1
|
Peng H, Zhao M, Liu X, Tong T, Zhang W, Gong C, Chowdhury R, Wang Q. Biomimetic Materials to Fabricate Artificial Cells. Chem Rev 2024; 124:13178-13215. [PMID: 39591535 PMCID: PMC11671219 DOI: 10.1021/acs.chemrev.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
As the foundation of life, a cell is generally considered an advanced microreactor with a complicated structure and function. Undeniably, this fascinating complexity motivates scientists to try to extricate themselves from natural living matter and work toward rebuilding artificial cells in vitro. Driven by synthetic biology and bionic technology, the research of artificial cells has gradually become a subclass. It is not only held import in many disciplines but also of great interest in its synthesis. Therefore, in this review, we have reviewed the development of cell and bionic strategies and focused on the efforts of bottom-up strategies in artificial cell construction. Different from starting with existing living organisms, we have also discussed the construction of artificial cells based on biomimetic materials, from simple cell scaffolds to multiple compartment systems, from the construction of functional modules to the simulation of crucial metabolism behaviors, or even to the biomimetic of communication networks. All of them could represent an exciting advance in the field. In addition, we will make a rough analysis of the bottlenecks in this field. Meanwhile, the future development of this field has been prospecting. This review may bridge the gap between materials engineering and life sciences, forming a theoretical basis for developing various life-inspired assembly materials.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College of Shaoxing University, 508 Huancheng Western Road, Shaoxing 312099, China
| | - Man Zhao
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenyuan Zhang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Chen Gong
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Zhang K, Zhou Y, Moreno S, Schwarz S, Boye S, Voit B, Appelhans D. Reversible crowdedness of pH-responsive and host-guest active polymersomes: Mimicking µm-sized cell structures. J Colloid Interface Sci 2024; 654:1469-1482. [PMID: 37858368 DOI: 10.1016/j.jcis.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
The structure-function characteristics of isolated artificial organelles (AOs) in protocells are mainly known, but there are few reports on clustered or aggregated AOs. To imitate µm-sized complex and heterogeneous cell structures, approaches are needed that enable reversible changes in the aggregation state of colloidal structures in response to chemical, biological, and external stimuli. To construct adaptive organelle-like or cell-like reorganization characteristics, we present an advanced crosslinking strategy to fabricate clustered polymersomes as a platform based on host-guest interactions between azobenzene-containing polymersomes (Azo-Psomes) and a β-cyclodextrin-modified polymer (β-CD polymer) as a crosslinker. First, the reversible (dis)assembly of clustered Azo-Psomes is carried out by the alternating input of crosslinker and adamantane-PEG3000 as a decrosslinker. Moreover, cluster size dependence is demonstrated by environmental pH. These offer the controlled fabrication of various homogeneous and heterogeneous Azo-Psomes structures, including the size regulation and visualization of clustered AOs through a fluorescent enzymatic cascade reaction. Finally, a temperature-sensitive crosslinking agent with β-CD units can promote the coaggregation of Azo-Psomes mediated by temperature changes. Overall, these (co-)clustered Azo-Psomes and their successful transformation in AOs may provide new features for modelling biological systems for eukaryotic cells and systems biology.
Collapse
Affiliation(s)
- Kehu Zhang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Yang Zhou
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.
| | - Simona Schwarz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.
| |
Collapse
|
3
|
Gao R, Yu X, Kumar BVVSP, Tian L. Hierarchical Structuration in Protocellular System. SMALL METHODS 2023; 7:e2300422. [PMID: 37438327 DOI: 10.1002/smtd.202300422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Indexed: 07/14/2023]
Abstract
Spatial control is one of the ubiquitous features in biological systems and the key to the functional complexity of living cells. The strategies to achieve such precise spatial control in protocellular systems are crucial to constructing complex artificial living systems with functional collective behavior. Herein, the authors review recent advances in the spatial control within a single protocell or between different protocells and discuss how such hierarchical structured protocellular system can be used to understand complex living systems or to advance the development of functional microreactors with the programmable release of various biomacromolecular payloads, or smart protocell-biological cell hybrid system.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinran Yu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Ultrasound, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
4
|
Wang X, Qiao X, Chen H, Wang L, Liu X, Huang X. Synthetic-Cell-Based Multi-Compartmentalized Hierarchical Systems. SMALL METHODS 2023; 7:e2201712. [PMID: 37069779 DOI: 10.1002/smtd.202201712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In the extant lifeforms, the self-sustaining behaviors refer to various well-organized biochemical reactions in spatial confinement, which rely on compartmentalization to integrate and coordinate the molecularly crowded intracellular environment and complicated reaction networks in living/synthetic cells. Therefore, the biological phenomenon of compartmentalization has become an essential theme in the field of synthetic cell engineering. Recent progress in the state-of-the-art of synthetic cells has indicated that multi-compartmentalized synthetic cells should be developed to obtain more advanced structures and functions. Herein, two ways of developing multi-compartmentalized hierarchical systems, namely interior compartmentalization of synthetic cells (organelles) and integration of synthetic cell communities (synthetic tissues), are summarized. Examples are provided for different construction strategies employed in the above-mentioned engineering ways, including spontaneous compartmentalization in vesicles, host-guest nesting, phase separation mediated multiphase, adhesion-mediated assembly, programmed arrays, and 3D printing. Apart from exhibiting advanced structures and functions, synthetic cells are also applied as biomimetic materials. Finally, key challenges and future directions regarding the development of multi-compartmentalized hierarchical systems are summarized; these are expected to lay the foundation for the creation of a "living" synthetic cell as well as provide a larger platform for developing new biomimetic materials in the future.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
5
|
Yasen W, Li B, Aini A, Li Z, Su Y, Zhou L, Guo D, Qian Q, Chen D, Zhu X, Dong R. Visible Light-Guided Gene Delivery with Nonviral Supramolecular Block Copolymer Vectors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41817-41827. [PMID: 37622994 DOI: 10.1021/acsami.3c06170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
To achieve efficient gene delivery in vitro or in vivo, nonviral vectors should have excellent biostability across cellular and tissue barriers and also smart stimuli responsiveness toward controlled release of therapeutic genes into the cell nucleus. However, it remains a key challenge to effectively combine the biostability of covalent polymers with the stimuli responsiveness of noncovalent polymers into one nonviral vehicle. In this work, we report the construction of a kind of cationic supramolecular block copolymers (SBCs) through noncovalent polymerization of β-cyclodextrin/azobenzene-terminated pentaethylenehexamine (DMA-Azo-PEHA-β-CD) in aqueous media using β-CD-monosubstituted poly(ethylene glycol) (PEG-β-CD) as a supramolecular initiator. The resultant SBC exhibits superior biostability, biocompatibility, and light/pH dual-responsive characteristics, and it also demonstrates efficient plasmid DNA condensation capacity and the ability to rapidly release plasmid DNA into cells driven by visible light (450 nm). Eventually, this SBC-based delivery system demonstrates visible light-induced enhancement of gene delivery in both COS-7 and HeLa cells. We anticipate that this work provides a facile and robust strategy to enhance gene delivery in vitro or in vivo via visible light-guided manipulation of genes, further achieving safe, highly efficient, targeting gene therapy for cancer.
Collapse
Affiliation(s)
- Wumaier Yasen
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Bei Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aliya Aini
- College of Foreign Languages, The University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Ziying Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Su
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linzhu Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongbo Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dong Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyuan Zhu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruijiao Dong
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Wang X, Huang Y, Ren Y, Wang S, Li J, Lin Y, Chen H, Wang L, Huang X. Biotic communities inspired proteinosome-based aggregation for enhancing utilization rate of enzyme. J Colloid Interface Sci 2023; 635:456-465. [PMID: 36599243 DOI: 10.1016/j.jcis.2022.12.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Compared with the individuals, the collective behavior of biotic communities could show certain superior characteristics. Inspired by this idea and based on the conjugation between phenylboronic acid-grafted mesoporous silica nanoparticles and the polysaccharide functionalized membrane of proteinosomes, a type of proteinosomes-based aggregations was constructed. We demonstrated the emergent characteristics of proteinosomes aggregations including accelerated settling velocity and population surviving by sacrificing outside members for the inside. Moreover, this kind of "hand in hand" architecture provided the proteinosomes aggregations with the characteristic of resistance to the negative pressure phagocytosis of micropipette, as well as enhancing utilization rate of the encapsulated enzymes. Overall, it is anticipated that the construction and application of proteinosomes aggregations could contribute to advance the functionality of life-like assembled biomaterial in another way.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yu Ren
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shengliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
7
|
Rasel MSI, Mohona FA, Akter W, Kabir S, Chowdhury AA, Chowdhury JA, Hassan MA, Al Mamun A, Ghose DK, Ahmad Z, Khan FS, Bari MF, Rahman MS, Amran MS. Exploration of Site-Specific Drug Targeting-A Review on EPR-, Stimuli-, Chemical-, and Receptor-Based Approaches as Potential Drug Targeting Methods in Cancer Treatment. JOURNAL OF ONCOLOGY 2022; 2022:9396760. [PMID: 36284633 PMCID: PMC9588330 DOI: 10.1155/2022/9396760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Cancer has been one of the most dominant causes of mortality globally over the last few decades. In cancer treatment, the selective targeting of tumor cells is indispensable, making it a better replacement for conventional chemotherapies by diminishing their adverse side effects. While designing a drug to be delivered selectively in the target organ, the drug development scientists should focus on various factors such as the type of cancer they are dealing with according to which drug, targeting moieties, and pharmaceutical carriers should be targeted. All published articles have been collected regarding cancer and drug-targeting approaches from well reputed databases including MEDLINE, Embase, Cochrane Library, CENTRAL and ClinicalTrials.gov, Science Direct, PubMed, Scopus, Wiley, and Springer. The articles published between January 2010 and December 2020 were considered. Due to the existence of various mechanisms, it is challenging to choose which one is appropriate for a specific case. Moreover, a combination of more than one approach is often utilized to achieve optimal drug effects. In this review, we have summarized and highlighted central mechanisms of how the targeted drug delivery system works in the specific diseased microenvironment, along with the strategies to make an approach more effective. We have also included some pictorial illustrations to have a precise idea about different types of drug targeting. The core contribution of this work includes providing a cancer drug development scientist with a broad preliminary idea to choose the appropriate approach among the various targeted drug delivery mechanisms. Also, the study will contribute to improving anticancer treatment approaches by providing a pathway for lesser side effects observed in conventional chemotherapeutic techniques.
Collapse
Affiliation(s)
- Md. Shamiul Islam Rasel
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Farhana Afrin Mohona
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Wahida Akter
- College of Pharmacy, University of Houston, Houston, USA
| | - Shaila Kabir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Abu Asad Chowdhury
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Jakir Ahmed Chowdhury
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Md. Abul Hassan
- Department of Science & Technology, Tokushima University Graduate School, Tokushima, Japan
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Dipayon Krisna Ghose
- Department of Biochemistry and Molecular Biology, Jagannath University, Dhaka 1100, Bangladesh
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia
- Department of Biology, College of Arts and Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Department of Biology, College of Arts and Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Md. Fazlul Bari
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| |
Collapse
|
8
|
Wang P, Moreno S, Janke A, Boye S, Wang D, Schwarz S, Voit B, Appelhans D. Probing Crowdedness of Artificial Organelles by Clustering Polymersomes for Spatially Controlled and pH-Triggered Enzymatic Reactions. Biomacromolecules 2022; 23:3648-3662. [PMID: 35981858 DOI: 10.1021/acs.biomac.2c00546] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most sophisticated biological functions and features of cells are based on self-organization, and the coordination and connection between their cell organelles determines their key functions. Therefore, spatially ordered and controllable self-assembly of polymersomes to construct clusters to simulate complex intracellular biological functions has attracted widespread attention. Here, we present a simple one-step copper-free click strategy to cross-link nanoscale pH-responsive and photo-cross-linked polymersomes (less than 100 nm) to micron-level clusters (more than 90% in 0.5-2 μm range). Various influencing factors in the clustering process and subsequent purification methods were studied to obtain optimal clustered polymeric vesicles. Even when polymeric vesicles separately loaded with different enzymes (glucose oxidase and myoglobin) are coclustered, the overall permeability of the clusters can still be regulated through tuning the pH values on demand. Compared with simple blending of those enzyme-loaded polymersomes, the rate of enzymatic cascade reaction increased significantly due to the interconnected complex microstructure established. The connection of catalytic nanocompartments into clusters confining different enzymes of a cascade reaction provides an excellent platform for the development of artificial systems mimicking natural organelles or cells.
Collapse
Affiliation(s)
- Peng Wang
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany.,Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Silvia Moreno
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Andreas Janke
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Susanne Boye
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Dishi Wang
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany.,Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Simona Schwarz
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany.,Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute for Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| |
Collapse
|
9
|
Li C, Zhang X, Yang B, Wei F, Ren Y, Mu W, Han X. Reversible Deformation of Artificial Cell Colonies Triggered by Actin Polymerization for Muscle Behavior Mimicry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204039. [PMID: 35765153 DOI: 10.1002/adma.202204039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The use of artificial cells to mimic living tissues is beneficial for understanding the mechanism of interaction among cells. Artificial cells hold immense potential in the field of tissue engineering. Self-powered artificial cells capable of reversible deformation are developed by encapsulating living mitochondria, actins, and methylcellulose. Upon addition of pyruvate molecules, the mitochondria produce adenosine triphosphate (ATP), which acts as an energy source to trigger actin polymerization. The reversible deformation of artificial cells occurs with a spindle shape resulting from the polymerization of actins to form filaments adjacent to the lipid bilayer that subsequently returns to a spherical shape resulting from the depolymerization of actin filaments upon laser irradiation. The linear colonies composed of these artificial cells exhibit collective contraction and relaxation to mimic muscle tissues. At maximum contraction, the long axis of each giant unilamellar vesicle (GUV) is parallel to each other. All the colonies are synchronized in the contraction phase. The deformation of each GUV in the colonies is influenced by its adjacent GUVs. The muscle-like artificial cell colonies described here pave the way to develop sustainably self-powered artificial tissues.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Xiangxiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Boyu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Feng Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Yongshuo Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| |
Collapse
|
10
|
Song X, Zhu X, Yao H, Shang W, Du C, Lu W, Liu M, Tian W. Topological-skeleton controlled chirality expression of supramolecular hyperbranched and linear polymers. FUNDAMENTAL RESEARCH 2022; 2:422-428. [PMID: 38933405 PMCID: PMC11197627 DOI: 10.1016/j.fmre.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022] Open
Abstract
The topology of polymers plays an essential role in their chemical, physical and biological properties. However, their effects on chirality-related functions remain unclear. Here, we reported the topology-controlled chirality expression in the chiral supramolecular system for the first time. Two topological supramolecular polymers, hyperbranched (HP) and linear (LP) supramolecular polymers produced by the host-guest interactions of branched and linear monomers, respectively, exhibited completely different chirality expressions despite the same molecular chirality of their monomers. Significantly, due to the branch points and strong steric hindrance existing in HP, cis-HP showed an enhanced and sign-inverted Cotton effect in the n-π* bands compared with cis-LP, as a result that the distinctive chirality induction and transfer were controlled by the topological skeletons. This topology-controlled chirality induction and transfer in the photoswitchable supramolecular polymers not only enables us to elucidate the in-depth effects of topology on the chiral expression in biopolymers but also inspires the design of chiroptical and bioinspired materials.
Collapse
Affiliation(s)
- Xin Song
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Hao Yao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- School of Civil Engineering, Central South University, Changsha 410075, China
| | - Weili Shang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Cong Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Wensheng Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
11
|
Yu SS, Xu CY, Pan X, Pan XQ, Duan HB, Zhang H. Multifunctional Chiral Three-Dimensional Phosphite Frameworks Showing Dielectric Anomaly and High Proton Conductivity. Front Chem 2021; 9:778687. [PMID: 34957046 PMCID: PMC8695548 DOI: 10.3389/fchem.2021.778687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Chair 3D Co(II) phosphite frameworks have been prepared by the ionothermal method. It belongs to chiral space group P3221, and the whole framework can be topologically represented as a chiral 4-connected qtz net. It shows a multistep dielectric response arising from the reorientation of Me2-DABCO in the chiral cavities. It can also serve as a pron conductor with high conductivity, 1.71 × 10-3 S cm-1, at room temperature, which is attributed to the formation of denser hydrogen-bonding networks providing efficient proton-transfer pathways.
Collapse
Affiliation(s)
- S S Yu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| | - C Y Xu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| | - X Pan
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| | - X Q Pan
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| | - H B Duan
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| | - H Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China.,Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
12
|
Wang X, Tian L, Ren Y, Zhao Z, Du H, Zhang Z, Drinkwater BW, Mann S, Han X. Chemical Information Exchange in Organized Protocells and Natural Cell Assemblies with Controllable Spatial Positions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906394. [PMID: 32105404 DOI: 10.1002/smll.201906394] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/12/2020] [Indexed: 06/10/2023]
Abstract
An ultrasound-based platform is established to prepare homogenous arrays of giant unilamellar vesicles (GUVs) or red blood cell (RBCs), or hybrid assemblies of GUV/RBCs. Due to different responses to the modulation of the acoustic standing wave pressure field between the GUVs and RBCs, various types of protocell/natural cell hybrid assemblies are prepared with the ability to undergo reversible dynamic reconfigurations from vertical to horizontal alignments, or from 1D to 2D arrangements. A two-step enzymatic cascade reaction between transmitter glucose oxidase-containing GUVs and peroxidase-active receiver RBCs is used to implement chemical signal transduction in the different hybrid micro-arrays. Taken together, the obtained results suggest that the ultrasound-based micro-array technology can be used as an alternative platform to explore chemical communication pathways between protocells and natural cells, providing new opportunities for bottom-up synthetic biology.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Liangfei Tian
- Faculty of Engineering, Queens Building, University of Bristol, Bristol, BS8 1TR, UK
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Yongshuo Ren
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhongyang Zhao
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shandong Province, Weihai, 264209, China
| | - Zhizhou Zhang
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shandong Province, Weihai, 264209, China
| | - Bruce W Drinkwater
- Faculty of Engineering, Queens Building, University of Bristol, Bristol, BS8 1TR, UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
13
|
Nabeel F, Rasheed T, Mahmood MF, Khan SUD. Hyperbranched copolymer based photoluminescent vesicular probe conjugated with tetraphenylethene: Synthesis, aggregation-induced emission and explosive detection. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Nabeel F, Rasheed T. Rhodol-conjugated polymersome sensor for visual and highly-sensitive detection of hydrazine in aqueous media. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121757. [PMID: 31818652 DOI: 10.1016/j.jhazmat.2019.121757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Hydrazine is a hazardous environmental pollutant, which contaminates land, air and water posturing a severe risk to human health. For the first-hand estimation, a qualitative approach (colorimetric) for recognition of hydrazine could suffice. However, for accurate measurement, under the threshold limit value (TLV), a quantitative technique is desired. We report the polymersome-based sensor for visual detection and quantification of hydrazine in water. The rhodol-functionalized amphiphilic hyperbranched multiarm copolymer (HSP-RDL) was self-assembled into vesicles. The HSP-RDL vesicle probe exhibited high sensitivity and selectivity for hydrazine recognition in presence of various competitive species such as cations, anions, and neutral species. The fast responsive pink color change from colorless could be visualized with naked eye due to spirolactone ring opening by hydrazinolysis triggered strong fluorescence emission. The vesicle probe could detect hydrazine in water with a limit of detection (LOD) value of 2 nM (0.0652 ppb), which is lower than TLV (10 ppb) given by USEPA (United States Environmental Protection Agency). Furthermore, the vesicle probe could quantify hydrazine (recovery ≥ 99 %) in a wastewater sample collected from Huangpu river. The membrane-permeable characteristics of HSP-RDL led hydrazine detection in live cells through confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Faran Nabeel
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 2020; 10:4557-4588. [PMID: 32292515 PMCID: PMC7150471 DOI: 10.7150/thno.38069] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/24/2020] [Indexed: 02/05/2023] Open
Abstract
In recent years, much progress has been motivated in stimuli-responsive nanocarriers, which could response to the intrinsic physicochemical and pathological factors in diseased regions to increase the specificity of drug delivery. Currently, numerous nanocarriers have been engineered with physicochemical changes in responding to external stimuli, such as ultrasound, thermal, light and magnetic field, as well as internal stimuli, including pH, redox potential, hypoxia and enzyme, etc. Nanocarriers could respond to stimuli in tumor microenvironments or inside cancer cells for on-demanded drug delivery and accumulation, controlled drug release, activation of bioactive compounds, probes and targeting ligands, as well as size, charge and conformation conversion, etc., leading to sensing and signaling, overcoming multidrug resistance, accurate diagnosis and precision therapy. This review has summarized the general strategies of developing stimuli-responsive nanocarriers and recent advances, presented their applications in drug delivery, tumor imaging, therapy and theranostics, illustrated the progress of clinical translation and made prospects.
Collapse
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, 610041, China
| |
Collapse
|
16
|
Programmed magnetic manipulation of vesicles into spatially coded prototissue architectures arrays. Nat Commun 2020; 11:232. [PMID: 31932592 PMCID: PMC6957477 DOI: 10.1038/s41467-019-14141-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/11/2019] [Indexed: 11/14/2022] Open
Abstract
In nature, cells self-assemble into spatially coded tissular configurations to execute higher-order biological functions as a collective. This mechanism has stimulated the recent trend in synthetic biology to construct tissue-like assemblies from protocell entities, with the aim to understand the evolution mechanism of multicellular mechanisms, create smart materials or devices, and engineer tissue-like biomedical implant. However, the formation of spatially coded and communicating micro-architectures from large quantity of protocell entities, especially for lipid vesicle-based systems that mostly resemble cells, is still challenging. Herein, we magnetically assemble giant unilamellar vesicles (GUVs) or cells into various microstructures with spatially coded configurations and spatialized cascade biochemical reactions using a stainless steel mesh. GUVs in these tissue-like aggregates exhibit uncustomary osmotic stability that cannot be achieved by individual GUVs suspensions. This work provides a versatile and cost-effective strategy to form robust tissue-mimics and indicates a possible superiority of protocell colonies to individual protocells. To execute higher-order functions, cells self-assemble into spatially coded tissue configurations. Here the authors magnetically assembly giant unilamellar vesicles into three dimensional tissue-mimic structures with collective osmotic stability.
Collapse
|
17
|
Lin W, Pan M, Xiao Q, Li H, Wang C. Tuning the Capture of CO 2 through Entropic Effect Induced by Reversible Trans-Cis Isomerization of Light-Responsive Ionic Liquids. J Phys Chem Lett 2019; 10:3346-3351. [PMID: 31150577 DOI: 10.1021/acs.jpclett.9b01023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite a great deal of gas capture strategies based on ionic liquids, reversible tuning of gas absorption by pure ionic liquids using light irradiation has never been reported. Herein, we demonstrate a novel strategy for tuning the capture of CO2 by light-responsive ionic liquids through reversible trans-cis isomerization. These light-responsive ionic liquids were constructed by tailoring the azobenzene group to the cationic moiety, which exhibited different CO2 absorption ability before and after ultraviolet (UV) irradiation. Through a combination of absorption experiments, NMR spectroscopy, differential scanning calorimetry analysis, viscosity measurement, and quantum chemical calculations, the results indicated that the significant difference in CO2 absorption capacity originated from the entropic effect, which was induced by the change in the aggregation state during trans-cis isomerization. This reversible isomerization of ionic liquids upon alternating irradiation of UV light and blue light shows the potential to control the capture and release of CO2 in an energy-saving way.
Collapse
Affiliation(s)
- Wenjun Lin
- Department of Chemistry, ZJU-NHU United R&D Center , Zhejiang University , Hangzhou 310027 , China
| | - Mingguang Pan
- Department of Chemistry, ZJU-NHU United R&D Center , Zhejiang University , Hangzhou 310027 , China
| | - Qiaoxin Xiao
- Department of Chemistry, ZJU-NHU United R&D Center , Zhejiang University , Hangzhou 310027 , China
| | - Haoran Li
- Department of Chemistry, ZJU-NHU United R&D Center , Zhejiang University , Hangzhou 310027 , China
| | - Congmin Wang
- Department of Chemistry, ZJU-NHU United R&D Center , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
18
|
Yu G, Chen X. Host-Guest Chemistry in Supramolecular Theranostics. Theranostics 2019; 9:3041-3074. [PMID: 31244941 PMCID: PMC6567976 DOI: 10.7150/thno.31653] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
Macrocyclic hosts, such as cyclodextrins, calixarenes, cucurbiturils, and pillararenes, exhibit unparalleled advantages in disease diagnosis and therapy over the past years by fully taking advantage of their host-guest molecular recognitions. The dynamic nature of the non-covalent interactions and selective host-guest complexation endow the resultant nanomaterials with intriguing properties, holding promising potentials in theranostic fields. Interestingly, the differences in microenvironment between the abnormal and normal cells/tissues can be employed as the stimuli to modulate the host-guest interactions, realizing the purpose of precise diagnosis and specific delivery of drugs to lesion sites. In this review, we summarize the progress of supramolecular theranostics on the basis of host-guest chemistry benefiting from their fantastic topological structures and outstanding supramolecular chemistry. These state-of-the-art examples provide new methodologies to overcome the obstacles faced by the traditional theranostic systems, promoting their clinical translations.
Collapse
Affiliation(s)
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
19
|
Jin H, Jian T, Ding YH, Chen Y, Mu P, Wang L, Chen CL. Solid-phase synthesis of three-armed star-shaped peptoids and their hierarchical self-assembly. Biopolymers 2019; 110:e23258. [PMID: 30676654 DOI: 10.1002/bip.23258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/19/2022]
Abstract
Due to the branched structure feature and unique properties, a variety of star-shaped polymers have been designed and synthesized. Despite those advances, solid-phase synthesis of star-shaped sequence-defined synthetic polymers that exhibit hierarchical self-assembly remains a significant challenge. Hence, we present an effective strategy for the solid-phase synthesis of three-armed star-shaped peptoids, in which ethylenediamine was used as the centric star pivot. Based on the sequence of monomer addition, a series of AA'A''-type and ABB'-type peptoids were synthesized and characterized by UPLC-MS (ultrahigh performance liquid chromatography-mass spectrometry). By taking advantage of the easy-synthesis and large side-chain diversity, we synthesized star-shaped peptoids with tunable functions. We further demonstrated the aqueous self-assembly of some representative peptoids into biomimetic nanomaterials with well-defined hierarchical structures, such as nanofibers and nanotubes. These results indicate that star-shaped peptoids offer the potential in self-assembly of biomimetic nanomaterials with tunable chemistries and functions.
Collapse
Affiliation(s)
- Haibao Jin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Western Australia
| | - Tengyue Jian
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Western Australia
| | - Yan-Huai Ding
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Western Australia
- Institute of Rheological Mechanics, Xiangtan University, Xiangtan, Hunan, China
| | - Yulin Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Western Australia
| | - Peng Mu
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Western Australia
- Department of Mechanical Engineering and Materials Science and Engineering Program, State University of New York, Binghamton, New York
| | - Lei Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Western Australia
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Western Australia
| |
Collapse
|
20
|
Liu Y, Shi K, Ma D. Water-Soluble Pillar[n]arene Mediated Supramolecular Self-Assembly: Multi-Dimensional Morphology Controlled by Host Size. Chem Asian J 2019; 14:307-312. [PMID: 30520241 DOI: 10.1002/asia.201801705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 11/08/2022]
Abstract
We report tunable supramolecular self-assemblies formed by water-soluble pillar[n]arenes (WPns, n=5-7) and bipyridinium-azobenzene guests. Nanoscale or microscale morphology of self-assemblies in water was controlled by the host size of WPn. Supramolecular self-assemblies could undergo morphology conversion under irradiation with UV light.
Collapse
Affiliation(s)
- Yamin Liu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Kejia Shi
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Da Ma
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| |
Collapse
|
21
|
Du G, Lou L, Guan S, Peng Y, Qiao H, Liu P, Wu D. Controllable and large-scale supramolecular vesicle aggregation: orthogonal light-responsive host–guest and metal–ligand interactions. J Mater Chem B 2019. [DOI: 10.1039/c9tb00693a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
On the basis of the host–guest molecular recognition interaction between β-cyclodextrin and azobenzene, two kinds of supramolecular self-assemblies (Py-CD⊃Azo-C and Py-CD⊃Azo-C3) were constructed.
Collapse
Affiliation(s)
- Guangyan Du
- College of Materials Science and Engineering
- Zhejiang University of Technology
- Hangzhou City 310014
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Lingyun Lou
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu City 610500
- P. R. China
| | - Shuwen Guan
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu City 610500
- P. R. China
| | - Yuanyuan Peng
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu City 610500
- P. R. China
| | - Hongwei Qiao
- Shandong Tengxi New Materials Co., Ltd
- Taian City 271000
- P. R. China
| | - Pingli Liu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation
- Southwest Petroleum University
- Chengdu City 610500
- P. R. China
| | - Dan Wu
- College of Materials Science and Engineering
- Zhejiang University of Technology
- Hangzhou City 310014
- P. R. China
| |
Collapse
|
22
|
Gobbo P, Patil AJ, Li M, Harniman R, Briscoe WH, Mann S. Programmed assembly of synthetic protocells into thermoresponsive prototissues. NATURE MATERIALS 2018; 17:1145-1153. [PMID: 30297813 DOI: 10.1038/s41563-018-0183-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Although several new types of synthetic cell-like entities are now available, their structural integration into spatially interlinked prototissues that communicate and display coordinated functions remains a considerable challenge. Here we describe the programmed assembly of synthetic prototissue constructs based on the bio-orthogonal adhesion of a spatially confined binary community of protein-polymer protocells, termed proteinosomes. The thermoresponsive properties of the interlinked proteinosomes are used collectively to generate prototissue spheroids capable of reversible contractions that can be enzymatically modulated and exploited for mechanochemical transduction. Overall, our methodology opens up a route to the fabrication of artificial tissue-like materials capable of collective behaviours, and addresses important emerging challenges in bottom-up synthetic biology and bioinspired engineering.
Collapse
Affiliation(s)
- Pierangelo Gobbo
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Avinash J Patil
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Robert Harniman
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Wuge H Briscoe
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
23
|
Abstract
A series of secondary amine-modified cyclodextrin (CD) derivatives was synthesized with diverse exterior terminal groups (i.e., hydroxyl, methyl, methoxyl, and primary amine). Subsequent reaction with nitric oxide (NO) gas under alkaline conditions yielded N-diazeniumdiolate-modified CD derivatives. Adjustable NO payloads (0.6-2.4 μmol/mg) and release half-lives (0.7-4.2 h) were achieved by regulating both the amount of secondary amine precursors and the functional groups around the NO donors. The bactericidal action of these NO-releasing cyclodextrin derivatives was evaluated against Pseudomonas aeruginosa, a Gram-negative pathogen, with antibacterial activity proving dependent on both the NO payload and exterior modification. Materials containing a high density of NO donors or primary amines exhibited the greatest ability to eradicate P. aeruginosa. Of the materials prepared, only the primary amine-terminated heptasubstituted CD derivatives exhibited toxicity against mammalian L929 mouse fibroblast cells. The NO donor-modified CD was also capable of delivering promethazine, a hydrophobic drug, thus demonstrating potential as a dual-drug-releasing therapeutic.
Collapse
Affiliation(s)
- Haibao Jin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lei Yang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mona Jasmine R. Ahonen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
24
|
Ye Q, Huo M, Zeng M, Liu L, Peng L, Wang X, Yuan J. Photoinduced Reversible Worm-to-Vesicle Transformation of Azo-Containing Block Copolymer Assemblies Prepared by Polymerization-Induced Self-Assembly. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00340] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qiquan Ye
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Meng Huo
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Liao Peng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaosong Wang
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON N2L 3G1, Canada
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
25
|
Sun P, Wu A, Sun N, Qiao X, Shi L, Zheng L. Multiple-Responsive Hierarchical Self-Assemblies of a Smart Supramolecular Complex: Regulation of Noncovalent Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2791-2799. [PMID: 29397743 DOI: 10.1021/acs.langmuir.7b03900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We herein report a smart amphiphilic supramolecular complex ([MimA-EDA-MimA]@[DBS]2) with stimuli-responsive self-assembly, constructed by 3-(3-formyl-4-hydroxybenzyl)-1-methylimidazolium chloride (MimACl), sodium dodecyl benzene sulfonate (SDBS), and ethylenediamine (EDA). The self-assembly of [MimA-EDA-MimA]@[DBS]2 shows triple-sensitivities in response to pH, concentration, and salt. At a low pH, only micelles are formed, which can transform into vesicles spontaneously when the pH increases to 11.8. Vesicles can gradually fuse into vesicle clusters and elongated assemblies with increasing concentration of [MimA-EDA-MimA]@[DBS]2. Chainlike aggregates, ringlike aggregates, or giant vesicles can be formed by adding inorganic salts (i.e., NaCl and NaNO3), which could be derived from the membrane fusion of vesicles. The noncovalent interactions, including π-π stacking, hydrogen bonding, and electrostatic interactions, were found to be responsible for the topology evolution of assemblies. Thus, it provides an opportunity to construct smart materials through the regulation of the role of noncovalent interactions in self-assembly.
Collapse
Affiliation(s)
- Panpan Sun
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education , Jinan 250100, China
| | - Aoli Wu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education , Jinan 250100, China
| | - Na Sun
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education , Jinan 250100, China
| | - Xuanxuan Qiao
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education , Jinan 250100, China
| | - Lijuan Shi
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology , Taiyuan 030024, China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education , Jinan 250100, China
| |
Collapse
|
26
|
Eghtesadi SA, Kashfipour MA, Sun X, Zhang W, Lillard RS, Cheng SZD, Liu T. Hierarchical self-assembly of zwitterionic dendrimer-anionic surfactant complexes into multiple stimuli-responsive dynamic nanotubes. NANOSCALE 2018; 10:1411-1419. [PMID: 29302659 DOI: 10.1039/c7nr07950h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Zwitterionic materials attract a wide range of attention due to their unique molecular structures and properties, which make them an interesting candidate to solve multiple problems e.g. in biological and industrial applications. Here, we show that the incorporation of zwitterions into supramolecular assemblies of ionic building blocks can be an effective way to design responsive nanostructures with well-defined morphologies. We report the hierarchical assembly of stimuli-responsive nanotubes with tunable diameters in aqueous solutions via the selective attachment of anionic surfactants to dendrimers with uniquely engineered zwitterionic peripheries. We found that the packing number of the dendrimer-surfactant hybrids can be reversibly controlled, which will trigger their assembly into tubular-like structures. These tubes can grow up to the micro-scale, their diameter is responsive to the ionic strength of the solution, and they can reversibly assemble/disassemble with a change in pH. To the best of our knowledge, this is the first example of dynamic nanotubes formed through controlled ionic interactions involving zwitterionic dendrimers in solution. This not only provides a bottom-up method to make stimuli responsive and dynamic tubes but also introduce a pathway to design complicated nanostructures by controlling the electrostatic interactions of building blocks using zwitterionic functionalities.
Collapse
Affiliation(s)
- Seyed Ali Eghtesadi
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Border SE, Pavlović RZ, Zhiquan L, Badjić JD. Removal of Nerve Agent Simulants from Water Using Light-Responsive Molecular Baskets. J Am Chem Soc 2017; 139:18496-18499. [PMID: 29215276 DOI: 10.1021/jacs.7b11960] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sarah E. Border
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Radoslav Z. Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Lei Zhiquan
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
28
|
Samanta K, Zellermann E, Zähres M, Mayer C, Schmuck C. An inverted supramolecular amphiphile and its step-wise self-assembly into vesicular networks. SOFT MATTER 2017; 13:8108-8112. [PMID: 29075711 DOI: 10.1039/c7sm01641g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A host-guest interaction between a multi-cationic dendrimer 1 functionalized with 16 guanidiniocarbonyl pyrrole (GCP) groups on its surface and naphthalene diimide dicarboxylic acid (NDIDC) in a 1 : 8 ratio leads to the formation of a new type of inverted amphiphile. This amphiphile further self-assembles in a step-wise manner first into reverse micelles and then into reverse vesicles, which adhere to form an extensive 3D network several micrometers in length. Self-assembly is based on the aromatic stacking interactions of the surface-bound NDIDC. Furthermore, these aggregates only form at neutral pH but not in acidic or basic solutions in which no ion pairing between 1 and NDIDC is possible. The step-wise self-assembly process of the inverted amphiphile which follows a theoretical prediction recently proposed for hyperbranched polymers was studied and visualized in detail using atomic force microscopy (AFM) and transmission electron microscopy (TEM).
Collapse
Affiliation(s)
- Krishnananda Samanta
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitaetsstrasse 7, 45141 Essen, Germany.
| | | | | | | | | |
Collapse
|
29
|
Lin W, Zhou X, Cai J, Chen K, He X, Kong X, Li H, Wang C. Anion-Functionalized Pillararenes for Efficient Sulfur Dioxide Capture: Significant Effect of the Anion and the Cavity. Chemistry 2017; 23:14143-14148. [DOI: 10.1002/chem.201703007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Wenjun Lin
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P.R. China
| | - Xiuyuan Zhou
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P.R. China
| | - Jingsong Cai
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P.R. China
| | - Kaihong Chen
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P.R. China
| | - Xi He
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P.R. China
| | - Xueqian Kong
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P.R. China
| | - Haoran Li
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P.R. China
| | - Congmin Wang
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P.R. China
| |
Collapse
|
30
|
Wang G, Peng Y, Lou L, Xing P, Du G. Selective vesicle aggregation achieved via the self-assembly of terpyridine-based building blocks. SOFT MATTER 2017; 13:3847-3852. [PMID: 28492660 DOI: 10.1039/c7sm00504k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, we report the self-assembly of a mono terpyridine-based building block modified with long alkyl chains, which gives rise to vesicular aggregates in aqueous media. The vesicles are responsive to transition metal ions, and form different kinds of aggregates after metal-ligand coordination. In particular, Ni(ii) shows a unique influence on morphological transitions, whereby vesicles aggregate and fuse upon the addition of Ni(ii) ions. Spectroscopic and morphological studies are highlighted in this work. Furthermore, the formed vesicles could behave as a matrix for encapsulating fluorescent dyes with similar molecular structure via co-assembly, enabling more accurate observation of vesicle aggregation via confocal laser scanning techniques.
Collapse
Affiliation(s)
- Guiping Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No. 8 Xindu Avenue, Xindu District, Chengdu City, Sichuan Province 610500, People's Republic of China.
| | | | | | | | | |
Collapse
|
31
|
Zhang L, Lu Q, Lv X, Shen L, Zhang B, An Z. In Situ Cross-Linking as a Platform for the Synthesis of Triblock Copolymer Vesicles with Diverse Surface Chemistry and Enhanced Stability via RAFT Dispersion Polymerization. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02651] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ling Zhang
- Institute of Nanochemistry and Nanobiology,
College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qunzan Lu
- Institute of Nanochemistry and Nanobiology,
College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoqing Lv
- Institute of Nanochemistry and Nanobiology,
College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liangliang Shen
- Institute of Nanochemistry and Nanobiology,
College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Baohua Zhang
- Institute of Nanochemistry and Nanobiology,
College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology,
College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
32
|
Li H, Liu Y, Huang T, Qi M, Ni Y, Wang J, Zheng Y, Zhou Y, Yan D. Construction of Light-Harvesting Polymeric Vesicles in Aqueous Solution with Spatially Separated Donors and Acceptors. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 01/24/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Huimei Li
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yannan Liu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Tong Huang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Meiwei Qi
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yunzhou Ni
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Jie Wang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yongli Zheng
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
33
|
Abstract
This feature article presents a systematic summary of the synthesis strategies including direct and indirect approaches for obtaining supramolecular hyperbranched polymers (SHPs).
Collapse
Affiliation(s)
- Wei Tian
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Xuexiang Li
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Jingxia Wang
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| |
Collapse
|
34
|
Liu J, Postupalenko V, Lörcher S, Wu D, Chami M, Meier W, Palivan CG. DNA-Mediated Self-Organization of Polymeric Nanocompartments Leads to Interconnected Artificial Organelles. NANO LETTERS 2016; 16:7128-7136. [PMID: 27726407 DOI: 10.1021/acs.nanolett.6b03430] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Self-organization of nanocomponents was mainly focused on solid nanoparticles, quantum dots, or liposomes to generate complex architectures with specific properties, but intrinsically limited or not developed enough, to mimic sophisticated structures with biological functions in cells. Here, we present a biomimetic strategy to self-organize synthetic nanocompartments (polymersomes) into clusters with controlled properties and topology by exploiting DNA hybridization to interconnect polymersomes. Molecular and external factors affecting the self-organization served to design clusters mimicking the connection of natural organelles: fine-tune of the distance between tethered polymersomes, different topologies, no fusion of clustered polymersomes, and no aggregation. Unexpected, extended DNA bridges that result from migration of the DNA strands inside the thick polymer membrane (about 12 nm) represent a key stability and control factor, not yet exploited for other synthetic nano-object networks. The replacement of the empty polymersomes with artificial organelles, already reported for single polymersome architecture, will provide an excellent platform for the development of artificial systems mimicking natural organelles or cells and represents a fundamental step in the engineering of molecular factories.
Collapse
Affiliation(s)
- Juan Liu
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Viktoriia Postupalenko
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Samuel Lörcher
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Dalin Wu
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Mohamed Chami
- BioEM lab, Biozentrum, University of Basel , Mattenstrasse 26, 4058 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, Basel 4056, Switzerland
| |
Collapse
|
35
|
Shi L, Sun P, Zheng L. Controllable hierarchical self-assembly of gemini supra-amphiphiles: the effect of spacer length. SOFT MATTER 2016; 12:8682-8689. [PMID: 27714371 DOI: 10.1039/c6sm02070d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gemini supra-amphiphiles with different spacer lengths, [M-n-M]2+@2[DBS]- (n = 2, 6, 10), were easily constructed. The conformational flexibility and hydrophobicity of the spacer group can be effectively tailored through regulating the spacer length, leading to the fine control of the topologies and subsequent hierarchical self-assemblies of [M-n-M]2+@2[DBS]-. Vesicles are primarily fabricated by [M-n-M]2+@2[DBS]-, and then successively fused into vesicle clusters, nanotubes, and planar bilayers, whose bilayer curvatures are gradually decreased, with increasing spacer length. Coating [M-10-M]2+ with β-CD can reduce the flexibility and hydrophobicity of the decyl spacer, resulting in the reversion from planar bilayers to vesicles. Furthermore, stable aqueous two-phase systems (ATPSs) that spontaneously formed via vesicle fusion in the solutions of [M-n-M]2+@2[DBS]- (n = 6, 10) can act as functional supramolecular systems in the isolation and purification of oil-soluble biomaterials.
Collapse
Affiliation(s)
- Lijuan Shi
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Panpan Sun
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China.
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China.
| |
Collapse
|
36
|
Bai Y, Chang CC, Choudhary U, Bolukbasi I, Crosby AJ, Emrick T. Functional droplets that recognize, collect, and transport debris on surfaces. SCIENCE ADVANCES 2016; 2:e1601462. [PMID: 27819054 PMCID: PMC5091362 DOI: 10.1126/sciadv.1601462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
We describe polymer-stabilized droplets capable of recognizing and picking up nanoparticles from substrates in experiments designed for transporting hydroxyapatite nanoparticles that represent the principal elemental composition of bone. Our experiments, which are inspired by cells that carry out materials transport in vivo, used oil-in-water droplets that traverse a nanoparticle-coated substrate driven by an imposed fluid flow. Nanoparticle capture is realized by interaction of the particles with chemical functionality embedded within the polymeric stabilizing layer on the droplets. Nanoparticle uptake efficiency is controlled by solution conditions and the extent of functionality available for contact with the nanoparticles. Moreover, in an elementary demonstration of nanoparticle transportation, particles retrieved initially from the substrate were later deposited "downstream," illustrating a pickup and drop-off technique that represents a first step toward mimicking point-to-point transportation events conducted in living systems.
Collapse
|
37
|
Pan M, Cao N, Lin W, Luo X, Chen K, Che S, Li H, Wang C. Reversible CO2 Capture by Conjugated Ionic Liquids through Dynamic Covalent Carbon-Oxygen Bonds. CHEMSUSCHEM 2016; 9:2351-2357. [PMID: 27458723 DOI: 10.1002/cssc.201600402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 06/06/2023]
Abstract
The strong chemisorption of CO2 is always accompanied by a high absorption enthalpy, and traditional methods to reduce the absorption enthalpy lead to decreased CO2 capacities. Through the introduction of a large π-conjugated structure into the anion, a dual-tuning approach for the improvement of CO2 capture by anion-functionalized ionic liquids (ILs) resulted in a high capacity of up to 0.96 molCO2 mol-1IL and excellent reversibility. The increased capacity and improved desorption were supported by quantum chemical calculations, spectroscopic investigations, and thermogravimetric analysis. The increased capacity may be a result of the strengthened dynamic covalent bonds in these π-electron-conjugated structures through anion aggregation upon the uptake of CO2 , and the improved desorption originates from the charge dispersion of interaction sites through the large π-electron delocalization. These results provide important insights into effective strategies for CO2 capture.
Collapse
Affiliation(s)
- Mingguang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ningning Cao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wenjun Lin
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaoyan Luo
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kaihong Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Siying Che
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haoran Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Congmin Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.
| |
Collapse
|
38
|
Xing P, Wang Y, Yang M, Zhang Y, Wang B, Hao A. Selective Metal-Ion-Mediated Vesicle Adhesion Based on Dynamic Self-Organization of a Pyrene-Appended Glutamic Acid. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17676-17684. [PMID: 27323796 DOI: 10.1021/acsami.6b04279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Vesicles with dynamic membranes provide an ideal model system for investigating biological membrane activities, whereby vesicle aggregation behaviors including adhesion, fusion, fission, and membrane contraction/extension have attracted much attention. In this work we utilize an aromatic amino acid (pyrene-appended glutamic acid, PGlu) to prepare nanovesicles that aggregate to form vesicle clusters selectively induced by Fe(3+) or Cu(2+), and the vesicles transform into irregular nano-objects when interacting with Al(3+). Vesicle clusters have better stability than pristine vesicles, which hinders the spontaneous morphological transformation from vesicles into lamellar nanosheets with long incubation period. The difference between complexation of Fe(3+) and Al(3+) with vesicles was studied by various techniques. On the basis of metal ion-vesicle interactions, this self-assembled nanovesicle system also behaves as an effective fluorescent sensor for Fe(3+) and Al(3+), which cause fluorescence quenching and enhanced excimer emission, respectively.
Collapse
Affiliation(s)
- Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, People's Republic of China
| | - Yajie Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, People's Republic of China
| | - Minmin Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, People's Republic of China
| | - Yimeng Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, People's Republic of China
| | - Bo Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, People's Republic of China
| |
Collapse
|
39
|
Aggregation and Rheology of an Azobenzene-Functionalized Hydrophobically Modified Ethoxylated Urethane in Aqueous Solution. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00633] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
Xing P, Chen H, Bai L, Hao A, Zhao Y. Superstructure Formation and Topological Evolution Achieved by Self-Organization of a Highly Adaptive Dynamer. ACS NANO 2016; 10:2716-2727. [PMID: 26757061 DOI: 10.1021/acsnano.5b07800] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The adaptive property of supramolecular building blocks facilitates noncovalent synthesis of soft materials. While it is still a challenging task, fine-tuning and precise control over topological nanostructures constructed from the self-assembly of low-molecular-weight building blocks are an important research direction to investigate the structure-property relationship. Herein, we report controlled self-assembly evolution of a low-molecular-weight building block bearing cholesterol and naphthalene-dicarboximide moieties, showing ultrasensitivity to solvent polarity. In low-polarity solvents (<4), it could form an M-type fiber-constituted organogel (supergel) with high solvent content, columnar molecular packing, and self-healing property. Highly polar solvents (>7.8) favor the formation of P-type helical nanostructures terminated by nanotoroids, having lamellar molecular packing. With a further increase in solvent polarity (up to 9.6), unilamellar and multilamellar vesicles were generated, which could undergo an aggregation-induced fusion process to form branched nanotubes tuned by the concentration. Self-attractive interactions between aggregates were found to be responsible for the formation of superstructures including helix-nanotoroid junctions as well as membrane-fused nanotubes.
Collapse
Affiliation(s)
- Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, People's Republic of China
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371, Singapore
| | - Linyi Bai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371, Singapore
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, People's Republic of China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798, Singapore
| |
Collapse
|
41
|
Olson MA, Messina MS, Thompson JR, Dawson TJ, Goldner AN, Gaspar DK, Vazquez M, Lehrman JA, Sue ACH. Reversible morphological changes of assembled supramolecular amphiphiles triggered by pH-modulated host–guest interactions. Org Biomol Chem 2016; 14:5714-20. [DOI: 10.1039/c6ob00109b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acid–base modulated host–guest binding at the micellar–water interface triggers reversible oblate ellipsoid-to-lamellar morphological transitions revealing the relationship between and morphology.
Collapse
Affiliation(s)
- M. A. Olson
- Institute for Molecular Design and Synthesis
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - M. S. Messina
- Department of Physical and Environmental Sciences
- Texas A&M University Corpus Christi
- Texas 78412
- USA
| | - J. R. Thompson
- Department of Physical and Environmental Sciences
- Texas A&M University Corpus Christi
- Texas 78412
- USA
| | - T. J. Dawson
- Department of Physical and Environmental Sciences
- Texas A&M University Corpus Christi
- Texas 78412
- USA
| | - A. N. Goldner
- Department of Physical and Environmental Sciences
- Texas A&M University Corpus Christi
- Texas 78412
- USA
| | - D. K. Gaspar
- Department of Physical and Environmental Sciences
- Texas A&M University Corpus Christi
- Texas 78412
- USA
| | - M. Vazquez
- Department of Physical and Environmental Sciences
- Texas A&M University Corpus Christi
- Texas 78412
- USA
| | - J. A. Lehrman
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - A. C.-H. Sue
- Institute for Molecular Design and Synthesis
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| |
Collapse
|
42
|
Rui L, Liu L, Wang Y, Gao Y, Zhang W. Orthogonal Approach to Construct Cell-Like Vesicles via Pillar[5]arene-Based Amphiphilic Supramolecular Polymers. ACS Macro Lett 2015. [DOI: 10.1021/acsmacrolett.5b00900] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Leilei Rui
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lichao Liu
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yong Wang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yun Gao
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weian Zhang
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
43
|
Abstract
Dendritic molecules are an exciting research topic because of their highly branched architecture, multiple functional groups on the periphery, and very pertinent features for various applications. Self-assembling dendritic amphiphiles have produced different nanostructures with unique morphologies and properties. Since their self-assembly in water is greatly relevant for biomedical applications, researchers have been looking for a way to rationally design dendritic amphiphiles for the last few decades. We review here some recent developments from investigations on the self-assembly of dendritic amphiphiles into various nanostructures in water on the molecular level. The main content of the review is divided into sections according to the different nanostructure morphologies resulting from the dendritic amphiphiles' self-assembly. Finally, we conclude with some remarks that highlight the self-assembling features of these dendritic amphiphiles.
Collapse
Affiliation(s)
- Bala N S Thota
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Berlin 14195, Germany
| | - Leonhard H Urner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Berlin 14195, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Berlin 14195, Germany
| |
Collapse
|
44
|
Zhang D, Nie Y, Saha ML, He Z, Jiang L, Zhou Z, Stang PJ. Photoreversible [2] Catenane via the Host–Guest Interactions between a Palladium Metallacycle and β-Cyclodextrin. Inorg Chem 2015; 54:11807-12. [DOI: 10.1021/acs.inorgchem.5b01987] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Dengqing Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, People’s Republic of China
- Department of Chemistry, University of Utah, 315 South 1400
East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Yong Nie
- Department of Chemistry, University of Utah, 315 South 1400
East, Room 2020, Salt Lake City, Utah 84112, United States
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Nanxinzhuang Road, 250022, Jinan, People’s Republic of China
| | - Manik Lal Saha
- Department of Chemistry, University of Utah, 315 South 1400
East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Zuoli He
- Department of Chemistry, University of Utah, 315 South 1400
East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Long Jiang
- Department of Chemistry, University of Utah, 315 South 1400
East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Zhixuan Zhou
- Department of Chemistry, University of Utah, 315 South 1400
East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400
East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
45
|
Christ EM, Hobernik D, Bros M, Wagner M, Frey H. Cationic Copolymerization of 3,3-Bis(hydroxymethyl)oxetane and Glycidol: Biocompatible Hyperbranched Polyether Polyols with High Content of Primary Hydroxyl Groups. Biomacromolecules 2015; 16:3297-307. [DOI: 10.1021/acs.biomac.5b00951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eva-Maria Christ
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate School
Materials Science in Mainz (MAINZ), Staudingerweg 9, D-55128 Mainz, Germany
| | - Dominika Hobernik
- Department
of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Matthias Bros
- Department
of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate School
Materials Science in Mainz (MAINZ), Staudingerweg 9, D-55128 Mainz, Germany
| |
Collapse
|
46
|
Wang J, Ni Y, Jiang W, Li H, Liu Y, Lin S, Zhou Y, Yan D. Self-Crosslinking and Surface-Engineered Polymer Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4485-4490. [PMID: 26061654 DOI: 10.1002/smll.201500699] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/17/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Jie Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchunan Road, Shanghai, 200240, P. R. China
| | - Yunzhou Ni
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchunan Road, Shanghai, 200240, P. R. China
| | - Wenfeng Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchunan Road, Shanghai, 200240, P. R. China
| | - Huimei Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchunan Road, Shanghai, 200240, P. R. China
| | - Yannan Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchunan Road, Shanghai, 200240, P. R. China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchunan Road, Shanghai, 200240, P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchunan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
47
|
Deng J, Liu X, Zhang S, Cheng C, Nie C, Zhao C. Versatile and Rapid Postfunctionalization from Cyclodextrin Modified Host Polymeric Membrane Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9665-9674. [PMID: 26301434 DOI: 10.1021/acs.langmuir.5b02038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surface modification has long been of great interest to impart desired functionalities to the bioimplants. However, due to the limitations of recent technologies in surface modification, it is highly desirable to explore novel protocols, which can advantageously and efficiently endow the inert material surfaces with versatile biofunctionalities. Herein, to achieve versatile and rapid postfunctionalization of polymeric membrane, we demonstrate a new strategy for the fabrication of β-cyclodextrin (β-CD) modified host membrane substrate that can recognize a series of well-designed guest macromolecules. The surface assembly procedure was driven by the host-guest interaction between adamantane (Ad) and β-CD. β-CD immobilized host membrane was fabricated via two steps: (1) epoxy groups enriched poly(ether sulfone) (PES) membrane was first prepared via in situ cross-linking polymerization and subsequently phase separation; (2) mono-6-deoxy-6-ethylenediamine-β-CD (EDA-β-CD) was then anchored onto the surface of the epoxy functionalized PES membrane to obtain PES-CD. Subsequently, three types of Ad-terminated polymers, including Ad-poly(styrenesulfonate-co-sodium acrylate) (Ad-PSA), Ad-methoxypoly(ethylene glycol) (Ad-PEG), and Ad-poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate (Ad-PMT), were separately assembled onto the β-CD immobilized surfaces to endow the membranes with anticoagulant, antifouling, and antibacterial capability, respectively. Activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) measurements were carried out to explore the anticoagulant activity. The antifouling capability was evaluated via protein adsorption and platelet adhesion measurements. Moreover, Staphyllococcous aureus (S. aureus) was selected as model bacteria to evaluate the antibacterial ability of the functionalized membranes. The results indicated that well-regulated blood compatibility, antifouling capability, and bactericidal activity could be achieved by the proposed rapid postfunctionalization on polymeric membranes. This approach of versatile and rapid postfunctionalization is promising for the preparation of multifunctional polymeric membrane materials to meet with various demands for the further applications.
Collapse
Affiliation(s)
- Jie Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Xinyue Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Shuqing Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| |
Collapse
|
48
|
|
49
|
QIN CG, LU CX, OUYANG GW, QIN K, ZHANG F, SHI HT, WANG XH. Progress of Azobenzene-based Photoswitchable Molecular Probes and Sensory Chips for Chemical and Biological Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60809-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Yu G, Jie K, Huang F. Supramolecular Amphiphiles Based on Host–Guest Molecular Recognition Motifs. Chem Rev 2015; 115:7240-303. [DOI: 10.1021/cr5005315] [Citation(s) in RCA: 766] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guocan Yu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|