1
|
Dent AR, Demchenko AV. Halophilic Metal Salts for the Cooperatively Catalyzed Activation of Thioglycosides. J Org Chem 2025; 90:6478-6490. [PMID: 40323631 DOI: 10.1021/acs.joc.5c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Reported herein is the expansion of the cooperatively catalyzed Koenigs-Knorr glycosylation reaction, known as "the 4K reaction". It has recently been discovered that thioglycosides can be activated in the presence of molecular iodine, a metal salt, and an acid additive. The mechanistic studies proposed the interaction of anomeric sulfur with thiophilic iodine. The resulting complex is stable until the halophilic silver salt and acid additive are added. This discovery has opened a new avenue for the development of new halophilic promoters that do not activate thioglycosides in the absence of iodine. Presented herein is the discovery of bismuth(III) triflate as an efficient activator of thioglycosides via the 4K reaction pathway.
Collapse
Affiliation(s)
- Ashley R Dent
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| |
Collapse
|
2
|
Kushwaha D, Das A, Jayaraman N. Shelf-Stable 3-Thiocresyl-Prop-1-Enyl (TCP) Glycosides in Oligosaccharide Synthesis. Chemistry 2025; 31:e202500372. [PMID: 40035796 DOI: 10.1002/chem.202500372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
Transformation of the allyl glycosides to a glycosylation-active 3-thiocresyl-prop-1-enyl (TCP) glycosides is reported herein, in an effort to devise a shelf-stable, active vinyl glycoside. Remote electrophilic activation with an iodonium source results in the formation of a glycosylation-active moiety. The efficiency of the TCP glycoside donor is demonstrated through the synthesis of a panel of di- and trisaccharides of pyranosides and furanosides, including globo-trioside Gb3 antigen, wherein a disarmed TCP glycoside is converted facile to an armed TCP glycosyl donor, further ascertaining the tolerance towards protecting group manipulations. In addition, the synthetic utility of the TCP glycoside donor is demonstrated through the syntheses of biologically relevant tri- and hexasaccharide oligomannans, thereby establishing the potential of this new TCP glycosyl donor for oligosaccharide synthesis. Mechanistic studies reveal the remote activation of the thioether moiety by promoters, as evidenced through identification of the thioether and acrolein by-products arising from the reaction. Further, the applicability of TCP glycosides as glycosyl acceptors is also verified in glycosylations involving glycosyl halide donors. The facile isomerization of allyl glycoside, remarkable shelf-stability, tolerance towards protecting groups and applicability as a glycosyl donor, as well as glycosyl acceptor offer key advantages to TCP glycosides.
Collapse
Affiliation(s)
- Deepak Kushwaha
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, MO 63103, USA
| | - Anupama Das
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, MO 63103, USA
| | - Narayanaswamy Jayaraman
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, MO 63103, USA
| |
Collapse
|
3
|
Liu M, Liu F, Xiao H, Wang PY, Liu M, Ye XS, Xiong DC. 1-(2'-Hydroxy-2'-Methylpropionyl)Glycoside as a Versatile Glycosyl Donor for O-/C-Glycosylation. Chemistry 2025; 31:e202403534. [PMID: 39508325 DOI: 10.1002/chem.202403534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Herein, we developed a Lewis acid-mediated O-glycosylation and C-glycosylation protocol using stable glycosyl 2'-hydroxy-2'-methylpropionates as donors. These glycosylation reactions reached completion within 1 h at room temperature. The practicality of this protocol is characterized by their straightforward operation and efficient applicability to various substrates, including both disarmed and armed glycosyl donors, through the remote activation of easily accessible TMSOTf.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Fen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Hui Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Peng-Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
4
|
Damico A, Shrestha G, Das A, Stine KJ, Demchenko AV. SFox imidates as versatile glycosyl donors for chemical glycosylation. Org Biomol Chem 2024; 22:5214-5223. [PMID: 38867654 PMCID: PMC11583801 DOI: 10.1039/d4ob00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Described herein is a continuation of our studies dedicated to the development of novel classes of leaving groups based on O- and S-imidates. The main focus of the study presented herein is the synthesis of novel 3,3-difluoro-3H-indol-2-ylthio (SFox) imidates and their application as glycosyl donors in chemical glycosylation. Being thioimidates, these compounds are more stable than O-imidates albeit much more reactive than conventional alkyl/arylthio glycosides. This study demonstrates that SFox imidates can be activated either with soft thiophilic reagents (N-iodosuccinimide or transition metal salts), typical for the activation of thioglycosides or thioimidates, or hard electrophilic reagents (protic or Lewis acids) common for the activation of O-imidates. Expectedly, complete β-selectivity was obtained from SFox donors equipped with 2-O-benzoyl group. Surprisingly, complete α-selectivity was obtained from 2-O-benzylated SFox imidates in all investigated cases.
Collapse
Affiliation(s)
- Alessandra Damico
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St Louis, Missouri, 63103, USA.
| | - Ganesh Shrestha
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA
| | - Anupama Das
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St Louis, Missouri, 63103, USA.
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St Louis, Missouri, 63103, USA.
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA
| |
Collapse
|
5
|
Forsythe NP, Mize ER, Kashiwagi GA, Demchenko AV. Expedient Synthesis of Superarmed Glycosyl Donors via Oxidative Thioglycosidation of Glycals. SYNTHESIS-STUTTGART 2024; 56:1147-1156. [PMID: 38655286 PMCID: PMC11034933 DOI: 10.1055/a-2183-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Superarmed glycosyl donors have higher reactivity compared to their perbenzylated armed counterparts. Generally, the 2-O- benzoyl-3,4,6-tri-O-benzyl protecting group pattern gives rise to increased reactivity due to an O-2/O-5 cooperative effect. Despite having a high reactivity profile and applicability in many expeditious strategies for glycan synthesis, regioselective introduction of the superarming protecting group pattern is tedious for most sugar series. Reported herein is a streamlined synthetic route to yield superarmed glycosyl donors of the d-gluco and d-galacto series equipped with an ethylthio, phenylthio, p-tolylthio, benzoxazol-2-ylthio, O-allyl, or O-pentenyl anomeric leaving group. This streamlined approach was made possible due to the refinement of the oxidative thioglycosylation reaction of the respective glucal and galactal precursors. The applicability of this approach to the direct formation of disaccharides is also showcased.
Collapse
Affiliation(s)
- Nicholas P Forsythe
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA
| | - Emma R Mize
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA
| | - Gustavo A Kashiwagi
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA
| |
Collapse
|
6
|
Forsythe N, Liu L, Kashiwagi GA, Demchenko AV. Activation of thioglycosides under mild alkylation conditions. Carbohydr Res 2023; 531:108872. [PMID: 37348387 PMCID: PMC10528260 DOI: 10.1016/j.carres.2023.108872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Reported herein is the development of a novel method for the activation of thioglycosides and thioimidates using benzyl trichloroacetimidate in the presence of catalytic triflic acid. Excellent yields have been achieved with reactive substrates, whereas efficiency of reactions with unreactive glycosyl donors and/or acceptors was modest.
Collapse
Affiliation(s)
- Nicholas Forsythe
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Leah Liu
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Gustavo A Kashiwagi
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA.
| |
Collapse
|
7
|
Shrestha G, Panza M, Singh Y, Stine K, Demchenko AV. N‐Alkylated analogues of indolylthio glycosides as glycosyl donors with enhanced activation profile. European J Org Chem 2022; 2022. [PMID: 36339352 PMCID: PMC9635513 DOI: 10.1002/ejoc.202200300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While studying indolylthio glycosides, previously we determined their activation profile that required large excess of activators. This drawback was partially addressed in the present study of N-alkylated SInR derivatives. The activation process was studied by NMR and the increased understanding of the mechanism led to a discovery of different activation pathways taking place with SIn versus SInR derivatives. Also investigated was orthogonality of the SInR leaving groups versus thioglycosides and selective activation of thioimidates over SInR glycosides.
Collapse
Affiliation(s)
- Ganesh Shrestha
- UMSL: University of Missouri-St Louis Chemistry and biochemistry UNITED STATES
| | - Matteo Panza
- UMSL: University of Missouri-St Louis Chemistry and biochemistry UNITED STATES
| | - Yashapal Singh
- UMSL: University of Missouri-St Louis Chemistry and biochemistry UNITED STATES
| | - Keith Stine
- UMSL: University of Missouri-St Louis Chemistry and biochemistry UNITED STATES
| | - Alexei V. Demchenko
- Saint Louis University Chemistry 3501 Laclede Ave 63103 St. Louis UNITED STATES
| |
Collapse
|
8
|
Escopy S, Demchenko AV. Transition-Metal-Mediated Glycosylation with Thioglycosides. Chemistry 2021; 28:e202103747. [PMID: 34935219 DOI: 10.1002/chem.202103747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 11/09/2022]
Abstract
Thioglycosides are among the most common glycosyl donors that find broad application in the synthesis of glycans and glycoconjugates. However, the requirement for toxic and/or large access of activators needed for common glycosylations with thioglycosides remains a notable drawback. Due to the increased awareness of the chemical waste impact on the environment, synthetic studies have been driven by the goal of finding non-toxic reagents. The main focus of this review is to highlight recent methods for thioglycoside activation that rely on transition metal catalysis.
Collapse
Affiliation(s)
- Samira Escopy
- University of Missouri - St. Louis, Chemistry, UNITED STATES
| | - Alexei V Demchenko
- Saint Louis University, Chemistry, 3501 Laclede Ave, 63103, St. Louis, UNITED STATES
| |
Collapse
|
9
|
Das A, Jayaraman N. Carbon tetrachloride-free allylic halogenation-mediated glycosylations of allyl glycosides. Org Biomol Chem 2021; 19:9318-9325. [PMID: 34664608 DOI: 10.1039/d1ob01298c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The allylic bromination of allyl glycosides is conducted using NBS/AIBN reagents in (EtO)2CO and PhCF3 solutions, without using CCl4 as a solvent. The activated mixed halo-allyl glycosides led to glycosylations, mediated by a triflate, in a latent-active manner, with the allyl glycosides acting as donors and acceptors. Systematic glycosylation studies are performed with different triflate promoters, non-glycosyl acceptors and various allyl glycosyl donors. One-pot allylic halogenations and subsequent glycosylations are developed in PhCF3 solutions. This newer glycosylation method is utilized to obtain xylo-pyranoside di- and trisaccharides.
Collapse
Affiliation(s)
- Anupama Das
- Department of Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | | |
Collapse
|
10
|
Das A, Jayaraman N. Aglycon reactivity as a guiding principle in latent-active approach to chemical glycosylations. Carbohydr Res 2021; 508:108404. [PMID: 34352649 DOI: 10.1016/j.carres.2021.108404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022]
Abstract
Chemical glycosylations critically depend on the activation of a glycosyl donor and the reaction of this activated donor intermediate with an acceptor alcohol. Whereas many strategies are developed for the activation of an anomeric aglycon substituent, the latent-active method of glycosylation is based specifically on tuning the reactivity of the aglycon substituent of a glycosyl donor. Several novel methods have emerged to install reactive aglycon moiety in a glycosyl donor and fine-tuning the reactivity of the moiety. Remote functionalizations of the aglycon plays a key role in the reactivity tuning. Activation of a remote functionality enables an otherwise latent aglycon to an active moiety, suitable as a glycosyl donor. The latent-active approach provides an advantage to avoid the conversion of the aglycon to another donor prior to a glycosylation, in addition to advancing the contemporary glycosylations with alternate insights. The review analyzes the methodologies that consolidate the latent-active approach to chemical glycosylations.
Collapse
Affiliation(s)
- Anupama Das
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | | |
Collapse
|
11
|
Chen J, Tang Y, Yu B. A Mild Glycosylation Protocol with Glycosyl 1‐Methylimidazole‐2‐carboxylates as Donors. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jianpeng Chen
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Yu Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
12
|
Shrestha G, Panza M, Singh Y, Rath NP, Demchenko AV. Indolylthio Glycosides As Effective Building Blocks for Chemical Glycosylation. J Org Chem 2020; 85:15885-15894. [PMID: 32627548 DOI: 10.1021/acs.joc.0c00943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The S-indolyl (SIn) anomeric moiety was investigated as a new leaving group that can be activated for chemical glycosylation under a variety of conditions including thiophilic and metal-assisted pathways. Understanding of the reaction pathways for the SIn moiety activation was achieved via the extended mechanistic study. Also reported is how the new SIn donors fit into selective activation strategies for oligosaccharide synthesis.
Collapse
Affiliation(s)
- Ganesh Shrestha
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Matteo Panza
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Nigam P Rath
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
13
|
Wu JY, Liao WJ, Lin XY, Liang CF. A facile access to N-sulfonylthioimidates and their use for the transformation to 3,4-dihydroquinazolines. Org Biomol Chem 2020; 18:8881-8885. [PMID: 33107883 DOI: 10.1039/d0ob01963a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
N-Sulfonylthioimidates can be efficiently synthesized through one-pot three-component coupling of terminal alkynes, sulfonyl azides, and thiols by using a copper(i) catalyst in the presence of 4-dimethylaminopyridine. The proposed reaction is characterized by mild reaction conditions and tolerance of diverse functional groups. Additionally, the crucial pharmacophore of 3,4-dihydroquinazolines was synthesized using a one-pot synthetic strategy from N-sulfonylthioimidates.
Collapse
Affiliation(s)
- Jia-Yu Wu
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan.
| | | | | | | |
Collapse
|
14
|
Hedberg C, Jessen KS, Hansson RF, Heuckendorff M, Jensen HH. Palladium-Catalyzed C–S Bond Formation as a Tool for Latent–Active Glycosylation. Org Lett 2020; 22:7068-7072. [DOI: 10.1021/acs.orglett.0c02090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Christinne Hedberg
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Kamilla S. Jessen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Rikke F. Hansson
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Mads Heuckendorff
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Henrik H. Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
15
|
Geringer SA, Singh Y, Hoard DJ, Demchenko AV. A Highly Efficient Glycosidation of Glycosyl Chlorides by Using Cooperative Silver(I) Oxide-Triflic Acid Catalysis. Chemistry 2020; 26:8053-8063. [PMID: 32145116 PMCID: PMC7695998 DOI: 10.1002/chem.201905576] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 01/22/2023]
Abstract
Following our discovery that silver(I) oxide-promoted glycosylation with glycosyl bromides can be greatly accelerated in the presence of catalytic TMSOTf or TfOH, we report herein a new discovery that glycosyl chlorides are even more effective glycosyl donors under these reaction conditions. The developed reaction conditions work well with a variety of glycosyl chlorides. Both benzoylated and benzylated chlorides have been successfully glycosidated, and these reaction conditions proved to be effective in coupling substrates containing nitrogen and sulfur atoms. Another convenient feature of this glycosylation is that the progress of the reaction can be monitored visually; its completion can be judged by the disappearance of the characteristic dark color of Ag2 O.
Collapse
Affiliation(s)
- Scott A. Geringer
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Daniel J. Hoard
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| |
Collapse
|
16
|
Singh Y, Demchenko AV. Defining the Scope of the Acid-Catalyzed Glycosidation of Glycosyl Bromides. Chemistry 2020; 26:1042-1051. [PMID: 31614042 PMCID: PMC7675295 DOI: 10.1002/chem.201904185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/14/2019] [Indexed: 01/24/2023]
Abstract
Following the recent discovery that traditional silver(I) oxide-promoted glycosidations of glycosyl bromides (Koenigs-Knorr reaction) can be greatly accelerated in the presence of catalytic TMSOTf, reported herein is a dedicated study of all major aspects of this reaction. A thorough investigation of numerous silver salts and careful refinement of the reaction conditions led to an improved mechanistic understanding. This, in turn, led to a significant reduction in the amount of silver salt required for these glycosylations. The progress of this reaction can be monitored by naked eye, and the completion of the reaction can be judged by the disappearance of characteristic dark color of Ag2 O. Further evidence on higher reactivity of benzoylated α-bromides in comparison to that of their benzylated counterparts has been acquired.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| |
Collapse
|
17
|
Pal R, Das A, Jayaraman N. One-pot oligosaccharide synthesis: latent-active method of glycosylations and radical halogenation activation of allyl glycosides. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-0306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Chemical glycosylations occupy a central importance to synthesize tailor-made oligo- and polysaccharides of functional importance. Generation of the oxocarbenium ion or the glycosyl cation is the method of choice in order to form the glycosidic bond interconnecting a glycosyl moiety with a glycosyl/aglycosyl moiety. A number of elegant methods have been devised that allow the glycosyl cation formation in a fairly stream-lined manner to a large extent. The latent-active method provides a powerful approach in the protecting group controlled glycosylations. In this context, allyl glycosides have been developed to meet the requirement of latent-active reactivities under appropriate glycosylation conditions. Radical halogenation provides a newer route of activation of allyl glycosides to an activated allylic glycoside. Such an allylic halide activation subjects the glycoside reactive under acid catalysis, leading to the conversion to a glycosyl cation and subsequent glycosylation with a number of acceptors. The complete anomeric selectivity favoring the 1,2-trans-anomeric glycosides points to the possibility of a preferred conformation of the glycosyl cation. This article discusses about advancements in the selectivity of glycosylations, followed by delineating the allylic halogenation of allyl glycoside as a glycosylation method and demonstrates synthesis of a repertoire of di- and trisaccharides, including xylosides, with varied protecting groups.
Collapse
Affiliation(s)
- Rita Pal
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | - Anupama Das
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | | |
Collapse
|
18
|
Du S, Ragains JR. MPTGs: Thioglycoside Donors for Acid-Catalyzed O-Glycosylation and Latent-Active Synthetic Strategies. Org Lett 2019; 21:980-983. [DOI: 10.1021/acs.orglett.8b03958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shaofu Du
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Justin R. Ragains
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
19
|
Wang J, Lou Q, Rong J, Yang Y. Gold(i)-promoted α-selective sialylation of glycosylortho-hexynylbenzoates for the latent-active synthesis of oligosialic acids. Org Biomol Chem 2019; 17:6580-6584. [DOI: 10.1039/c9ob00954j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A gold(i)-promoted α-selective glycosylation approach with sialylortho-hexynylbenzoates as donors is developed for the latent-active synthesis of α-(2 → 9)-linked oligosialic acids.
Collapse
Affiliation(s)
- Jiazhe Wang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qixin Lou
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jingjing Rong
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
20
|
Wang T, Singh Y, Stine KJ, Demchenko AV. Investigation of Glycosyl Nitrates as Building Blocks for Chemical Glycosylation. European J Org Chem 2018; 2018:6699-6705. [PMID: 31341403 DOI: 10.1002/ejoc.201801272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glycosyl nitrates are important synthetic intermediates in the synthesis of 2-amino sugars, 1,2-orthoesters or, more recently, 2-OH glucose. However, glycosyl nitrates have never been glycosidated. Presented herein is our first attempt to use glycosyl nitrates as glycosyl donors for O-glycosylation. Lanthanide triflates showed good affinity to activate the nitrate leaving group.
Collapse
Affiliation(s)
- Tinghua Wang
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| |
Collapse
|
21
|
Xiao Y, Lu Z, Zhao X, Wu P, Chen W, Wang R, Zeng J, Wan Q. Practical synthesis of active O-2-(2-propylsulfinyl)benzyl (OPSB) glycosides via a catalytic and metal free oxidation of latent O-2-(2-propylthiol)benzyl (OPTB) glycosides. Carbohydr Res 2018; 469:10-13. [PMID: 30172109 DOI: 10.1016/j.carres.2018.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/30/2023]
Abstract
A catalytic and metal free sulfoxidation of O-2-(2-propylthiol)benzyl (OPTB) glycosides to O-2-(2-propylsulfinyl)benzyl (OPSB) glycosides has been developed by introducing NOBF4 as catalyst, oxygen as terminal oxidant and TBAB as additive. Wide variety of OPTB glycosides were efficiently oxidized without observation of over oxidation. The allowance of large scale synthesis, easy operation and purification highlighted its practical application in construction of complex oligosaccharides and glycoconjugates employing interrupted Pummerer reaction mediated glycosylation strategy.
Collapse
Affiliation(s)
- Ying Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Zimin Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiang Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Pinru Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Wei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Ruobin Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
22
|
Liu M, Li BH, Xiong DC, Ye XS. O-Glycosylation Enabled by N-(Glycosyloxy)acetamides. J Org Chem 2018; 83:8292-8303. [PMID: 29938493 DOI: 10.1021/acs.joc.8b01003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A novel glycosylation protocol has been established by using N-(glycosyloxy)acetamides as glycosyl donors. The N-oxyacetamide leaving group in donors could be rapidly activated in the presence of Cu(OTf)2 or SnCl4 under microwave irradiation. This glycosylation process afforded the coupled products in high yields, and the reaction enjoyed a broad substrate scope, even for disarmed donors and hindered acceptors. The easy availability of the donors, the high stability of N-(glycosyloxy)acetamides, and the small leaving group make this method very practical.
Collapse
Affiliation(s)
- Miao Liu
- National Research Center for Carbohydrate Synthesis , Jiangxi Normal University , Nanchang 330022 , China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Bo-Han Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China.,State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Xin-Shan Ye
- National Research Center for Carbohydrate Synthesis , Jiangxi Normal University , Nanchang 330022 , China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| |
Collapse
|
23
|
Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem Rev 2018; 118:8025-8104. [PMID: 29870239 DOI: 10.1021/acs.chemrev.8b00036] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrates, which are ubiquitously distributed throughout the three domains of life, play significant roles in a variety of vital biological processes. Access to unique and homogeneous carbohydrate materials is important to understand their physical properties, biological functions, and disease-related features. It is difficult to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conviently accessed through chemical syntheses. Two major hurdles, regioselective protection and stereoselective glycosylation, are faced by carbohydrate chemists in synthesizing these highly complicated molecules. Over the past few years, there has been a radical change in tackling these problems and speeding up the synthesis of oligosaccharides. This is largely due to the development of one-pot protection, one-pot glycosylation, and one-pot protection-glycosylation protocols and streamlined approaches to orthogonally protected building blocks, including those from rare sugars, that can be used in glycan coupling. In addition, new automated strategies for oligosaccharide syntheses have been reported not only for program-controlled assembly on solid support but also by the stepwise glycosylation in solution phase. As a result, various sugar molecules with highly complex, large structures could be successfully synthesized. To summarize these recent advances, this review describes the methodologies for one-pot protection and their one-pot glycosylation into the complex glycans and the chronological developments associated with automated syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | | | | | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Pin-Hsuan Liao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
24
|
Pal R, Das A, Jayaraman N. Radical halogenation-mediated latent–active glycosylations of allyl glycosides. Chem Commun (Camb) 2018; 54:588-590. [DOI: 10.1039/c7cc07332a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Radical halogenation-mediated glycosylation using allyl glycosides as donors and as acceptors emerges to be an efficient and hither-to unknown glycosylation method, adhering to the concept of the latent–active methodology.
Collapse
Affiliation(s)
- Rita Pal
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Anupama Das
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | | |
Collapse
|
25
|
Kitowski A, Jiménez-Moreno E, Salvadó M, Mestre J, Castillón S, Jiménez-Osés G, Boutureira O, Bernardes GJL. Oxidative Activation of C–S Bonds with an Electropositive Nitrogen Promoter Enables Orthogonal Glycosylation of Alkyl over Phenyl Thioglycosides. Org Lett 2017; 19:5490-5493. [DOI: 10.1021/acs.orglett.7b02886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Annabel Kitowski
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649−028 Lisboa, Portugal
| | - Ester Jiménez-Moreno
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Míriam Salvadó
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo
1, 43007 Tarragona, Spain
| | - Jordi Mestre
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo
1, 43007 Tarragona, Spain
| | - Sergio Castillón
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo
1, 43007 Tarragona, Spain
| | - Gonzalo Jiménez-Osés
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Omar Boutureira
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo
1, 43007 Tarragona, Spain
| | - Gonçalo J. L. Bernardes
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649−028 Lisboa, Portugal
| |
Collapse
|
26
|
Hu Y, Yu K, Shi LL, Liu L, Sui JJ, Liu DY, Xiong B, Sun JS. o-(p-Methoxyphenylethynyl)phenyl Glycosides: Versatile New Glycosylation Donors for the Highly Efficient Construction of Glycosidic Linkages. J Am Chem Soc 2017; 139:12736-12744. [DOI: 10.1021/jacs.7b07020] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Hu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Ke Yu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Li-Li Shi
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Lei Liu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Jing-Jing Sui
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - De-Yong Liu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Bin Xiong
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Jian-Song Sun
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| |
Collapse
|
27
|
Hasty SJ, Rath NP, Demchenko AV. Extending the S-benzimidazolyl (SBiz) platform: N-alkylated SBiz glycosyl donors with the universal activation profile. PURE APPL CHEM 2017; 89:1321-1331. [PMID: 29861508 PMCID: PMC5976247 DOI: 10.1515/pac-2017-0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This article describes the development of alkylated S-benzimidazolyl (SBiz) imidates as versatile building blocks for chemical glycosylation. The SBiz imidates have been originally developed as a new platform for active-latent glycosylations and its utility was further extended to other common strategies for oligosaccharide synthesis. This article expands upon the utility of these compounds. We developed a general protocol for the synthesis of a series of N-alkylated SBiz glycosides from N-protected SBiz aglycones by Lewis acid-mediated coupling with glucose pentaacetate. The N-alkylated SBiz moiety was found to be stable under strong basic conditions which allowed us to obtain both armed and disarmed N-alkylated SBiz donors. These donors showed good reactivity at a variety of activation conditions, and generally provided high yields in glycosylations.
Collapse
Affiliation(s)
- Scott J. Hasty
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| | - Nigam P. Rath
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| |
Collapse
|
28
|
Hasty SJ, Bandara MD, Rath NP, Demchenko AV. S-Benzimidazolyl (SBiz) Imidates as a Platform for Oligosaccharide Synthesis via Active-Latent, Armed-Disarmed, Selective, and Orthogonal Activations. J Org Chem 2017; 82:1904-1911. [PMID: 28135419 PMCID: PMC5498158 DOI: 10.1021/acs.joc.6b02478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article describes the development of S-benzimidazolyl (SBiz) imidates as versatile building blocks for oligosaccharide synthesis. The SBiz imidates have been originally developed as a new platform for active-latent glycosylations. This article expands upon the utility of these compounds. The application to practically all common concepts for the expeditious oligosaccharide synthesis including selective, chemoselective, and orthogonal strategies is demonstrated. The strategy development was made possible thanks to our enhanced understanding of the reaction mechanism and the modes by which SBiz imidates interact with various promoters of glycosylation.
Collapse
Affiliation(s)
- Scott J. Hasty
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Mithila D. Bandara
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Nigam P. Rath
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
29
|
Abstract
The development of glycobiology relies on the sources of particular oligosaccharides in their purest forms. As the isolation of the oligosaccharide structures from natural sources is not a reliable option for providing samples with homogeneity, chemical means become pertinent. The growing demand for diverse oligosaccharide structures has prompted the advancement of chemical strategies to stitch sugar molecules with precise stereo- and regioselectivity through the formation of glycosidic bonds. This Review will focus on the key developments towards chemical O-glycosylations in the current century. Synthesis of novel glycosyl donors and acceptors and their unique activation for successful glycosylation are discussed. This Review concludes with a summary of recent developments and comments on future prospects.
Collapse
Affiliation(s)
- Rituparna Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| | - Balaram Mukhopadhyay
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| |
Collapse
|
30
|
Xiao X, Zhao Y, Shu P, Zhao X, Liu Y, Sun J, Zhang Q, Zeng J, Wan Q. Remote Activation of Disarmed Thioglycosides in Latent-Active Glycosylation via Interrupted Pummerer Reaction. J Am Chem Soc 2016; 138:13402-13407. [DOI: 10.1021/jacs.6b08305] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiong Xiao
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Yueqi Zhao
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Penghua Shu
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Xiang Zhao
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Yan Liu
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Jiuchang Sun
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Qian Zhang
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Jing Zeng
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Qian Wan
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
- Institute
of Brain Research, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| |
Collapse
|
31
|
Shu P, Yao W, Xiao X, Sun J, Zhao X, Zhao Y, Xu Y, Tao J, Yao G, Zeng J, Wan Q. Glycosylation via remote activation of anomeric leaving groups: development of 2-(2-propylsulfinyl)benzyl glycosides as novel glycosyl donors. Org Chem Front 2016. [DOI: 10.1039/c5qo00359h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New glycosyl donors with recyclable and regenerable leaving groups, which could be activated via remote mode, were designed for latent-active glycosylation.
Collapse
|
32
|
Shu P, Xiao X, Zhao Y, Xu Y, Yao W, Tao J, Wang H, Yao G, Lu Z, Zeng J, Wan Q. Interrupted Pummerer Reaction in Latent‐Active Glycosylation: Glycosyl Donors with a Recyclable and Regenerative Leaving Group. Angew Chem Int Ed Engl 2015; 54:14432-6. [DOI: 10.1002/anie.201507861] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Penghua Shu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Xiong Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Yueqi Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Yang Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Wang Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Jinyi Tao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Hao Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Zimin Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
- Institute of Brain Research, Huazhong University of Science and Technology (China)
| |
Collapse
|
33
|
Shu P, Xiao X, Zhao Y, Xu Y, Yao W, Tao J, Wang H, Yao G, Lu Z, Zeng J, Wan Q. Interrupted Pummerer Reaction in Latent-Active Glycosylation: Glycosyl Donors with a Recyclable and Regenerative Leaving Group. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Chen X, Shen D, Wang Q, Yang Y, Yu B. ortho-(Methyltosylaminoethynyl)benzyl glycosides as new glycosyl donors for latent-active glycosylation. Chem Commun (Camb) 2015; 51:13957-60. [DOI: 10.1039/c5cc05651a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new glycosylation protocol with ortho-(methyltosylaminoethynyl)benzyl glycosides as donors is disclosed.
Collapse
Affiliation(s)
- Xiaoping Chen
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Dacheng Shen
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Qiaoling Wang
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
35
|
Ranade SC, Demchenko AV. Glycosyl alkoxythioimidates as building blocks for glycosylation: a reactivity study. Carbohydr Res 2014; 403:115-22. [PMID: 25043398 DOI: 10.1016/j.carres.2014.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/16/2014] [Accepted: 06/22/2014] [Indexed: 12/13/2022]
Abstract
Structural modifications of the leaving group of S-glycosyl O-methyl phenylcarbamothioates (SNea) involving change of substituents that express different electronic effects led to a better understanding of how the reactivity of these glycosyl donors can be modified by changing the structure of their leaving groups. Mechanistic studies involving the isolation of departed aglycones were indicative of the direct activation of both p-methoxy-SNea and p-nitro-SNea leaving groups via the anomeric sulfur rather than the remote nitrogen atom. The presence of an electron donating substituent (p-methoxy) has a strong effect on the nucleophilicity of the sulfur atom that becomes more susceptible toward the attack of thiophilic reagents, in particular. This key observation allowed to differentiate the reactivity levels of p-methoxy-SNea versus p-nitro-SNea and even unmodified SNea leaving groups. The reactivity difference observed in the series of SNea leaving groups is sufficient to be exploited in expeditious oligosaccharide synthesis via selective activation strategies.
Collapse
Affiliation(s)
- Sneha C Ranade
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, St. Louis, MO 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, St. Louis, MO 63121, USA.
| |
Collapse
|
36
|
Ranade SC, Hasty SJ, Demchenko AV. A Comparative Study of Glycosyl Thioimidates as Building Blocks for Chemical Glycosylation. J Carbohydr Chem 2013. [DOI: 10.1080/07328303.2013.826670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Ranade SC, Demchenko AV. Mechanism of Chemical Glycosylation: Focus on the Mode of Activation and Departure of Anomeric Leaving Groups. J Carbohydr Chem 2013. [DOI: 10.1080/07328303.2012.749264] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sneha C. Ranade
- a Department of Chemistry and Biochemistry , University of Missouri , St. Louis , MO , 63121 , USA
| | - Alexei V. Demchenko
- a Department of Chemistry and Biochemistry , University of Missouri , St. Louis , MO , 63121 , USA
| |
Collapse
|
38
|
Yang H, Wang P. Mechanistic Study of Glycosylation Using a Prop-1-enyl Donor. J Org Chem 2012; 78:1858-63. [DOI: 10.1021/jo301664c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haishen Yang
- Department of Chemistry, University of Alabama at Birmingham,
901 14th Street South, Birmingham, Alabama 35294, United States
| | - Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham,
901 14th Street South, Birmingham, Alabama 35294, United States
| |
Collapse
|
39
|
Hasty SJ, Demchenko AV. Glycosyl Thioimidates as Versatile Building Blocks for Organic Synthesis. Chem Heterocycl Compd (N Y) 2012; 48. [PMID: 24288416 DOI: 10.1007/s10593-012-0984-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review discusses the synthesis and application of glycosyl thioimidates in chemical glycosylation and oligosaccharide assembly. Although glycosyl thioimidates include a broad range of compounds, the discussion herein centers on S-benzothiazolyl (SBaz), S-benzoxazolyl (SBox), S-thiazolinyl (STaz), and S-benzimidazolyl (SBiz) glycosides. These heterocyclic moieties have recently emerged as excellent anomeric leaving groups that express unique characteristics for highly diastereoselective glycosylation and help to provide the streamlined access to oligosaccharides.
Collapse
Affiliation(s)
- S J Hasty
- University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA
| | | |
Collapse
|
40
|
Fang T, Mo KF, Boons GJ. Stereoselective assembly of complex oligosaccharides using anomeric sulfonium ions as glycosyl donors. J Am Chem Soc 2012; 134:7545-52. [PMID: 22475263 DOI: 10.1021/ja3018187] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of selectively protected monosaccharide building blocks that can reliably be glycosylated with a wide variety of acceptors is expected to make oligosaccharide synthesis a more routine operation. In particular, there is an urgent need for the development of modular building blocks that can readily be converted into glycosyl donors for glycosylations that give reliably high 1,2-cis-anomeric selectivity. We report here that 1,2-oxathiane ethers are stable under acidic, basic, and reductive conditions making it possible to conduct a wide range of protecting group manipulations and install selectively removable protecting groups such as levulinoyl (Lev) ester, fluorenylmethyloxy (Fmoc)- and allyloxy (Alloc)-carbonates, and 2-methyl naphthyl ethers (Nap). The 1,2-oxathiane ethers could easily be converted into bicyclic anomeric sulfonium ions by oxidization to sulfoxides and arylated with 1,3,5-trimethoxybenzene. The resulting sulfonium ions gave high 1,2-cis-anomeric selectivity when glycosylated with a wide variety of glycosyl acceptors including properly protected amino acids, primary and secondary sugar alcohols and partially protected thioglycosides. The selective protected 1,2-oxathianes were successfully employed in the preparation of a branched glucoside derived from a glycogen-like polysaccharide isolated form the fungus Pseudallescheria boydii , which is involved in fungal phagocytosis and activation of innate immune responses. The compound was assembled by a latent-active glycosylation strategy in which an oxathiane was employed as an acceptor in a glycosylation with a sulfoxide donor. The product of such a glycosylation was oxidized to a sulfoxide for a subsequent glycosylation. The use of Nap and Fmoc as temporary protecting groups made it possible to install branching points.
Collapse
Affiliation(s)
- Tao Fang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
41
|
Lin YH, Ghosh B, Tony Mong KK. In situ formation of β-glycosyl imidinium triflate from participating thioglycosyl donors: elaboration to disarmed–armed iterative glycosylation. Chem Commun (Camb) 2012; 48:10910-2. [DOI: 10.1039/c2cc35032g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|