1
|
Solé-Àvila H, Puriņš M, Eichenberger L, Waser J. Enamine Synthesis via Regiocontrolled 6-endo-dig and 5-exo-dig Tethered Carboamination of Propargylic Alcohols. Angew Chem Int Ed Engl 2024:e202411383. [PMID: 39145375 DOI: 10.1002/anie.202411383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Enamines are versatile building blocks for the synthesis of biologically active compounds. Nevertheless, only a limited number of strategies have been reported for preparing trisubstituted enamines in a regio- and stereoselective manner. Herein, we report a regiocontrolled 6-endo and 5-exo tethered carboamination of propargylic alcohols for the synthesis of trisubstituted enamines. High regioselectivity was achieved through fine-tuning of the amine protecting group during the Pd-catalyzed carboamination. The introduced trifluoromethylated tether enables further stereoselective functionalizations, such as hydrogenation and fluorination.
Collapse
Affiliation(s)
- Helena Solé-Àvila
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institut des Sciences et Ingénierie Chimique, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Mikus Puriņš
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institut des Sciences et Ingénierie Chimique, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Lucas Eichenberger
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institut des Sciences et Ingénierie Chimique, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institut des Sciences et Ingénierie Chimique, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Zhang H, Wen W, Lu ZX, Wu ZL, Cai T, Guo QX. Core Structure-Oriented Asymmetric α-Allenylic Alkylation of Amino Acid Esters Enabled by Chiral Aldehyde/Palladium Catalysis. Org Lett 2024; 26:153-159. [PMID: 38133484 DOI: 10.1021/acs.orglett.3c03762] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Aiming at the reported chiral synthons leading to manzacidins A and D, here we report a highly efficient catalytic asymmetric α-allenylic alkylation reaction of NH2-unprotected amino acid esters that is promoted by combined chiral aldehyde/palladium catalysis. Fifty examples of unnatural α,α-disubstituted amino acid esters are reported with good-to-excellent yields and stereoselectivities. Based on this methodology, a key intermediate leading to manzacidin C and its other three stereoisomers is prepared accordingly.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ze-Xi Lu
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
3
|
Lu JT, Zong Y, Yue X, Wang J. Total Synthesis of (+)-Isolysergol. J Org Chem 2023. [PMID: 37276259 DOI: 10.1021/acs.joc.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The enantioselective synthesis of (+)-isolysergol was completed in 18 steps, and an overall yield of 11% was obtained from (2R)-(+)-phenyloxirane as a chiral pool. Key features of the synthesis include a stereoselective intramolecular 1,3-dipolar addition of nitrone with terminal olefin and a Cope elimination to furnish the D ring. A rhodium-catalyzed intramolecular [3 + 2] annulation of a benzene ring with α-imino carbenoid was designed to afford the 3,4-fused indole scaffold at the late stage of the synthesis.
Collapse
Affiliation(s)
- Jia-Tian Lu
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, P. R. China
| | - Yingxiao Zong
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, P. R. China
| | - Xiaodong Yue
- Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Junke Wang
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, P. R. China
| |
Collapse
|
4
|
Landrain Y, Evano G. Synthesis of Tetrahydrofurans and Pyrrolidines by Copper-Catalyzed Oxy/Aminoarylation of Alkenes. Org Lett 2023. [PMID: 37220014 DOI: 10.1021/acs.orglett.3c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
An efficient copper-catalyzed inter/intramolecular oxy/aminoarylation of γ-hydroxy/aminoalkenes with diaryliodonium triflates is reported. Simple activation of these arylating agents with copper(II) triflate in dichloromethane triggers a smooth activation of the alkene, which is simultaneously trapped by the internal nucleophile, yielding, depending upon its nature, a range of highly substituted tetrahydrofurans and pyrrolidines. The cyclization was moreover found to be stereospecific, with diastereoisomeric alkenes yielding diastereoisomers of the cyclized product, and could be extended to oxyalkynylation.
Collapse
Affiliation(s)
- Yohann Landrain
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| |
Collapse
|
5
|
Qi D, Zhang X, Wang X, Liu X, Zhang Z, Shi L, Zhang G. Nickel-Catalyzed Reductive Iminoarylation of Oxime Ester-Tethered Alkenes: Rapid Entrance to Diverse Functionalized Pyrrolines. Org Lett 2023; 25:1126-1130. [PMID: 36763011 DOI: 10.1021/acs.orglett.3c00088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Herein, we disclose a general and practical iminoarylation of alkenes by nickel-catalyzed reductive cross-coupling of unsaturated oxime esters with readily available aryl halides, providing an expedient approach for constructing pyrroline derivatives. The absence of organometallic reagents enables the reaction to occur under mild conditions with a broad substrate scope and good functional group tolerance. Moreover, other C-based electrophiles, including alkenyl, alkynyl and alkyl halides, or pseudohalides, were also competent substrates for this reaction.
Collapse
Affiliation(s)
- Di Qi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| | - Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| | - Xue Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| | - Xiaopan Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| | - Lei Shi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Mironova IA, Noskov DM, Yoshimura A, Yusubov MS, Zhdankin VV. Aryl-, Akynyl-, and Alkenylbenziodoxoles: Synthesis and Synthetic Applications. Molecules 2023; 28:2136. [PMID: 36903382 PMCID: PMC10004369 DOI: 10.3390/molecules28052136] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Hypervalent iodine reagents are in high current demand due to their exceptional reactivity in oxidative transformations, as well as in diverse umpolung functionalization reactions. Cyclic hypervalent iodine compounds, known under the general name of benziodoxoles, possess improved thermal stability and synthetic versatility in comparison with their acyclic analogs. Aryl-, alkenyl-, and alkynylbenziodoxoles have recently received wide synthetic applications as efficient reagents for direct arylation, alkenylation, and alkynylation under mild reaction conditions, including transition metal-free conditions as well as photoredox and transition metal catalysis. Using these reagents, a plethora of valuable, hard-to-reach, and structurally diverse complex products can be synthesized by convenient procedures. The review covers the main aspects of the chemistry of benziodoxole-based aryl-, alkynyl-, and alkenyl- transfer reagents, including preparation and synthetic applications.
Collapse
Affiliation(s)
- Irina A. Mironova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Dmitrii M. Noskov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Akira Yoshimura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Viktor V. Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| |
Collapse
|
7
|
Das A, Waser J. Pd-catalyzed functionalization of alkenes and alkynes using removable tethers. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Müller N, Schreib BS, Leutenegger SU, Carreira EM. Picolinamides and Iodoalkynes Enable Palladium-Catalyzed syn-Aminoalkynylation of Di- and Trisubstituted Alkenes to Give Pyrrolidines. Angew Chem Int Ed Engl 2022; 61:e202204535. [PMID: 35445778 PMCID: PMC9545406 DOI: 10.1002/anie.202204535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 12/15/2022]
Abstract
Palladium-catalyzed aminoalkynylation of electronically unbiased olefins with iodoalkynes is reported. The picolinamide auxiliary enables for the first time the syn-selective aminoalkynylation of mono-, di- and trisubstituted alkenes to afford the corresponding pyrrolidines in up to 97 % yield and as single diastereomers. Furthermore, through a C-H activation approach, the picolinamide allows the rapid synthesis of functionalized olefins, which are suitable cyclization precursors. Facile and orthogonal deprotection of the amides and Sii Pr3 -acetylenes in the products, and a subsequent Pictet-Spengler reaction is demonstrated.
Collapse
Affiliation(s)
- Nicolas Müller
- Laboratorium für Organische Chemie, HCI H335, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Benedikt S Schreib
- Laboratorium für Organische Chemie, HCI H335, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Sebastian U Leutenegger
- Laboratorium für Organische Chemie, HCI H335, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Erick M Carreira
- Laboratorium für Organische Chemie, HCI H335, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
9
|
Huang J, Chen Z. The Alkynylative Difunctionalization of Alkenes. Chemistry 2022; 28:e202201519. [DOI: 10.1002/chem.202201519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jie Huang
- School of Chemistry and Chemical Engineering Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhi‐Min Chen
- School of Chemistry and Chemical Engineering Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
10
|
Cox L, Zhu Y, Smith PJ, Christensen KE, Sidera Portela M, Donohoe TJ. Alcohols as Alkylating Agents in the Cation-Induced Formation of Nitrogen Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202206800. [PMID: 35770710 PMCID: PMC9546487 DOI: 10.1002/anie.202206800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/06/2022]
Abstract
A Ti(Oi-Pr)4 promoted 5- or 6-endo-trig cyclisation to make nitrogen heterocycles is presented. The utilisation of HFIP as a key solvent enables the stereoselective preparation of di- & tri-substituted pyrrolidines and piperidines while forming a new C-C bond at the same time. The process is triggered by a cationic intermediate generated from an allylic or benzylic alcohol and leads to the simultaneous generation of both a C-C and a C-N bond in a single step. Notably, either 2,3-trans- or 2,3-cis-substituted heterocycles can be obtained by using a nucleophilic amine bearing different substituents. Lastly, the stereoselective synthesis of enantiopure products was achieved by using readily available enantiopure acyclic starting materials.
Collapse
Affiliation(s)
- Lydia Cox
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Yuxiang Zhu
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Philip J. Smith
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Kirsten E. Christensen
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | | | - Timothy J. Donohoe
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
11
|
Huang J, Chen LL, Chen ZM. Palladium-Catalyzed Three-Component Cross-Coupling of Conjugated Dienes with Indoles Using Ethynylbenziodazolones as Electrophilic Alkynylating Reagents. Org Lett 2022; 24:5777-5781. [PMID: 35912967 DOI: 10.1021/acs.orglett.2c02275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-catalyzed regioselective 1,2-alkynyl-carbonalization of conjugated dienes with ethynylbenziodazolone (EBZ) and indoles has been developed for the first time. Various molecules containing alkenyl, alkynyl, and indole groups were readily obtained. Moreover, the resulting products can be applied to various derivatizations. This protocol uses EBZ as an electrophilic alkynylating reagent, avoiding the byproduct of dimerization of alkynes.
Collapse
Affiliation(s)
- Jie Huang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ling-Ling Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
12
|
Rossolini T, Das A, Nicolai S, Waser J. Pd(II)-Catalyzed Aminoacetoxylation of Alkenes Via Tether Formation. Org Lett 2022; 24:5068-5072. [PMID: 35816449 PMCID: PMC9490825 DOI: 10.1021/acs.orglett.2c01838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A Pd-catalyzed method based on the use of a molecular
tether is
described for olefin difunctionalization. Enabled by an easily introduced
trifluoroacetaldehyde-derived tether, a simultaneous introduction
of oxygen and nitrogen heteroatoms across unsaturated carbon–carbon
bonds was achieved under oxidative conditions, most probably via high-valent
Pd intermediates. Good yields and high diastereoselectivity were obtained
with aryl-substituted alkenes, whereas nonterminal alkyl-substituted
olefins gave aza-Heck products. Tether cleavage under mild conditions
provided fast access to functionalized β-amino alcohols.
Collapse
Affiliation(s)
- Thomas Rossolini
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| | - Ashis Das
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| | - Stefano Nicolai
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Cox L, Zhu Y, Smith P, Christensen K, Sidera Portela M, Donohoe TJ. Alcohols as Alkylating Agents in the Cation Induced Formation of Nitrogen Heterocycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lydia Cox
- University of Oxford Department of Chemistry Chemistry UNITED KINGDOM
| | - Yuxiang Zhu
- University of Oxford Department of Chemistry Chemistry UNITED KINGDOM
| | - Philip Smith
- University of Oxford Department of Chemistry Chemistry UNITED KINGDOM
| | | | | | - Timothy James Donohoe
- University of Oxford Department of Chemistry Chemistry Research Laboratory Mansfield Road OX1 3TA Oxford UNITED KINGDOM
| |
Collapse
|
14
|
Li Q, Fang X, Pan R, Yao H, Lin A. Palladium-Catalyzed Asymmetric Sequential Hydroamination of 1,3-Enynes: Enantioselective Syntheses of Chiral Imidazolidinones. J Am Chem Soc 2022; 144:11364-11376. [PMID: 35687857 DOI: 10.1021/jacs.2c03620] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pd-catalyzed sequential hydroamination of readily available 1,3-enynes is reported. The redox-neutral process provides an efficient route to synthesize a broad scope of imidazolidinones, thiadiazolidines, and imidazolidines. Asymmetric sequential hydroamination generates a series of synthetically valuable, enantioenriched imidazolidinones. Mechanistic studies revealed that the transformation occurred via an intermolecular enyne hydroamination pathway to give an allene intermediate. Subsequent intramolecular hydroamination of the allene intermediate proceeded under the Curtin-Hammett principle to provide enantioenriched imidazolidinone products.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinxin Fang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Rui Pan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
15
|
Palladium-Catalyzed Organic Reactions Involving Hypervalent Iodine Reagents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123900. [PMID: 35745020 PMCID: PMC9230104 DOI: 10.3390/molecules27123900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 01/13/2023]
Abstract
The chemistry of polyvalent iodine compounds has piqued the interest of researchers due to their role as important and flexible reagents in synthetic organic chemistry, resulting in a broad variety of useful organic molecules. These chemicals have potential uses in various functionalization procedures due to their non-toxic and environmentally friendly properties. As they are also strong electrophiles and potent oxidizing agents, the use of hypervalent iodine reagents in palladium-catalyzed transformations has received a lot of attention in recent years. Extensive research has been conducted on the subject of C—H bond functionalization by Pd catalysis with hypervalent iodine reagents as oxidants. Furthermore, the iodine(III) reagent is now often used as an arylating agent in Pd-catalyzed C—H arylation or Heck-type cross-coupling processes. In this article, the recent advances in palladium-catalyzed oxidative cross-coupling reactions employing hypervalent iodine reagents are reviewed in detail.
Collapse
|
16
|
Müller N, Schreib BS, Leutenegger SU, Carreira EM. Picolinamides and Iodoalkynes Enable Palladium‐Catalyzed syn‐Aminoalkynylation of Di‐ and Trisubstituted Alkenes to Give Pyrrolidines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicolas Müller
- University of Innsbruck: Universitat Innsbruck Chemistry AUSTRIA
| | - Benedikt S Schreib
- Eidgenössische Technische Hochschule Zürich: Eidgenossische Technische Hochschule Zurich DCHAB SWITZERLAND
| | - Sebastian U Leutenegger
- Eidgenössische Technische Hochschule Zürich: Eidgenossische Technische Hochschule Zurich DCHAB SWITZERLAND
| | - Erick Moran Carreira
- ETH-Hönggerberg Laboratorium für Anorganische Chemie Vladimir Prelog Weg 3HCl H335 8093 Zürich SWITZERLAND
| |
Collapse
|
17
|
Hirata G, Shimoharai Y, Shimada T, Nishikata T. Transition metal-free ether coupling and hydroamidation enabling the efficient synthesis of congested heterocycles. Chem Commun (Camb) 2022; 58:3665-3668. [PMID: 35224595 DOI: 10.1039/d1cc06871g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we discovered that α-bromocarboxamides react with alkynols containing tertiary alcohol moieties to produce congested ethers or heterocycles. Here, the etherification and hydroamidation reactions can be controlled by a suitable base. Both C-O and C-N bond formations occurred without a transition-metal catalyst. The stereospecific etherification and cyclization of diastereo-enriched α-bromocarboxamide afforded the corresponding diastereo-enriched ether and heterocyclic compound.
Collapse
Affiliation(s)
- Goki Hirata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Yusuke Shimoharai
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Taisei Shimada
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
18
|
Li X, Chen P, Liu G. Palladium-catalyzed intermolecular alkynylcarbonylation of unactivated alkenes: easy access to β-alkynylcarboxylic esters. Chem Commun (Camb) 2022; 58:2544-2547. [PMID: 35099483 DOI: 10.1039/d1cc07092d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A palladium-catalyzed intermolecular alkynylcarbonylation of unactivated alkenes has been established with ethynyl benziodoxolones (EBXs) as alkynylation reagents, providing β-alkynylcarboxylic esters efficiently from simple alkenes. The reaction features moderate to excellent regioselectivity and excellent functional group compatibility under mild reaction conditions.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
19
|
Yang X, Chen P, Liu G. Asymmetric Palladium-Catalyzed Aza-Wacker Reaction of Alkenes: Efficient Synthesis of Chiral 1,3-Oxazinan-2-ones. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Biosynthesis, total synthesis, and biological profiles of Ergot alkaloids. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 2021; 85:1-112. [DOI: 10.1016/bs.alkal.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Zhang X, Qi D, Jiao C, Zhang Z, Liu X, Zhang G. Ni-Catalyzed direct iminoalkynylation of unactivated olefins with terminal alkynes: facile access to alkyne-labelled pyrrolines. Org Chem Front 2021. [DOI: 10.1039/d1qo01217g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The first example of iminoalkynylation of unactivated olefins with terminal alkynes was achieved by a nickel-catalyzed iminyl-radical cyclization/Sonogashira-type coupling sequence.
Collapse
Affiliation(s)
- Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Di Qi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Chenchen Jiao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Xiaopan Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| |
Collapse
|
22
|
Hu Z, Fu L, Chen P, Cao W, Liu G. Enantioselective Intermolecular Aminoalkynylation of Styrenes via Copper-Catalyzed Radical Relay. Org Lett 2020; 23:129-134. [DOI: 10.1021/acs.orglett.0c03826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhoumi Hu
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Liang Fu
- State Key Laboratory of Organometallic Chemistry and Shanghai−Hong Kong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai−Hong Kong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Weiguo Cao
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai−Hong Kong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
23
|
Nicolai S, Orcel U, Muriel B, Greenwood PDG, Buzzetti L, Puriņš M, Waser J. Palladium-Catalyzed Functionalization of Olefins and Alkynes: From Oxyalkynylation to Tethered Dynamic Kinetic Asymmetric Transformations (DYKAT). Synlett 2020. [DOI: 10.1055/a-1308-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThis review presents an account of the palladium-catalyzed functionalizations of alkenes and alkynes developed at the Laboratory of Catalysis and Organic Synthesis (LCSO). Starting from the intramolecular oxy- and aminoalkynylation of alkenes, tethered methods were then developed to functionalize allylic amines and alcohols, as well as propargylic amines. Finally, a new dynamic kinetic asymmetric transformation was developed based on the use of a ‘one-arm’ Trost-type ligand, giving access to enantiopure amino alcohols. Each section is a personal account by the researcher(s) who performed the work.1 Introduction,2 Oxy- and Aminoalkynylation of Olefins,3 In Situ Tethering Strategies for the Synthesis of Vicinal Amino Alcohols and Diamines,4 Carboamination of Allylic Alcohols,5 Carbooxygenation of Propargylic Amines,6 Enantioselective Carboetherification/Hydrogenation via a Catalytically Formed Chiral Auxiliary,7 Conclusion
Collapse
|
24
|
Shetgaonkar SE, Singh FV. Hypervalent Iodine Reagents in Palladium-Catalyzed Oxidative Cross-Coupling Reactions. Front Chem 2020; 8:705. [PMID: 33134246 PMCID: PMC7553084 DOI: 10.3389/fchem.2020.00705] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/09/2020] [Indexed: 01/12/2023] Open
Abstract
Hypervalent iodine compounds are valuable and versatile reagents in synthetic organic chemistry, generating a diverse array of useful organic molecules. Owing to their non-toxic and environmentally friendly features, these reagents find potential applications in various oxidative functionalization reactions. In recent years, the use of hypervalent iodine reagents in palladium-catalyzed transformations has been widely studied as they are strong electrophiles and powerful oxidizing agents. For instance, extensive work has been carried out in the field of C–H bond functionalization via Pd-catalysis using hypervalent iodine reagents as oxidants. In addition, nowadays, iodine(III) reagents have been frequently employed as arylating agents in Pd-catalyzed C–H arylation or Heck-type cross-coupling reactions. In this review, recent advancements in the area of palladium-catalyzed oxidative cross-coupling reactions using hypervalent iodine reagents are summarized in detail.
Collapse
Affiliation(s)
- Samata E Shetgaonkar
- Chemistry Division, School of Advanced Science, Vellore Institute of Technology, Chennai, India
| | - Fateh V Singh
- Chemistry Division, School of Advanced Science, Vellore Institute of Technology, Chennai, India
| |
Collapse
|
25
|
García-Fernández PD, Iglesias-Sigüenza J, Rivero-Jerez PS, Díez E, Gómez-Bengoa E, Fernández R, Lassaletta JM. AuI-Catalyzed Hydroalkynylation of Haloalkynes. J Am Chem Soc 2020; 142:16082-16089. [DOI: 10.1021/jacs.0c07951] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pedro D. García-Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Sevilla 41012, Spain
| | - Javier Iglesias-Sigüenza
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Sevilla 41012, Spain
| | - Paula S. Rivero-Jerez
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Sevilla 41012, Spain
| | - Elena Díez
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Sevilla 41012, Spain
| | - Enrique Gómez-Bengoa
- Departamento de Quı́mica Orgánica I, Universidad del Paı́s Vasco, UPV/EHU, San Sebastián 20080, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Sevilla 41012, Spain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Sevilla 41092, Spain
| |
Collapse
|
26
|
Jiang X, Meyer D, Baran D, Cortés González MA, Szabó KJ. Trifluoromethylthiolation, Trifluoromethylation, and Arylation Reactions of Difluoro Enol Silyl Ethers. J Org Chem 2020; 85:8311-8319. [PMID: 32441100 PMCID: PMC7339110 DOI: 10.1021/acs.joc.0c01030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
This study reports a new application
area of difluoro enol silyl
ethers, which can be easily obtained from trifluoromethyl ketones.
The main focus has been directed to the electrophilic fluoroalkylation
and arylation methods. The trifluoromethylthiolation of difluoro enol
silyl ethers can be used for the construction of a novel trifluoromethylthio-α,α-difluoroketone
(−COCF2SCF3) functionality. The −CF2SCF3 moiety has interesting properties due to the
electron-withdrawing, albeit lipophilic, character of the SCF3 group, which can be combined with the high electrophilicity
of the difluoroketone motif. The methodology could also be extended
to difluoro homologation of the trifluoromethyl ketones using the
Togni reagent. In addition, we presented a method for transition-metal-free
arylation of difluoro enol silyl ethers based on hypervalent iodines.
Collapse
Affiliation(s)
- Xingguo Jiang
- Department of Organic Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Denise Meyer
- Department of Organic Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Dominik Baran
- Department of Organic Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | | | - Kálmán J Szabó
- Department of Organic Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
27
|
Schreib BS, Fadel M, Carreira EM. Palladium‐Catalyzed C−H Alkynylation of Unactivated Alkenes. Angew Chem Int Ed Engl 2020; 59:7818-7822. [DOI: 10.1002/anie.202000935] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Benedikt S. Schreib
- Laboratorium für Organische Chemie, HCI H335 ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Marlene Fadel
- Laboratorium für Organische Chemie, HCI H335 ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Erick M. Carreira
- Laboratorium für Organische Chemie, HCI H335 ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
28
|
Schreib BS, Fadel M, Carreira EM. Palladiumkatalysierte C‐H‐Alkinylierung unaktivierter Alkene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Benedikt S. Schreib
- Laboratorium für Organische Chemie, HCI H335 ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - Marlene Fadel
- Laboratorium für Organische Chemie, HCI H335 ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - Erick M. Carreira
- Laboratorium für Organische Chemie, HCI H335 ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| |
Collapse
|
29
|
Kayser S, Temperini P, Poulie CBM, Staudt M, Nielsen B, Pickering DS, Bunch L. A Diversity Oriented Synthesis Approach to New 2,3- trans-Substituted l-Proline Analogs as Potential Ligands for the Ionotropic Glutamate Receptors. ACS Chem Neurosci 2020; 11:702-714. [PMID: 32069018 DOI: 10.1021/acschemneuro.0c00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Discovery of chemical tools for the ionotropic glutamate receptors continues to be a challenging task. Herein we report a diversity-oriented approach to new 2,3-trans-l-proline analogs whereby we study how the spatial orientation of the distal carboxylate group influences the binding affinity and receptor class and subtype selectivity. In total, 10 new analogs were synthesized and 14 stereoisomers characterized in binding assays at native rat ionotropic glutamate receptors, and at cloned human homomeric kainic acid (KA) receptor subtypes GluK1-3. The study identified isoxazole analogs 3d,e, which displayed selectivity in binding at native N-methyl-d-aspartate (NMDA) receptors over native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and KA receptors, in the high nanomolar to low micromolar range. Furthermore, analogs 3i-A/B showed a preference in binding affinity for GluK3 over GluK1,2. Finally, analog 3j displayed high nanomolar affinity for native NMDA receptors as well as for homomeric GluK3 receptors.
Collapse
Affiliation(s)
- Silke Kayser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Piero Temperini
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Christian B. M. Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Markus Staudt
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Birgitte Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Darryl S. Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
30
|
Zhao B, Wu Y, Yuan Y, Shi Z. Copper-catalysed Csp3–Csp cross-couplings between cyclobutanone oxime esters and terminal alkynes induced by visible light. Chem Commun (Camb) 2020; 56:4676-4679. [DOI: 10.1039/d0cc00988a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel transformation for the construction of Csp3–Csp bonds was achieved via a photo-induced copper-catalysed C–C bond cleavage.
Collapse
Affiliation(s)
- Binlin Zhao
- Department of Chemistry and Materials Science
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Yixiao Wu
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Yu Yuan
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| |
Collapse
|
31
|
|
32
|
Li J, Yang S, Wu W, Jiang H. Palladium‐Catalyzed Cascade Cyclization/Alkynylation Reactions. Chem Asian J 2019; 14:4114-4128. [DOI: 10.1002/asia.201901202] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/19/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Shaorong Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 China
| |
Collapse
|
33
|
Yang X, Tsui GC. Silver-Catalyzed Trifluoromethylalkynylation of Unactivated Alkenes with Hypervalent Iodine Reagents. Org Lett 2019; 21:8625-8629. [DOI: 10.1021/acs.orglett.9b03230] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinkan Yang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
34
|
Li J, Wei J, Zhu B, Wang T, Jiao N. Cu-catalyzed oxygenation of alkene-tethered amides with O 2 via unactivated C[double bond, length as m-dash]C bond cleavage: a direct approach to cyclic imides. Chem Sci 2019; 10:9099-9103. [PMID: 31827752 PMCID: PMC6889834 DOI: 10.1039/c9sc03175h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022] Open
Abstract
An efficient aerobic unactivated C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond cleavage process was achieved, in which the succinimide or glutarimide derivatives could be prepared directly from alkenyl amides.
The transformations of unactivated alkenes through C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond double cleavage are always attractive but very challenging. We report herein a chemoselective approach to valuable cyclic imides by a novel Cu-catalyzed geminal amino-oxygenation of unactivated C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bonds. O2 was successfully employed as the oxidant as well as the O-source and was incorporated into alkenyl amides via C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond cleavage for the efficient preparation of succinimide or glutarimide derivatives. Moreover, the present strategy under simple conditions can be used in the late-stage modification of biologically active compounds and the synthesis of pharmaceuticals, which demonstrated the potential application.
Collapse
Affiliation(s)
- Junhua Li
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China .
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China .
| | - Bencong Zhu
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China .
| | - Teng Wang
- School of Chemistry , Beihang University , Xue Yuan Road 37 , Beijing , 100191 , China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China . .,State Key Laboratory of Organometallic Chemistry , Chinese Academy of Sciences , Shanghai 200032 , China
| |
Collapse
|
35
|
Li M, Wang JH, Li W, Lin CD, Zhang LB, Wen LR. N-Phenoxyamides as Multitasking Reagents: Base-Controlled Selective Construction of Benzofurans or Dihydrobenzofuro[2,3-d]oxazoles. J Org Chem 2019; 84:8523-8530. [DOI: 10.1021/acs.joc.9b00858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jia-Hui Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Wei Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Cheng-Dong Lin
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
36
|
Esteve-Turrillas FA, Agulló C, Mercader JV, Abad-Somovilla A, Abad-Fuentes A. Rationally designed haptens for highly sensitive monoclonal antibody-based immunoanalysis of fenhexamid. Analyst 2019; 143:4057-4066. [PMID: 30059081 DOI: 10.1039/c8an00827b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immunochemical methods have been consolidated during the last few years as complementary analytical strategies for chemical contaminant and residue determination. However, generation of suitable immunoreagents for small organic molecules demands adequate hapten design. In this study, fenhexamid was considered as a model compound and novel haptens were designed and synthesized in order to evaluate the influence of the linker tethering site on antibody binding properties and immunoassay parameters. Haptens were conceived with the spacer arm at different positions, while the more antigenic aromatic moiety was kept free. The synthesis of these functionalized compounds was accomplished by total construction of the molecule through several steps. This strategy afforded very high-affinity monoclonal antibodies specific of fenhexamid, with IC50 values around or below 0.1 nM. Using these novel immunoreagents, a direct competitive enzyme-linked immunosorbent assay with a remarkably low limit of detection (4 ng L-1) was developed for the determination of fenhexamid residues. The selected immunoassay was investigated in terms of trueness, precision, repeatability, and robustness. The QuEChERS extraction methodology was applied to fortified samples and recoveries between 83% and 113%, with relative standard deviations below 20%, were observed. Moreover, contaminated and blind spiked samples were measured by the developed immunoassay and by ultra-performance liquid chromatography coupled to tandem mass spectrometry, showing statistically comparable results.
Collapse
Affiliation(s)
- Francesc A Esteve-Turrillas
- Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Agustí Escardino 7, Paterna 46980, València, Spain.
| | | | | | | | | |
Collapse
|
37
|
Formal syntheses of (-)-isoretronecanol, (+)-laburnine, and a concise enantioselective synthesis of (+)-turneforcidine. J Antibiot (Tokyo) 2019; 72:397-406. [PMID: 30894676 DOI: 10.1038/s41429-019-0169-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 11/08/2022]
Abstract
The synthesis of functionalized pyroglutamates 15 and 16 could be achieved by the application of recently developed diastereodivergent asymmetric Michael addition reaction of iminoglycinate 7 to ethyl γ-silyloxycrotonate with >98:<2 diastereoselectivity followed by hydrolysis and lactamization. Formal syntheses of (-)-isoretronecanol and (+)-laburnine as well as a concise enantioselective synthesis of (+)-turneforcidine could be achieved from functionalized pyroglutamates 15 or 16.
Collapse
|
38
|
Luxenburger A, Schmidt D, Ianes C, Pichlo C, Krüger M, von Drathen T, Brunstein E, Gainsford GJ, Baumann U, Knippschild U, Peifer C. Design, Synthesis and Biological Evaluation of Isoxazole-Based CK1 Inhibitors Modified with Chiral Pyrrolidine Scaffolds. Molecules 2019; 24:E873. [PMID: 30832206 PMCID: PMC6429214 DOI: 10.3390/molecules24050873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 01/27/2023] Open
Abstract
In this study, we report on the modification of a 3,4-diaryl-isoxazole-based CK1 inhibitor with chiral pyrrolidine scaffolds to develop potent and selective CK1 inhibitors. The pharmacophore of the lead structure was extended towards the ribose pocket of the adenosine triphosphate (ATP) binding site driven by structure-based drug design. For an upscale compatible multigram synthesis of the functionalized pyrrolidine scaffolds, we used a chiral pool synthetic route starting from methionine. Biological evaluation of key compounds in kinase and cellular assays revealed significant effects of the scaffolds towards activity and selectivity, however, the absolute configuration of the chiral moieties only exhibited a limited effect on inhibitory activity. X-ray crystallographic analysis of ligand-CK1δ complexes confirmed the expected binding mode of the 3,4-diaryl-isoxazole inhibitors. Surprisingly, the original compounds underwent spontaneous Pictet-Spengler cyclization with traces of formaldehyde during the co-crystallization process to form highly potent new ligands. Our data suggests chiral "ribose-like" pyrrolidine scaffolds have interesting potential for modifications of pharmacologically active compounds.
Collapse
Affiliation(s)
- Andreas Luxenburger
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand.
| | - Dorian Schmidt
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, D-24116 Kiel, Germany.
| | - Chiara Ianes
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, D-89081 Ulm, Germany.
| | - Christian Pichlo
- Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, D-50674 Cologne, Germany.
| | - Marc Krüger
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, D-89081 Ulm, Germany.
| | - Thorsten von Drathen
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, D-24116 Kiel, Germany.
| | - Elena Brunstein
- Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, D-50674 Cologne, Germany.
| | - Graeme J Gainsford
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand.
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, D-50674 Cologne, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, D-89081 Ulm, Germany.
| | - Christian Peifer
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, D-24116 Kiel, Germany.
| |
Collapse
|
39
|
Yang Y, Yuan F, Ren X, Wang G, Zhao W, Tang X, Guo M. Copper-Catalyzed Oxydifluoroalkylation of Hydroxyl-Containing Alkenes. J Org Chem 2019; 84:4507-4516. [DOI: 10.1021/acs.joc.9b00121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanyan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Fangyuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangwei Ren
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
40
|
Yang JD, Li M, Xue XS. Computational I(III)-X BDEs for Benziodoxol(on)e-based Hypervalent Iodine Reagents: Implications for Their Functional Group Transfer Abilities. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201800549] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jin-Dong Yang
- Center of Basic Molecular Science, Department of Chemistry; Tsinghua University; Beijing 100084 China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 China
| | - Man Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 China
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 China
| |
Collapse
|
41
|
Hyatt IFD, Dave L, David N, Kaur K, Medard M, Mowdawalla C. Hypervalent iodine reactions utilized in carbon–carbon bond formations. Org Biomol Chem 2019; 17:7822-7848. [DOI: 10.1039/c9ob01267b] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This review covers recent developments of hypervalent iodine chemistry in dearomatizations, radicals, hypervalent iodine-guided electrophilic substitution, arylations, photoredox, and more.
Collapse
Affiliation(s)
| | - Loma Dave
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Navindra David
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Kirandeep Kaur
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Marly Medard
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Cyrus Mowdawalla
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| |
Collapse
|
42
|
Hari DP, Caramenti P, Waser J. Cyclic Hypervalent Iodine Reagents: Enabling Tools for Bond Disconnection via Reactivity Umpolung. Acc Chem Res 2018; 51:3212-3225. [PMID: 30485071 DOI: 10.1021/acs.accounts.8b00468] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The efficient synthesis of organic compounds is an important field of research, which sets the basis for numerous applications in medicine or materials science. Based on the polarity induced by functional groups, logical bond disconnections can be deduced for the elaboration of organic compounds. Nevertheless, this classical approach makes synthesis rigid, as not all bond disconnections are possible. The concept of Umpolung has been therefore introduced: by inverting the normal polarity of functional groups, new disconnections become possible. Among the tools for achieving Umpolung, hypervalent iodine reagents occupy a privileged position. The electrophilicity of the iodine atom and the reactivity of the hypervalent bond allow access to electrophilic synthons starting from nucleophiles. Nevertheless, some classes of hypervalent iodine reagents can be too unstable for many applications, in particular involving metal catalysis. In this context, cyclic hypervalent iodine reagents, especially benziodoxolones (BXs), have been known for a long time to be more stable than their acyclic counterparts, yet their synthetic potential had not been fully exploited. In this Account, we report our efforts since 2008 on the use of BX reagents in the development of new transformations in organic synthesis, which showed for the first time their versatility as synthetic tools. Our work started with electrophilic alkynylation, as alkynes are one of the most important functional groups in organic chemistry, but are usually introduced as nucleophiles. We used ethynylbenziodoxolones (EBXs) in the direct alkynylation of nucleophiles, such as keto esters, thiols, or phosphines. The reagents could then be applied to the gold- and palladium-catalyzed alkynylation of C-H bonds on (hetero)arenes, leading to a more efficient alternative to the Sonogashira reaction. More complex reactions were then developed with formations of several bonds in a single transformation. Gold- and platinum-catalyzed cyclization/alkynylation domino processes gave access to new types of alkynylated heterocycles. Multifunctionalization of olefins became possible through intramolecular oxy- and amino-alkynylations. (Enantioselective) copper-catalyzed oxy-alkynylation of diazo compounds led to stereocenters with perfect atom economy. Finally, EBXs were also used for the alkynylation of radicals generated under photoredox conditions. Since 2013, we then extended the use of BX reagents to other transformations. Azidobenziodoxol(on)ess (ABXs) were used in the azidation of keto esters, enol silanes, and styrenes. New more stable derivatives were introduced. Cyanobenziodoxolones (CBXs) enabled the cyanation of stabilized enolates, thiols, and radicals. Finally, new BX reagents were developed for the Umpolung of indoles and pyrroles. They could be used in metal-catalyzed directed C-H functionalizations, as well as in Lewis acid mediated oxidative coupling to give functionalized bi(hetero)arenes. In the past decade, our group and others have shown that BX reagents are not only "structural beauties", but also extremely useful reagents in synthetic chemistry. A toolbox of cyclic hypervalent iodine reagents is now available to achieve Umpolung-based disconnections. We are convinced that the field is still in its infancy, and many new reagents and transformations still remain to be discovered.
Collapse
Affiliation(s)
- Durga Prasad Hari
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC
LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | - Paola Caramenti
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC
LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC
LCSO, BCH 4306, 1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Jiang H, Studer A. Transition-Metal-Free Three-Component Radical 1,2-Amidoalkynylation of Unactivated Alkenes. Chemistry 2018; 25:516-520. [PMID: 30403422 DOI: 10.1002/chem.201805490] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Indexed: 11/10/2022]
Abstract
A transition-metal-free radical 1,2-amidoalkynylation of unactivated alkenes is presented. α-Amido-oxy acids were used as amidyl radical precursors, which were oxidized by an organic photoredox catalyst (4CzlPN). The electrophilic N-radicals chemoselectively reacted with various aliphatic alkenes and the adduct radicals were then trapped by ethynylbenziodoxolone (EBX) reagents to eventually provide the amidoalkynylation products. These transformations, which were conducted under practical and mild conditions, showed high functional group tolerance and broad substrate scope. Mechanistic studies supported the radical nature of these cascades.
Collapse
Affiliation(s)
- Heng Jiang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraß 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraß 40, 48149, Münster, Germany
| |
Collapse
|
44
|
Xiong P, Long H, Song J, Wang Y, Li JF, Xu HC. Electrochemically Enabled Carbohydroxylation of Alkenes with H 2O and Organotrifluoroborates. J Am Chem Soc 2018; 140:16387-16391. [PMID: 30384602 DOI: 10.1021/jacs.8b08592] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Unprecedented hydroxy-alkynylation and -alkenylation reactions of arylalkenes have been developed through electrochemically enabled addition of an organotrifluoroborate reagent and H2O across the double bond of the alkene. The use of electrochemistry to promote these oxidative alkene 1,2-difunctionalization reactions not only obviates the need for transition-metal catalysts and oxidizing reagents but also ensures high regio- and chemoselectivity to afford homopropargylic or homoallylic alcohols. The possibility of extending the electrochemical alkene difunctionalization strategy to other alkene carbo-heterofunctionalization reactions has been demonstrated.
Collapse
Affiliation(s)
- Peng Xiong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Innovative Collaboration Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Hao Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Innovative Collaboration Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Jinshuai Song
- Fujian Institute of Research on Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , P. R. China
| | - Yaohui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Innovative Collaboration Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Innovative Collaboration Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Innovative Collaboration Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| |
Collapse
|
45
|
Liu X, Liu R, Dai J, Cheng X, Li G. Application of Hantzsch Ester and Meyer Nitrile in Radical Alkynylation Reactions. Org Lett 2018; 20:6906-6909. [DOI: 10.1021/acs.orglett.8b03050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xu Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ruoyu Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Dai
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guigen Li
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
46
|
Abrams R, Lefebvre Q, Clayden J. Transition Metal Free Cycloamination of Prenyl Carbamates and Ureas Promoted by Aryldiazonium Salts. Angew Chem Int Ed Engl 2018; 57:13587-13591. [DOI: 10.1002/anie.201809323] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Roman Abrams
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Quentin Lefebvre
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
47
|
Abrams R, Lefebvre Q, Clayden J. Transition Metal Free Cycloamination of Prenyl Carbamates and Ureas Promoted by Aryldiazonium Salts. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roman Abrams
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Quentin Lefebvre
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
48
|
Mateu N, Kidd SL, Kalash L, Sore HF, Madin A, Bender A, Spring DR. Synthesis of Structurally Diverse N-Substituted Quaternary-Carbon-Containing Small Molecules from α,α-Disubstituted Propargyl Amino Esters. Chemistry 2018; 24:13681-13687. [PMID: 30011115 PMCID: PMC6220872 DOI: 10.1002/chem.201803143] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/11/2018] [Indexed: 12/16/2022]
Abstract
N-containing quaternary stereocenters represent important motifs in medicinal chemistry. However, due to their inherently sterically hindered nature, they remain underrepresented in small molecule screening collections. As such, the development of synthetic routes to generate small molecules that incorporate this particular feature are highly desirable. Herein, we describe the diversity-oriented synthesis (DOS) of a diverse collection of structurally distinct small molecules featuring this three-dimensional (3D) motif. The subsequent derivatisation and the stereoselective synthesis exemplified the versatility of this strategy for drug discovery and library enrichment. Chemoinformatic analysis revealed the enhanced sp3 character of the target library and demonstrated that it represents an attractive collection of biologically diverse small molecules with high scaffold diversity.
Collapse
Affiliation(s)
- Natalia Mateu
- Department of ChemistryUniversity of CambridgeLensfield RdCambridgeCB2 1EWUK
| | - Sarah L. Kidd
- Department of ChemistryUniversity of CambridgeLensfield RdCambridgeCB2 1EWUK
| | - Leen Kalash
- Department of ChemistryUniversity of CambridgeLensfield RdCambridgeCB2 1EWUK
| | - Hannah F. Sore
- Department of ChemistryUniversity of CambridgeLensfield RdCambridgeCB2 1EWUK
| | - Andrew Madin
- AstraZeneca (UK) Ltd.310 Cambridge Science Park, Milton RdCambridgeCB4 0FZUK
| | - Andreas Bender
- Department of ChemistryUniversity of CambridgeLensfield RdCambridgeCB2 1EWUK
| | - David R. Spring
- Department of ChemistryUniversity of CambridgeLensfield RdCambridgeCB2 1EWUK
| |
Collapse
|
49
|
Xu F, Shuler SA, Watson DA. Synthesis of N-H Bearing Imidazolidinones and Dihydroimidazolones Using Aza-Heck Cyclizations. Angew Chem Int Ed Engl 2018; 57:12081-12085. [PMID: 30125443 PMCID: PMC6141047 DOI: 10.1002/anie.201806295] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Indexed: 12/12/2022]
Abstract
The synthesis of unsaturated, unprotected imidazolidinones via an aza-Heck reaction is described. This palladium-catalyzed process allows for the cyclization of N-phenoxy ureas onto pendant alkenes. The reaction has broad functional group tolerance, can be applied to complex ring topologies, and can be used to directly prepare mono- and bis-unprotected imidazolidinones. By addition of Bu4 NI, dihydroimidazolones can be accessed from the same starting materials. Improved conditions for preparing unsaturated, unprotected lactams are also reported.
Collapse
Affiliation(s)
- Feiyang Xu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (USA)
| | - Scott A. Shuler
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (USA)
| | - Donald A. Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (USA)
| |
Collapse
|
50
|
Xu F, Shuler SA, Watson DA. Synthesis of N−H Bearing Imidazolidinones and Dihydroimidazolones Using Aza‐Heck Cyclizations. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Feiyang Xu
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Scott A. Shuler
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Donald A. Watson
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| |
Collapse
|