensional electronic spectroscopy of anharmonic molecular potentials. Phys Chem Chem Phys 2018; 20:1642-1652. [PMID: 29261201 DOI: 10.1039/c7cp06583c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two-dimensional electronic spectroscopy (2DES) is a powerful tool in the study of coupled electron-phonon dynamics, yet very little is known about how nonlinearities in the electron-phonon coupling, arising from anharmonicities in the nuclear potentials, affect the spectra. These become especially relevant when the coupling is strong. From the linear spectroscopies, anharmonicities are known to give structure to the zero-phonon line and to break mirror-symmetry between absorption and emission, but the 2D analogues of these effects have not been identified. Using a simple two-level model where the electronic states are described by (displaced) harmonic oscillators with differing curvatures or displaced Morse oscillators, we find that the zero-phonon line shape is essentially transferred to the diagonal in 2DES spectra, and that anharmonicities break a horizontal mirror-symmetry in the infinite waiting time limit. We also identify anharmonic effects that are only present in 2DES spectra: twisting of cross-peaks stemming from stimulated emission signals; and oscillation period mismatch between ground state bleach and stimulated emission (for harmonic oscillators with differing curvatures), or inherently chaotic oscillations (for Morse oscillators). Our findings will facilitate an improved understanding of 2DES spectra and aid the interpretation of signals that are more realistic than those arising from simple models.
Collapse
Affiliation(s)
- André Anda
- Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
11
|
Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S. Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular Processes: From the Infrared to the X-ray Regime. Chem Rev 2017; 117:12165-12226. [DOI: 10.1021/acs.chemrev.7b00081] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Kowalewski
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Benjamin P. Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Konstantin E. Dorfman
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Kochise Bennett
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
12
|
Zhang G, Li J, Cui P, Wang T, Jiang J, Prezhdo OV. Two-Dimensional Linear Dichroism Spectroscopy for Identifying Protein Orientation and Secondary Structure Composition. J Phys Chem Lett 2017; 8:1031-1037. [PMID: 28198629 DOI: 10.1021/acs.jpclett.7b00311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quantitative measurements of protein orientation and secondary structure composition are of great importance for protein biotechnology applications and disease treatments, and yet, they are technically challenging for a spectroscopic study. On the basis of quantum mechanics/molecular mechanics simulations, we demonstrate that two-dimensional (2D) linear dichroism spectroscopy is capable of probing the direction of α-helix motifs in proteins. Compared to the conventional linear dichroism (LD) spectra, 2D spectra double the measurable range of orientation of secondary structures. In addition, by calculating the ratio of transverse ππ* signals to longitudinal ππ* signals in 2D spectra, we can achieve quantitative measurement of the fraction of α-helix content in a protein.
Collapse
Affiliation(s)
- Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, People's Republic of China
| | - Jun Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, People's Republic of China
| | - Peng Cui
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, People's Republic of China
| | - Tao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, People's Republic of China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, People's Republic of China
| | - Oleg V Prezhdo
- Department of Chemistry, Department of Physics, and Department of Astronomy, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
13
|
Borrego-Varillas R, Oriana A, Ganzer L, Trifonov A, Buchvarov I, Manzoni C, Cerullo G. Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line. OPTICS EXPRESS 2016; 24:28491-28499. [PMID: 27958492 DOI: 10.1364/oe.24.028491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We introduce a 2D electronic spectroscopy setup in the UV spectral range in the partially collinear pump-probe geometry. The required interferometrically phase-locked few-optical-cycle UV pulse pair is generated by combining a passive birefringent interferometer in the visible and nonlinear phase transfer. This is achieved by sum-frequency generation between the phase-locked visible pulse pair and narrowband infrared pulses. We demonstrate a pair of 16-fs, 330-nm pulses whose delay is interferometrically stable with an accuracy better than λ/450. 2DUV maps of pyrene solution probed in the UV and visible spectral ranges are demonstrated.
Collapse
|
14
|
Nenov A, Mukamel S, Garavelli M, Rivalta I. Two-Dimensional Electronic Spectroscopy of Benzene, Phenol, and Their Dimer: An Efficient First-Principles Simulation Protocol. J Chem Theory Comput 2016; 11:3755-71. [PMID: 26574458 DOI: 10.1021/acs.jctc.5b00443] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
First-principles simulations of two-dimensional electronic spectroscopy in the ultraviolet region (2DUV) require computationally demanding multiconfigurational approaches that can resolve doubly excited and charge transfer states, the spectroscopic fingerprints of coupled UV-active chromophores. Here, we propose an efficient approach to reduce the computational cost of accurate simulations of 2DUV spectra of benzene, phenol, and their dimer (i.e., the minimal models for studying electronic coupling of UV-chromophores in proteins). We first establish the multiconfigurational recipe with the highest accuracy by comparison with experimental data, providing reference gas-phase transition energies and dipole moments that can be used to construct exciton Hamiltonians involving high-lying excited states. We show that by reducing the active spaces and the number of configuration state functions within restricted active space schemes, the computational cost can be significantly decreased without loss of accuracy in predicting 2DUV spectra. The proposed recipe has been successfully tested on a realistic model proteic system in water. Accounting for line broadening due to thermal and solvent-induced fluctuations allows for direct comparison with experiments.
Collapse
Affiliation(s)
- Artur Nenov
- Dipartimento di Chimica "G. Ciamician", Università di Bologna , Via F. Selmi 2, 40126 Bologna, Italy
| | - Shaul Mukamel
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | - Marco Garavelli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna , Via F. Selmi 2, 40126 Bologna, Italy.,Université de Lyon , CNRS, Laboratoire de Chimie, École Normale Supérieure de Lyon, UMR 5182, 46 Allée d'Italie, 69364 Lyon, Cedex 07, France
| | - Ivan Rivalta
- Université de Lyon , CNRS, Laboratoire de Chimie, École Normale Supérieure de Lyon, UMR 5182, 46 Allée d'Italie, 69364 Lyon, Cedex 07, France
| |
Collapse
|
15
|
Li J, Deng M, Voronine DV, Mukamel S, Jiang J. Two-dimensional near ultraviolet (2DNUV) spectroscopic probe of structural-dependent exciton dynamics in a protein. J Phys Chem B 2015; 119:1314-22. [PMID: 25544569 DOI: 10.1021/jp509314y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding the exciton dynamics in biological systems is crucial for the manipulation of their function. We present a combined quantum mechanics (QM) and molecular dynamics (MD) simulation study that demonstrates how coherent two-dimensional near-ultraviolet (2DNUV) spectra can be used to probe the exciton dynamics in a mini-protein, Trp-cage. The 2DNUV signals originate from aromatic transitions that are significantly affected by the couplings between residues, which determine exciton transport and energy relaxation. The temporal evolution of 2DNUV features captures important protein structural information, including geometric details and peptide orientations.
Collapse
Affiliation(s)
- Jun Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, 230026, China
| | | | | | | | | |
Collapse
|
16
|
Molesky BP, Giokas PG, Guo Z, Moran AM. Multidimensional resonance raman spectroscopy by six-wave mixing in the deep UV. J Chem Phys 2014; 141:114202. [DOI: 10.1063/1.4894846] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Brian P. Molesky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Paul G. Giokas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zhenkun Guo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
17
|
Varillas RB, Candeo A, Viola D, Garavelli M, De Silvestri S, Cerullo G, Manzoni C. Microjoule-level, tunable sub-10 fs UV pulses by broadband sum-frequency generation. OPTICS LETTERS 2014; 39:3849-52. [PMID: 24978753 DOI: 10.1364/ol.39.003849] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We introduce a scheme for the generation of tunable few-optical-cycle UV pulses based on sum-frequency generation between a broadband visible pulse and a narrowband pulse ranging from the visible to the near-IR. This configuration generates broadband UV pulses tunable from 0.3 to 0.4 μm, with energy up to 1.5 μJ. By exploiting nonlinear phase transfer, transform-limited pulse durations are achieved. Full characterization of the UV pulse spectral phase is obtained by two-dimensional spectral shearing interferometry, which is here extended to the UV spectral range. We demonstrate clean 8.4 fs UV pulses.
Collapse
|
18
|
Jiang J, Lai Z, Wang J, Mukamel S. Signatures of the Protein Folding Pathway in Two-Dimensional Ultraviolet Spectroscopy. J Phys Chem Lett 2014; 5:1341-1346. [PMID: 24803996 PMCID: PMC3999791 DOI: 10.1021/jz5002264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/19/2014] [Indexed: 05/24/2023]
Abstract
The function of protein relies on their folding to assume the proper structure. Probing the structural variations during the folding process is crucial for understanding the underlying mechanism. We present a combined quantum mechanics/molecular dynamics simulation study that demonstrates how coherent resonant nonlinear ultraviolet spectra can be used to follow the fast folding dynamics of a mini-protein, Trp-cage. Two dimensional ultraviolet signals of the backbone transitions carry rich information of both local (secondary) and global (tertiary) structures. The complexity of signals decreases as the conformational entropy decreases in the course of the folding process. We show that the approximate entropy of the signals provides a quantitative marker of protein folding status, accessible by both theoretical calculations and experiments.
Collapse
Affiliation(s)
- Jun Jiang
- Department
of Chemical Physics, University of Science
and Technology of China, No. 96, JinZhai Road Baohe District, Hefei 230026, China
- Chemistry
Department, University of California Irvine, 433A Rowland Hall, Irvine, California 92697, United States
| | - Zaizhi Lai
- Department
of Chemistry and Physics, University of
New York at Stony Brook, Stony
Brook, New York 11794, United States
| | - Jin Wang
- Department
of Chemistry and Physics, University of
New York at Stony Brook, Stony
Brook, New York 11794, United States
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, No. 5625, Ren
Min Street, Changchun, Jilin 130021, China
| | - Shaul Mukamel
- Chemistry
Department, University of California Irvine, 433A Rowland Hall, Irvine, California 92697, United States
| |
Collapse
|
19
|
Ren H, Lai Z, Biggs JD, Wang J, Mukamel S. Two-dimensional stimulated resonance Raman spectroscopy study of the Trp-cage peptide folding. Phys Chem Chem Phys 2013; 15:19457-64. [PMID: 24126634 PMCID: PMC3859311 DOI: 10.1039/c3cp51347e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a combined molecular dynamics (MD) and ab initio simulation study of the ultrafast broadband ultraviolet (UV) stimulated resonance Raman (SRR) spectra of the Trp-cage mini protein. Characteristic two dimensional (2D) SRR features of various folding states are identified. Structural fluctuations erode the cross peaks and the correlation between diagonal peaks is a good indicator of the α-helix formation.
Collapse
Affiliation(s)
- Hao Ren
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | | | | | | | | |
Collapse
|
20
|
Jiang J, Golchert KJ, Kingsley CN, Brubaker WD, Martin RW, Mukamel S. Exploring the aggregation propensity of γS-crystallin protein variants using two-dimensional spectroscopic tools. J Phys Chem B 2013; 117:14294-301. [PMID: 24219230 DOI: 10.1021/jp408000k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of amyloid fibrils is associated with many serious diseases as well as diverse biological functions. Despite the importance of these aggregates, predicting the aggregation propensity of a particular sequence is a major challenge. We report a joint 2D nuclear magnetic resonance (NMR) and ultraviolet (2DUV) study of fibrillization in the wild-type and two aggregation-prone mutants of the eye lens protein γS-crystallin. Simulations show that the complexity of 2DUV signals as measured by their "approximate entropy" is a good indicator for the conformational entropy and in turn is strongly correlated with its aggregation propensity. These findings are in agreement with high-resolution NMR experiments and are corroborated for amyloid fibrils. The 2DUV technique is complementary to high-resolution structural methods and has the potential to make the evaluation of the aggregation propensity for protein variant propensity of protein structure more accessible to both theory and experiment. The approximate entropy of experimental 2DUV signals can be used for fast screening, enabling identification of variants with high fibrillization propensity for the much more time-consuming NMR structural studies, potentially expediting the characterization of protein variants associated with cataract and other protein aggregation diseases.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Chemical Physics, University of Science and Technology of China , Hefei, China
| | | | | | | | | | | |
Collapse
|
21
|
Cannizzo A. Ultrafast UV spectroscopy: from a local to a global view of dynamical processes in macromolecules. Phys Chem Chem Phys 2012; 14:11205-23. [DOI: 10.1039/c2cp40567a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Lam AR, Jiang J, Mukamel S. Distinguishing amyloid fibril structures in Alzheimer's disease (AD) by two-dimensional ultraviolet (2DUV) spectroscopy. Biochemistry 2011; 50:9809-16. [PMID: 21961527 DOI: 10.1021/bi201317c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Understanding the aggregation mechanism of amyloid fibrils and characterizing their structures are important steps in the investigation of several neurodegenerative disorders associated with the misfolding of proteins. We report a simulation study of coherent two-dimensional chiral signals of three NMR structures of Aβ protein fibrils associated with Alzheimer's Disease, two models for Aβ(8-40) peptide wild-type (WT) and one for the Iowa (D23N) Aβ(15-40) mutant. Both far-ultraviolet (FUV) signals (λ = 190-250 nm), which originate from the backbone nπ* and ππ* transitions, and near-ultraviolet (NUV) signals (λ ≥ 250 nm) associated with aromatic side chains (Phe and Tyr) show distinct cross-peak patterns that can serve as novel signatures for the secondary structure.
Collapse
Affiliation(s)
- A R Lam
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States.
| | | | | |
Collapse
|
23
|
West BA, Womick JM, Moran AM. Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies. J Phys Chem A 2011; 115:8630-7. [PMID: 21756005 DOI: 10.1021/jp204416m] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Heterodyne-detected transient grating (TG) and two-dimensional photon echo (2DPE) spectroscopies are extended to the mid-UV spectral range in this investigation of photoinduced relaxation processes of adenine in aqueous solution. These experiments are the first to combine a new method for generating 25 fs laser pulses (at 263 nm) with the passive phase stability afforded by diffractive optics-based interferometry. We establish a set of conditions (e.g., laser power density, solute concentration) appropriate for the study of dynamics involving the neutral solute. Undesired solute photoionization is shown to take hold at higher peak powers of the laser pulses. Signatures of internal conversion and vibrational cooling dynamics are examined using TG measurements with signal-to-noise ratios as high as 350 at short delay times. In addition, 2DPE line shapes reveal correlations between excitation and emission frequencies in adenine, which reflect electronic and nuclear relaxation processes associated with particular tautomers. Overall, this study demonstrates the feasibility of techniques that will hold many advantages for the study of biomolecules whose lowest-energy electronic resonances are found in the mid-UV (e.g., DNA bases, amino acids).
Collapse
Affiliation(s)
- Brantley A West
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|