1
|
Dedushko MA, Pikul JH, Kovacs JA. Superoxide Oxidation by a Thiolate-Ligated Iron Complex and Anion Inhibition. Inorg Chem 2021; 60:7250-7261. [PMID: 33900756 DOI: 10.1021/acs.inorgchem.1c00336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Superoxide (O2•-) is a toxic radical, generated via the adventitious reduction of dioxygen (O2), which has been implicated in a number of human disease states. Nonheme iron enzymes, superoxide reductase (SOR) and superoxide dismutase (SOD), detoxify O2•- via reduction to afford H2O2 and disproportionation to afford O2 and H2O2, respectively. The former contains a thiolate in the coordination sphere, which has been proposed to prevent O2•- oxidation to O2. The work described herein shows that, in contrast to this, oxidized thiolate-ligated [FeIII(SMe2N4(tren)(THF)]2+ (1ox-THF) is capable of oxidizing O2•- to O2. Coordinating anions, Cl- and OAc-, are shown to inhibit dioxygen evolution, implicating an inner-sphere mechanism. Previously we showed that the reduced thiolate-ligated [FeII(SMe2N4(tren))]+ (1) is capable of reducing O2•- via a proton-dependent inner-sphere mechanism involving a transient Fe(III)-OOH intermediate. A transient ferric-superoxo intermediate, [FeIII(SMe2N4(tren))(O2)]+ (3), is detected by electronic absorption spectroscopy at -130 °C in the reaction between 1ox-THF and KO2 and shown to evolve O2 upon slight warming to -115 °C. The DFT calculated O-O (1.306 Å) and Fe-O (1.943 Å) bond lengths of 3 are typical of ferric-superoxo complexes, and the time-dependent DFT calculated electronic absorption spectrum of 3 reproduces the experimental spectrum. The electronic structure of 3 is shown to consist of two antiferromagnetically coupled (Jcalc = -180 cm-1) unpaired electrons, one in a superoxo π*(O-O) orbital and the other in an antibonding π*(Fe(dyz)-S(py)) orbital.
Collapse
Affiliation(s)
- Maksym A Dedushko
- The Department of Chemistry, University of Washington: Box 351700, Seattle, Washington 98195-1700, United States
| | - Jessica H Pikul
- The Department of Chemistry, University of Washington: Box 351700, Seattle, Washington 98195-1700, United States
| | - Julie A Kovacs
- The Department of Chemistry, University of Washington: Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
2
|
Chan SC, Wong CY. Recent developments in ruthenium–nitrosoarene chemistry: Unconventional synthetic strategies, new ligand designs, and exploration of ligands redox non-innocence. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
3
|
Bailey GA, Foscato M, Higman CS, Day CS, Jensen VR, Fogg DE. Bimolecular Coupling as a Vector for Decomposition of Fast-Initiating Olefin Metathesis Catalysts. J Am Chem Soc 2018; 140:6931-6944. [PMID: 29652496 DOI: 10.1021/jacs.8b02709] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The correlation between rapid initiation and rapid decomposition in olefin metathesis is probed for a series of fast-initiating, phosphine-free Ru catalysts: the Hoveyda catalyst HII, RuCl2(L)(═CHC6H4- o-O iPr); the Grela catalyst nG (a derivative of HII with a nitro group para to O iPr); the Piers catalyst PII, [RuCl2(L)(═CHPCy3)]OTf; the third-generation Grubbs catalyst GIII, RuCl2(L)(py)2(═CHPh); and dianiline catalyst DA, RuCl2(L)( o-dianiline)(═CHPh), in all of which L = H2IMes = N,N'-bis(mesityl)imidazolin-2-ylidene. Prior studies of ethylene metathesis have established that various Ru metathesis catalysts can decompose by β-elimination of propene from the metallacyclobutane intermediate RuCl2(H2IMes)(κ2-C3H6), Ru-2. The present work demonstrates that in metathesis of terminal olefins, β-elimination yields only ca. 25-40% propenes for HII, nG, PII, or DA, and none for GIII. The discrepancy is attributed to competing decomposition via bimolecular coupling of methylidene intermediate RuCl2(H2IMes)(═CH2), Ru-1. Direct evidence for methylidene coupling is presented, via the controlled decomposition of transiently stabilized adducts of Ru-1, RuCl2(H2IMes)Ln(═CH2) (Ln = py n'; n' = 1, 2, or o-dianiline). These adducts were synthesized by treating in situ-generated metallacyclobutane Ru-2 with pyridine or o-dianiline, and were isolated by precipitating at low temperature (-116 or -78 °C, respectively). On warming, both undergo methylidene coupling, liberating ethylene and forming RuCl2(H2IMes)Ln. A mechanism is proposed based on kinetic studies and molecular-level computational analysis. Bimolecular coupling emerges as an important contributor to the instability of Ru-1, and a potentially major pathway for decomposition of fast-initiating, phosphine-free metathesis catalysts.
Collapse
Affiliation(s)
- Gwendolyn A Bailey
- Center for Catalysis Research and Innovation, and Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , ON , Canada K1N 6N5
| | - Marco Foscato
- Department of Chemistry , University of Bergen , Allégaten 41 , N-5007 Bergen , Norway
| | - Carolyn S Higman
- Center for Catalysis Research and Innovation, and Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , ON , Canada K1N 6N5
| | - Craig S Day
- Center for Catalysis Research and Innovation, and Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , ON , Canada K1N 6N5
| | - Vidar R Jensen
- Department of Chemistry , University of Bergen , Allégaten 41 , N-5007 Bergen , Norway
| | - Deryn E Fogg
- Center for Catalysis Research and Innovation, and Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , ON , Canada K1N 6N5
| |
Collapse
|
4
|
Desnoyer AN, Love JA. Recent advances in well-defined, late transition metal complexes that make and/or break C-N, C-O and C-S bonds. Chem Soc Rev 2018; 46:197-238. [PMID: 27849097 DOI: 10.1039/c6cs00150e] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chemical transformations that result in either the formation or cleavage of carbon-heteroatom bonds are among the most important processes in the chemical sciences. Herein, we present a review on the reactivity of well-defined, late-transition metal complexes that result in the making and breaking of C-N, C-O and C-S bonds via fundamental organometallic reactions, i.e. oxidative addition, reductive elimination, insertion and elimination reactions. When appropriate, emphasis is placed on structural and spectroscopic characterization techniques, as well as mechanistic data.
Collapse
Affiliation(s)
- Addison N Desnoyer
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Jennifer A Love
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
5
|
Zhao C, Crimmin MR, Toste FD, Bergman RG. Ligand-based carbon-nitrogen bond forming reactions of metal dinitrosyl complexes with alkenes and their application to C-H bond functionalization. Acc Chem Res 2014; 47:517-29. [PMID: 24359109 DOI: 10.1021/ar400176x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Over the past few decades, researchers have made substantial progress in the development of transition metal complexes that activate and functionalize C-H bonds. For the most part, chemists have focused on aliphatic and aromatic C-H bonds and have put less effort into complexes that activate and functionalize vinylic C-H bonds. Our groups have recently developed a novel method to functionalize vinylic C-H bonds that takes advantage of the unique ligand-based reactivity of a rare class of metal dinitrosyl complexes. In this Account, we compare and discuss the chemistry of cobalt and ruthenium dinitrosyl complexes, emphasizing alkene binding, C-H functionalization, and catalysis. Initially discovered in the early 1970s by Brunner and studied more extensively in the 1980s by the Bergman group, the cyclopentadienylcobalt dinitrosyl complex CpCo(NO)2 reacts reversibly with alkenes to give, in many cases, stable and isolable cobalt dinitrosoalkane complexes. More recently, we found that treatment with strong bases, such as lithium hexamethyldisilazide, Verkade's base, and phosphazene bases, deprotonates these complexes and renders them nucleophilic at the carbon α to the nitroso group. This conjugate anion of metal dinitrosoalkanes can participate in conjugate addition to Michael acceptors to form new carbon-carbon bonds. These functionalized cobalt complexes can further react through alkene exchange to furnish the overall vinylic C-H functionalized organic product. This stepwise sequence of alkene binding, functionalization, and retrocycloaddition represents an overall vinylic C-H functionalization reaction of simple alkenes and does not require directing groups. We have also developed an asymmetric variant of this reaction sequence and have used this method to synthesize C1- and C2-symmetric diene ligands with high enantioinduction. Building upon these stepwise reactions, we eventually developed a simple one-pot procedure that uses stoichiometric amounts of a cobalt dinitrosoalkane complex for both inter- and intramolecular C-H functionalization. We can achieve catalysis in one-pot intramolecular reactions with a limited range of substrates. Our groups have also reported an analogous ruthenium dinitrosyl complex. In analogy to the cobalt complex, this ruthenium complex reacts with alkenes in the presence of neutral bidentate ligands, such as TMEDA, to give octahedral dinitrosoalkane complexes. Intramolecular functionalization or cyclization of numerous ruthenium dinitrosoalkane complexes proceeds under mild reaction conditions to give the functionalized organic products in excellent yields. However, despite extensive efforts, so far we have not been able to carry out intermolecular reactions of these complexes with a variety of electrophiles or C-H functionalization reactions. Although additional work is necessary to further boost the catalytic capabilities of both cobalt and ruthenium dinitrosyl complexes for vinylic C-H functionalization of simple alkenes, we believe this ligand-based vinylic C-H functionalization reaction has provided chemists with a useful set of tools for organic synthesis.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720-1460, United States
| | - Mark R. Crimmin
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720-1460, United States
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720-1460, United States
| | - Robert G. Bergman
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720-1460, United States
| |
Collapse
|
6
|
Chan SC, England J, Wieghardt K, Wong CY. Trapping of the putative 1,2-dinitrosoarene intermediate of benzofuroxan tautomerization by coordination at ruthenium and exploration of its redox non-innocence. Chem Sci 2014. [DOI: 10.1039/c4sc01185f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The N,N′-coordinated 1,2-dinitrosoarenes represent a new class of redox-active bidentate ligand.
Collapse
Affiliation(s)
- Siu-Chung Chan
- Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon, People's Republic of China
| | - Jason England
- Max-Planck-Institut für Chemische EnergieKonversion
- 45470 Mülheim an der Ruhr, Germany
| | - Karl Wieghardt
- Max-Planck-Institut für Chemische EnergieKonversion
- 45470 Mülheim an der Ruhr, Germany
| | - Chun-Yuen Wong
- Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon, People's Republic of China
| |
Collapse
|
7
|
Gallien AKE, Schaniel D, Woike T, Klüfers P. NO-binding in {Ru(NO)2}8-type [Ru(NO)2(PR3)2X]BF4 compounds. Dalton Trans 2014; 43:13278-92. [DOI: 10.1039/c4dt01506a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Electron-poor {Ru(NO)2}8-type dinitrosyls exhibit an RuII(NO+)(NO−) moiety, electron-rich entities show an Ru0(NO+)2 situation, borderline compounds show both forms as photo-excitable species.
Collapse
Affiliation(s)
| | - Dominik Schaniel
- Université de Lorraine
- Vandoeuvre les Nancy, France
- CNRS
- Vandoeuvre les Nancy, France
| | - Theo Woike
- TU Dresden
- Institut für Strukturphysik
- 01069 Dresden, Germany
| | - Peter Klüfers
- Fakultät für Chemie und Pharmazie
- 81377 Munich, Germany
| |
Collapse
|
8
|
Holloway LR, Li L. The Preparation, Structural Characteristics, and Physical Chemical Properties of Metal-Nitrosyl Complexes. STRUCTURE AND BONDING 2013; 154:53-98. [PMID: 29398732 PMCID: PMC5792085 DOI: 10.1007/430_2013_101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The preparation and characterization of a representative group of novel non-heme metal nitrosyl complexes that have been synthesized over the last decade are discussed here. Their structures are examined and classified based on metal type, the number of metal centers present, and the type of ligand that is coordinated with the metal. The ligands can be phosphorus, nitrogen, or sulfur based (with a few exceptions) and can vary depending on the presence of chelation, intermolecular forces, or the presence of other ligands. Structural and bonding characteristics are summarized and examples of reactivity regarding nitrosyl ligands are given. Some of the relevant physical chemical properties of these complexes, including IR, EPR, NMR, UV-vis, cyclic voltammetry, and X-ray crystallography are examined.
Collapse
Affiliation(s)
- Lauren R Holloway
- Department of Chemistry and Biochemistry, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| | - Lijuan Li
- Department of Chemistry and Biochemistry, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| |
Collapse
|
9
|
Abstract
The 1,2-diamine moiety is a ubiquitous structural motif present in a wealth of natural products, including non-proteinogenic amino acids and numerous alkaloids, as well as in pharmaceutical agents, chiral ligands and organic reagents. The biological activity associated with many of these systems and their chemical utility in general has ensured that the development of methods for their preparation is of critical importance. While a wide range of strategies for the preparation of 1,2-diamines have been established, the diamination of alkenes offers a particularly direct and efficient means of accessing these systems. The purpose of this review is to provide an overview of all methods of direct alkene diamination, metal-mediated or otherwise.
Collapse
Affiliation(s)
- Sam de Jong
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, 60607-7061 USA
| | - Daniel G. Nosal
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, 60607-7061 USA
| | - Duncan J. Wardrop
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, 60607-7061 USA
| |
Collapse
|
10
|
Wirth S, Barth F, Lorenz IP. 1,4-Bis(4-nitrosophenyl)piperazine: novel bridging ligand in dinuclear complexes of rhodium(iii) and iridium(iii). Dalton Trans 2012; 41:2176-86. [DOI: 10.1039/c1dt11696g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Wright AM, Wu G, Hayton TW. Late-metal nitrosyl cations: synthesis and reactivity of [Ni(NO)(MeNO2)3][PF6]. Inorg Chem 2011; 50:11746-53. [PMID: 22032412 DOI: 10.1021/ic201821t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The reaction of [NO][PF(6)] with excess Ni powder in CH(3)NO(2), in the presence of 2 mol % NiI(2), results in the formation of [Ni(NO)(CH(3)NO(2))(3)][PF(6)] (1), which can be isolated in modest yield as a blue crystalline solid. Also formed in the reaction is [Ni(CH(3)NO(2))(6)][PF(6)](2) (2), which can be isolated in comparable yield as a pale-green solid. In the solid state, 1 exhibits tetrahedral geometry about the Ni center with a linear nitrosyl ligand [Ni1-N1-O1 = 174.1(8)°] and a short Ni-N bond distance [1.626(6) Å]. As anticipated, the weakly coordinating nitromethane ligands in 1 are easily displaced by a variety of donors, including Et(2)O, MeCN, and piperidine (NC(5)H(11)). More surprisingly, the addition of mesitylene to 1 results in the formation of an η(6)-coordinated nickel arene complex, [Ni(η(6)-1,3,5-Me(3)C(6)H(3))(NO)][PF(6)] (6). In the solid state, complex 6 exhibits a long Ni-C(cent) distance [1.682(2) Å], suggesting a relatively weak Ni-arene interaction, a consequence of the strong π-back-donation to the nitrosyl ligand. The addition of anisole to 1 also results in the formation of a η(6) nickel arene complex, [Ni(η(6)-MeOC(6)H(5))(NO)][PF(6)] (7). This complex also exhibits a long Ni-C(cent) distance [1.684(1) Å].
Collapse
Affiliation(s)
- Ashley M Wright
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | | | | |
Collapse
|