1
|
Hu C, Wang L, Yang X, Fu Y, Du Z. Construction of Six-Membered Lactam and Lactone Structures via Ligand-Free Pd-Catalyzed C-H Activation/[5 + 1] Cyclization Carbonylation. Org Lett 2024; 26:7783-7788. [PMID: 39248614 DOI: 10.1021/acs.orglett.4c02274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
An approach for the ligand-free Pd-catalyzed C-H activation/[5 + 1] cyclization carbonylation by employing readily available ClCF2COONa as a carbonyl source via difluorocarbene transfer and hydrolysis has been developed. The current protocol enables us to obtain a series of carbonylation cyclization product benzopyranone and phenanthridinone derivatives in up to 91% yield with excellent functional group compatibility. This protocol has the advantages of mild reaction conditions, wide applicable substrates, and simple and safe operation and provides a new method for the synthesis of complex lactam and lactone compounds.
Collapse
Affiliation(s)
- Chengxian Hu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Lu Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xue Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Ying Fu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Zhengyin Du
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| |
Collapse
|
2
|
Mao L, Liu C, Tan X, Yao B, Wu J, Wu W, Jiang H. Pd-catalyzed Markovnikov selective oxidative amination of 4-pentenoic acid. Chem Commun (Camb) 2024; 60:9626-9629. [PMID: 39150353 DOI: 10.1039/d4cc02504k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Pd-catalyzed regioselective amination of unactivated alkene remains a challenge and is of great interest. Herein, a palladium-catalyzed and ligand-controlled strategy for the Markovnikov selective oxidative amination of 4-pentenoic acid has been described. The protocol effectively reverses the carboxylic acid-directed anti-Markovnikov selectivity in oxidative amination of 4-pentenoic acid, successfully constructing γ-ketoamide derivatives.
Collapse
Affiliation(s)
- Lihua Mao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Chao Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xiangwen Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Biao Yao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jiahao Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
3
|
Bols ML, Ma J, Rammal F, Plessers D, Wu X, Navarro-Jaén S, Heyer AJ, Sels BF, Solomon EI, Schoonheydt RA. In Situ UV-Vis-NIR Absorption Spectroscopy and Catalysis. Chem Rev 2024; 124:2352-2418. [PMID: 38408190 PMCID: PMC11809662 DOI: 10.1021/acs.chemrev.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This review highlights in situ UV-vis-NIR range absorption spectroscopy in catalysis. A variety of experimental techniques identifying reaction mechanisms, kinetics, and structural properties are discussed. Stopped flow techniques, use of laser pulses, and use of experimental perturbations are demonstrated for in situ studies of enzymatic, homogeneous, heterogeneous, and photocatalysis. They access different time scales and are applicable to different reaction systems and catalyst types. In photocatalysis, femto- and nanosecond resolved measurements through transient absorption are discussed for tracking excited states. UV-vis-NIR absorption spectroscopies for structural characterization are demonstrated especially for Cu and Fe exchanged zeolites and metalloenzymes. This requires combining different spectroscopies. Combining magnetic circular dichroism and resonance Raman spectroscopy is especially powerful. A multitude of phenomena can be tracked on transition metal catalysts on various supports, including changes in oxidation state, adsorptions, reactions, support interactions, surface plasmon resonances, and band gaps. Measurements of oxidation states, oxygen vacancies, and band gaps are shown on heterogeneous catalysts, especially for electrocatalysis. UV-vis-NIR absorption is burdened by broad absorption bands. Advanced analysis techniques enable the tracking of coking reactions on acid zeolites despite convoluted spectra. The value of UV-vis-NIR absorption spectroscopy to catalyst characterization and mechanistic investigation is clear but could be expanded.
Collapse
Affiliation(s)
- Max L Bols
- Laboratory for Chemical Technology (LCT), University of Ghent, Technologiepark Zwijnaarde 125, 9052 Ghent, Belgium
| | - Jing Ma
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Fatima Rammal
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xuejiao Wu
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sara Navarro-Jaén
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Alexander J Heyer
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
4
|
Wang Y, Feng J, Li EQ, Jia Z, Loh TP. Recent advances in ligand-enabled palladium-catalyzed divergent synthesis. Org Biomol Chem 2023; 22:37-54. [PMID: 38050418 DOI: 10.1039/d3ob01679j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Developing efficient and straightforward strategies to rapidly construct structurally distinct and diverse organic molecules is one of the most fundamental tasks in organic synthesis, drug discovery and materials science. In recent years, divergent synthesis of organic functional molecules from the same starting materials has attracted significant attention and has been recognized as an efficient and powerful strategy. To achieve this objective, the proper adjustment of reaction conditions, such as catalysts, solvents, ligands, etc., is required. In this review, we summarized the recent efforts in chemo-, regio- and stereodivergent reactions involving acyclic and cyclic systems catalyzed by palladium complexes. Meanwhile, the reaction types, including carbonylative reactions, coupling reactions and cycloaddition reactions, as well as the probable mechanism have also been highlighted in detail.
Collapse
Affiliation(s)
- Yue Wang
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Jinzan Feng
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou450001, China.
| |
Collapse
|
5
|
Panda S, Nanda A, Saha R, Ghosh R, Bagh B. Cobalt-Catalyzed Chemodivergent Synthesis of Cyclic Amines and Lactams from Ketoacids and Anilines Using Hydrosilylation. J Org Chem 2023. [PMID: 38031391 DOI: 10.1021/acs.joc.3c01870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Here, commercially available Co2(CO)8 was utilized as an efficient catalyst for chemodivergent synthesis of pyrrolidines and pyrrolidones from levulinic acid and aromatic amines under slightly different hydrosilylation conditions. 1.5 and 3 equiv of phenylsilane selectively yielded pyrrolidone and pyrrolidine, respectively. Various ketoacids and amines were successfully tested. Plausible mechanism involves the condensation of levulinic acid and amine to form an imine, which cyclizes to 3-pyrrolidin-2-one followed by reduction to pyrrolidone. The final reduction of pyrrolidone gave pyrrolidine.
Collapse
Affiliation(s)
- Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| | - Amareshwar Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| | - Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| | - Rahul Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, P.O. Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
6
|
Yan J, Ding Y, Huang H. Palladium-Catalyzed Chemodivergent Carbonylation of ortho-Bromoarylimine to Biisoindolinones and Spiroisoindolinones. J Org Chem 2022; 88:5194-5204. [PMID: 36332180 DOI: 10.1021/acs.joc.2c02170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We herein report a palladium-catalyzed carbonylative cyclization reaction of ortho-bromoarylimines that allows for the chemodivergent synthesis of functionalized biisoindolinones and spirocyclic isoindolinones. Either product could be selectively obtained by switching the reaction temperatures and ligands, and the biisoindolinone products could be afforded facilely with catalyst loadings as low as 0.05 mol %. Further transformation of the biisoindolinone product is also described, which represents a novel and concise approach to the biisoindoline diamine ligand.
Collapse
Affiliation(s)
- Jiaqi Yan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yongzheng Ding
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hanmin Huang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
- State Key Laboratory of Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
7
|
Muvvala S, Kumari K, Miriyala V, Mogili P, Chidara S, Maddirala SJ, Saxena A, Behera M. Microwave‐Assisted Reductive Amination of 2‐Carboxybenzaldehydes with Amines for the Synthesis of N‐Substituted Isoindolin‐1‐one. ChemistrySelect 2022. [DOI: 10.1002/slct.202202500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Subhashini Muvvala
- Chemistry services, Aragen Life Sciences, Survey Nos:125 (part) & 126, IDA Mallapur Hyderabad 500076 Telangana State India
- Department of Engineering Chemistry Andhra University Visakhapatnam Andhra Pradesh 530003 India
| | - Krishnaiah Kumari
- Chemistry services, Aragen Life Sciences, Survey Nos:125 (part) & 126, IDA Mallapur Hyderabad 500076 Telangana State India
| | - Venkatesh Miriyala
- Chemistry services, Aragen Life Sciences, Survey Nos:125 (part) & 126, IDA Mallapur Hyderabad 500076 Telangana State India
| | - Padma Mogili
- Department of Engineering Chemistry Andhra University Visakhapatnam Andhra Pradesh 530003 India
| | - Sridhar Chidara
- Chemistry services, Aragen Life Sciences, Survey Nos:125 (part) & 126, IDA Mallapur Hyderabad 500076 Telangana State India
| | - Shambabu Joseph Maddirala
- Chemistry services, Aragen Life Sciences, Survey Nos:125 (part) & 126, IDA Mallapur Hyderabad 500076 Telangana State India
| | - Abhishek Saxena
- Chemistry services, Aragen Life Sciences, Survey Nos:125 (part) & 126, IDA Mallapur Hyderabad 500076 Telangana State India
| | - Manoranjan Behera
- Chemistry services, Aragen Life Sciences, Survey Nos:125 (part) & 126, IDA Mallapur Hyderabad 500076 Telangana State India
| |
Collapse
|
8
|
Mor S, Khatri M. Convenient synthesis of benzothiazinoisoindol-11-ones and benzoindenothiazin-11-ones, and antimicrobial testing thereof. Mol Divers 2022:10.1007/s11030-022-10483-9. [PMID: 35922654 DOI: 10.1007/s11030-022-10483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
Benzo[5,6][1,4]thiazino[3,4-a]isoindol-11-ones 5a-t and benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-ones 6a-e were synthesized conveniently via cyclocondensation of 2-bromo-2-(2/3-substitutedphenyl)-1H-indene-1,3(2H)-diones and 2-aminobenzenethiols in freshly dried ethanol with 70-85% yields. The synthesized derivatives were well characterized by employing different spectral techniques (FTIR, 1H & 13C NMR and HRMS) and X-ray crystallographic analysis. Further, all the reported compounds were tested for their antibacterial and antifungal activities using Ciprofloxacin and Fluconazole as standard drugs, respectively. The results of antimicrobial evaluation revealed that compounds 5o and 5t displayed remarkable inhibitory activity against B. subtilis, S. aureus, P. aeruginosa and A. niger with MIC values in the range of 0.0141-0.0283 µmol/mL, whereas 5j was found active against E. coli and C. albicans with MIC values of 0.0286 µmol/mL and 0.0143 µmol/mL, respectively. Additionally, among all the benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-ones, 6c exhibited excellent inhibition against all the tested bacterial and fungal strains with MIC values ranging from 0.0143 to 0.1145 µmol/mL. Structure activity relationships were also established for all the tested benzo[5,6][1,4]thiazino[3,4-a]isoindol-11-ones 5a-t.
Collapse
Affiliation(s)
- Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| | - Mohini Khatri
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| |
Collapse
|
9
|
Dolui P, Tiwari V, Saini P, Karmakar T, Makhal K, Goel H, Elias AJ. A Catalyst and Solvent Free Route for the Synthesis of N-Substituted Pyrrolidones from Levulinic Acid. Chemistry 2022; 28:e202200829. [PMID: 35579503 DOI: 10.1002/chem.202200829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/11/2022]
Abstract
An efficient, metal-free, catalyst-free and solvent-free methodology for the reductive amination of levulinic acid with different anilines has been developed using HBpin as the reducing reagent. This protocol offers an excellent method to avoid solvents and added catalysts on the synthesis of different kinds of N-substituted pyrrolidones under metal free conditions. It is also the first report for the synthesis of different pyrrolidones by solvent-free as well as catalyst-free methods. The proposed mechanism for the formation of pyrrolidone has been supported by DFT calculations and control experiments.
Collapse
Affiliation(s)
- Pritam Dolui
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Vikas Tiwari
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Parul Saini
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Koushik Makhal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Harshita Goel
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anil J Elias
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
10
|
Pan Y, Luo ZL, Yang J, Han J, Yang J, yao Z, Xu L, Wang P, Shi Q. Cobalt‐Catalyzed Selective Transformation of Levulinic Acid and Amines into Pyrrolidines and Pyrrolidinones under H2. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | | | - zhen yao
- Renmin University of China CHINA
| | - Lijin Xu
- Renmin University of China CHINA
| | | | | |
Collapse
|
11
|
Mellah M, Zhang YF. Samarium(II)-Electrocatalyzed Chemoselective Reductive Alkoxylation of Phthalimides. Org Chem Front 2022. [DOI: 10.1039/d1qo01760h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unprecedented samarium-eletrocatalyzed reductive alkoxylation of phthalimides in a single step is presented. Under mild conditions, using electrogenerated Sm(II) with TMSCl (trimethyl chlorosilane), N-substituted 3-alkoxyl isoindolin-1-ones are isolated in good...
Collapse
|
12
|
Liu Y, Zhang K, Zhang L, Wang Y, Wei Z. One-pot synthesis of pyrrolidone derivatives via reductive amination of levulinic acid/ester with nitriles over Pd/C catalyst. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02073-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Two transition-metal-modified Nb/W mixed-addendum polyoxometalates for visible-light-mediated aerobic benzylic C–H oxidations. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Tongdee S, Wei D, Wu J, Netkaew C, Darcel C. Synthesis of Lactams by Reductive Amination of Carbonyl Derivatives with
ω
‐Amino Fatty Acids under Hydrosilylation Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Satawat Tongdee
- Univ Rennes CNRS ISCR Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Duo Wei
- Univ Rennes CNRS ISCR Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Jiajun Wu
- Univ Rennes CNRS ISCR Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Chakkrit Netkaew
- Univ Rennes CNRS ISCR Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Christophe Darcel
- Univ Rennes CNRS ISCR Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| |
Collapse
|
15
|
Kawamata Y, Hayashi K, Carlson E, Shaji S, Waldmann D, Simmons BJ, Edwards JT, Zapf CW, Saito M, Baran PS. Chemoselective Electrosynthesis Using Rapid Alternating Polarity. J Am Chem Soc 2021; 143:16580-16588. [PMID: 34596395 PMCID: PMC8711284 DOI: 10.1021/jacs.1c06572] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Challenges in the selective manipulation of functional groups (chemoselectivity) in organic synthesis have historically been overcome either by using reagents/catalysts that tunably interact with a substrate or through modification to shield undesired sites of reactivity (protecting groups). Although electrochemistry offers precise redox control to achieve unique chemoselectivity, this approach often becomes challenging in the presence of multiple redox-active functionalities. Historically, electrosynthesis has been performed almost solely by using direct current (DC). In contrast, applying alternating current (AC) has been known to change reaction outcomes considerably on an analytical scale but has rarely been strategically exploited for use in complex preparative organic synthesis. Here we show how a square waveform employed to deliver electric current-rapid alternating polarity (rAP)-enables control over reaction outcomes in the chemoselective reduction of carbonyl compounds, one of the most widely used reaction manifolds. The reactivity observed cannot be recapitulated using DC electrolysis or chemical reagents. The synthetic value brought by this new method for controlling chemoselectivity is vividly demonstrated in the context of classical reactivity problems such as chiral auxiliary removal and cutting-edge medicinal chemistry topics such as the synthesis of PROTACs.
Collapse
Affiliation(s)
- Yu Kawamata
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kyohei Hayashi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ethan Carlson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shobin Shaji
- IKA Works, Inc., 3550 General Atomics Court, MS G02/321, San Diego, California 92121, United States
| | - Dirk Waldmann
- IKA Works, Inc., 3550 General Atomics Court, MS G02/321, San Diego, California 92121, United States
- IKA-Werke GmbH & Co. KG Janke & Kunkel-Straße 10, Staufen 79219, Germany
| | - Bryan J Simmons
- Bristol Myers Squibb, 10300 Campus Point Drive Suite 100, San Diego, California 92121, United States
| | - Jacob T Edwards
- Bristol Myers Squibb, 10300 Campus Point Drive Suite 100, San Diego, California 92121, United States
| | - Christoph W Zapf
- Bristol Myers Squibb, 10300 Campus Point Drive Suite 100, San Diego, California 92121, United States
| | - Masato Saito
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
16
|
Wang H, Xie Z, Lu B, Zhong K, Lu J, Liu J. One-pot method to construct isoindolinones and its application to the synthesis of DWP205109 and intermediate of Lenalidomide. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Bai Y, Shi L, Zheng L, Ning S, Che X, Zhang Z, Xiang J. Electroselective and Controlled Reduction of Cyclic Imides to Hydroxylactams and Lactams. Org Lett 2021; 23:2298-2302. [PMID: 33683904 DOI: 10.1021/acs.orglett.1c00430] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and practical electrochemical method for selective reduction of cyclic imides has been developed using a simple undivided cell with carbon electrodes at room temperature. The reaction provides a useful strategy for the rapid synthesis of hydroxylactams and lactams in a controllable manner, which is tuned by electric current and reaction time, and exhibits broad substrate scope and high functional group tolerance even to reduction-sensitive moieties. Initial mechanistic studies suggest that the approach heavily relies on the utilization of amines (e.g., i-Pr2NH), which are able to generate α-aminoalkyl radicals. This protocol provides an efficient route for the cleavage of C-O bonds under mild conditions with high chemoselectivity.
Collapse
Affiliation(s)
- Ya Bai
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Lingling Shi
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Lianyou Zheng
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Shulin Ning
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Xin Che
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Zhuoqi Zhang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Jinbao Xiang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| |
Collapse
|
18
|
Hu XQ, Hou YX, Liu ZK, Gao Y. Ruthenium-catalysed C–H/C–N bond activation: facile access to isoindolinones. Org Chem Front 2021. [DOI: 10.1039/d0qo01406k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A facile ruthenium-catalysed C–H/C–N bond activation and the subsequent annulation of readily available benzoic acids with in situ generated formaldimines are developed for the efficient synthesis of a wide range of biologically important isoindolinones.
Collapse
Affiliation(s)
- Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Ye-Xing Hou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Yang Gao
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| |
Collapse
|
19
|
Wu C, Wang J, Zhang X, Zhang R, Ma B. Highly chemoselective hydrogenation of cyclic imides to ω-hydroxylactams or ω-hydroxyamides catalyzed by iridium catalysts. Org Chem Front 2021. [DOI: 10.1039/d1qo01100f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several novel ferrocene-based PNN ligands were prepared, which were found to be highly effective catalysts (TON up to 50 000) for the homogeneous hydrogenation of cyclic imides with iridium.
Collapse
Affiliation(s)
- Chao Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Jiang Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Xumu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Runtong Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Baode Ma
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| |
Collapse
|
20
|
|
21
|
Raut AB, Shende VS, Sasaki T, Bhanage BM. Reductive amination of levulinic acid to N-substituted pyrrolidones over RuCl3 metal ion anchored in ionic liquid immobilized on graphene oxide. J Catal 2020. [DOI: 10.1016/j.jcat.2020.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Zhao Y, Guo X, Wang Z, Shen D, Chen T, Wu N, Yan S, You J. TBAF-Catalyzed Cyclization Reactions of o
-(Alkynyl)phenyl Propargyl Alcohols with Malonate Esters: A Possible Cation-π Interaction as The Activation Approach. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yulei Zhao
- School of Chemistry and Chemical Engineering; Qufu Normal University; 273165 Qufu China
| | - Xuqiang Guo
- School of Chemistry and Chemical Engineering; Qufu Normal University; 273165 Qufu China
| | - Zongkang Wang
- School of Chemistry and Chemical Engineering; Qufu Normal University; 273165 Qufu China
| | - Duyi Shen
- School of Chemistry and Chemical Engineering; Qufu Normal University; 273165 Qufu China
| | - Tingting Chen
- School of Chemistry and Chemical Engineering; Qufu Normal University; 273165 Qufu China
| | - Nan Wu
- School of Chemistry and Chemical Engineering; Qufu Normal University; 273165 Qufu China
| | - Shina Yan
- School of Chemistry and Chemical Engineering; Qufu Normal University; 273165 Qufu China
| | - Jinmao You
- School of Chemistry and Chemical Engineering; Qufu Normal University; 273165 Qufu China
- Northwest Institute of Plateau Biology; Chinese Academy of Science; 810001 Xining China
| |
Collapse
|
23
|
Papa V, Cabrero-Antonino JR, Spannenberg A, Junge K, Beller M. Homogeneous cobalt-catalyzed deoxygenative hydrogenation of amides to amines. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01078b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the first general and efficient homogeneous cobalt-catalyzed deoxygenative hydrogenation of amides to amines is presented.
Collapse
Affiliation(s)
- Veronica Papa
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
| | - Jose R. Cabrero-Antonino
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
- Instituto de Tecnología Química
- Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
| | | |
Collapse
|
24
|
Song R, Yu H, Huang H, Chen Y. Controlled One‐Pot Synthesis of Multiple Heterocyclic Scaffolds Based on an Amphiphilic Claisen‐Schmidt Reaction Intermediate. ChemistrySelect 2019. [DOI: 10.1002/slct.201904110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rong Song
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University, Changsha Hunan 410082 China
| | - Hui Yu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University, Changsha Hunan 410082 China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education, School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 China
| | - Yun Chen
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University, Changsha Hunan 410082 China
| |
Collapse
|
25
|
Miura S, Fukuda K, Masada S, Usutani H, Kanematsu M, Cork DG, Kawamoto T. Rapid and efficient synthesis of a novel cholinergic muscarinic M 1 receptor positive allosteric modulator using flash chemistry. Org Biomol Chem 2019; 17:8166-8174. [PMID: 31464336 DOI: 10.1039/c9ob01718f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Continuous flow-flash synthesis of a 2-bromobenzaldehyde derivative 18 as a key intermediate of a novel cholinergic muscarinic M1 positive allosteric modulator 1 bearing an isoindolin-1-one ring system as a pharmacophore has been achieved using flow microreactors through selective I/Li exchange of 1-bromo-2-iodobenzene derivative 17 with BuLi and subsequent formylation at -40 °C of the highly reactive 2-bromophenyllithium intermediate using DMF, which is difficult to achieve by a conventional batch process due to the conversion of the highly reactive 2-bromophenyllithium intermediate into benzyne even at -78 °C. Late-stage cyclization to give the isoindolin-1-one ring system, through reductive amination of 18 followed by palladium-catalyzed carbonylation with carbon monoxide and intramolecular cyclization, efficiently afforded 1 for its further research and development.
Collapse
Affiliation(s)
- Shotaro Miura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Koichiro Fukuda
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Shinichi Masada
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Hirotsugu Usutani
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Makoto Kanematsu
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - David G Cork
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tetsuji Kawamoto
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
26
|
Hu R, Chen FJ, Zhang X, Zhang M, Su W. Copper-catalyzed dehydrogenative γ-C(sp 3)-H amination of saturated ketones for synthesis of polysubstituted anilines. Nat Commun 2019; 10:3681. [PMID: 31417081 PMCID: PMC6695438 DOI: 10.1038/s41467-019-11624-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/24/2019] [Indexed: 11/09/2022] Open
Abstract
Metal-catalyzed β-C-H functionalization of saturated carbonyls via dehydrogenative desaturation proved to be a powerful tool for simplifying synthesis of valuable β-substituted carbonyls. Here, we report a copper-catalyzed dehydrogenative γ-C(sp3)-H amination of saturated ketones that initiates the three-component coupling of saturated ketones, amines and N-substituted maleimides to construct polysubstituted anilines. The protocol presented herein enables both linear and α-branched butanones to couple a wide spectrum of amines and various N-substituted maleimides to produce diverse tetra- or penta-substituted anilines in fair-to-excellent yields with good functional group tolerance. The mechanism studies support that this ketone dehydrogenative γ-C(sp3)-H amination was triggered by the ketone α,β-dehydrogenation desaturation that activates the adjacent γ-C(sp3)-H bond towards functionalization. This α,β-dehydrogenation desaturation-triggered cascade sequence opens up a new avenue to the remote C(sp3)-H functionalization of saturated ketones and has the potential to enable the rapid syntheses of complex compounds from simple starting materials.
Collapse
Affiliation(s)
- Rong Hu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Fa-Jie Chen
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Min Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Weiping Su
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| |
Collapse
|
27
|
Mor S, Sindhu S. Convenient and efficient synthesis of novel 11 H-benzo[5,6][1,4]thiazino[3,4- a]isoindol-11-ones derived from 2-bromo-(2/3-substitutedphenyl)-1 H-indene-1,3(2 H)-diones. RSC Adv 2019; 9:12784-12792. [PMID: 35557558 PMCID: PMC9092632 DOI: 10.1039/c9ra02403d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 04/16/2019] [Indexed: 11/21/2022] Open
Abstract
An unprecedented formation of 11H-benzo[5,6][1,4]thiazino[3,4-a]isoindol-11-ones through a one-step reaction of differently substituted 2-aminobenzenethiols and 2-bromo-(2/3-substitutedphenyl)-1H-indene-1,3(2H)-diones in freshly dried ethanol under reflux conditions has been investigated. This unique transformation probably occurs through an initial nucleophilic substitution followed by ring opening and subsequent intramolecular cyclization. The structures of all the synthesized benzo[1,4]thiazino isoindolinones were established by FTIR, 1H NMR, 13C NMR, HRMS, and X-ray crystallographic analysis. This approach was found to be simple and convenient and provides several advantages such as substantial atom economy, short reaction time and operational simplicity.
Collapse
Affiliation(s)
- Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science & Technology Hisar-125001 Haryana India +91-1662-276240 +91-1662-263397
| | - Suchita Sindhu
- Department of Chemistry, Guru Jambheshwar University of Science & Technology Hisar-125001 Haryana India +91-1662-276240 +91-1662-263397
| |
Collapse
|
28
|
Xu W, Tang L, Ge C, Chen J, Zhou L. Synthesis of Tetrahydroisoindolinones via a Metal‐Free Dehydrogenative Diels‐Alder Reaction. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wen‐Lei Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry& Materials Science, National Demonstration Center for Experimental Chemistry EducationNorthwest University Xi'an 710127 People's Republic of China
| | - Lei Tang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry& Materials Science, National Demonstration Center for Experimental Chemistry EducationNorthwest University Xi'an 710127 People's Republic of China
| | - Chen‐Yu Ge
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry& Materials Science, National Demonstration Center for Experimental Chemistry EducationNorthwest University Xi'an 710127 People's Republic of China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry& Materials Science, National Demonstration Center for Experimental Chemistry EducationNorthwest University Xi'an 710127 People's Republic of China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry& Materials Science, National Demonstration Center for Experimental Chemistry EducationNorthwest University Xi'an 710127 People's Republic of China
| |
Collapse
|
29
|
Sun H, Jiang Y, Chen XW, Zhou Y, Feng T, Huang R, Zheng Y, Li ZH, Liu JK. N
-Acyloxyphthalimide as Multitasking Directing Group for Sequential C-H Functionalization. ChemistrySelect 2019. [DOI: 10.1002/slct.201900201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huan Sun
- School of Pharmaceutical Sciences; South-Central University for Nationalities; Wuhan 430074 P.R. China
- National Demonstration Center for Experimental Ethnopharmacology Education; South-Central University for Nationalities; Wuhan 430074 P.R. China
| | - Yue Jiang
- School of Pharmaceutical Sciences; South-Central University for Nationalities; Wuhan 430074 P.R. China
| | - Xiao-Wei Chen
- School of Pharmaceutical Sciences; South-Central University for Nationalities; Wuhan 430074 P.R. China
| | - Yi−Bo Zhou
- School of Pharmaceutical Sciences; South-Central University for Nationalities; Wuhan 430074 P.R. China
| | - Tao Feng
- School of Pharmaceutical Sciences; South-Central University for Nationalities; Wuhan 430074 P.R. China
| | - Rong Huang
- School of Pharmaceutical Sciences; South-Central University for Nationalities; Wuhan 430074 P.R. China
| | - Yongsheng Zheng
- School of Pharmaceutical Sciences; South-Central University for Nationalities; Wuhan 430074 P.R. China
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences; South-Central University for Nationalities; Wuhan 430074 P.R. China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences; South-Central University for Nationalities; Wuhan 430074 P.R. China
- National Demonstration Center for Experimental Ethnopharmacology Education; South-Central University for Nationalities; Wuhan 430074 P.R. China
| |
Collapse
|
30
|
Xie C, Song J, Wu H, Hu Y, Liu H, Zhang Z, Zhang P, Chen B, Han B. Ambient Reductive Amination of Levulinic Acid to Pyrrolidones over Pt Nanocatalysts on Porous TiO2 Nanosheets. J Am Chem Soc 2019; 141:4002-4009. [DOI: 10.1021/jacs.8b13024] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Chao Xie
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinliang Song
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haoran Wu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Hu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Pei Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bingfeng Chen
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Zamani F, Babaahmadi R, Yates BF, Gardiner MG, Ariafard A, Pyne SG, Hyland CJT. Dual Gold‐Catalyzed Cycloaromatization of Unconjugated (
E
)‐Enediynes. Angew Chem Int Ed Engl 2019; 58:2114-2119. [DOI: 10.1002/anie.201810794] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/25/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Farzad Zamani
- School of Chemistry University of Wollongong Wollongong New South Wales 2522 Australia
| | - Rasool Babaahmadi
- School of Physical Sciences Discipline of Chemistry University of Tasmania Hobart Tasmania 7001 Australia
| | - Brian F. Yates
- School of Physical Sciences Discipline of Chemistry University of Tasmania Hobart Tasmania 7001 Australia
| | - Michael G. Gardiner
- School of Physical Sciences Discipline of Chemistry University of Tasmania Hobart Tasmania 7001 Australia
| | - Alireza Ariafard
- School of Physical Sciences Discipline of Chemistry University of Tasmania Hobart Tasmania 7001 Australia
| | - Stephen G. Pyne
- School of Chemistry University of Wollongong Wollongong New South Wales 2522 Australia
| | | |
Collapse
|
32
|
Zamani F, Babaahmadi R, Yates BF, Gardiner MG, Ariafard A, Pyne SG, Hyland CJT. Dual Gold‐Catalyzed Cycloaromatization of Unconjugated (
E
)‐Enediynes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Farzad Zamani
- School of Chemistry University of Wollongong Wollongong New South Wales 2522 Australia
| | - Rasool Babaahmadi
- School of Physical Sciences Discipline of Chemistry University of Tasmania Hobart Tasmania 7001 Australia
| | - Brian F. Yates
- School of Physical Sciences Discipline of Chemistry University of Tasmania Hobart Tasmania 7001 Australia
| | - Michael G. Gardiner
- School of Physical Sciences Discipline of Chemistry University of Tasmania Hobart Tasmania 7001 Australia
| | - Alireza Ariafard
- School of Physical Sciences Discipline of Chemistry University of Tasmania Hobart Tasmania 7001 Australia
| | - Stephen G. Pyne
- School of Chemistry University of Wollongong Wollongong New South Wales 2522 Australia
| | | |
Collapse
|
33
|
Fu LY, Ying J, Qi X, Peng JB, Wu XF. Palladium-Catalyzed Carbonylative Synthesis of Isoindolinones from Benzylamines with TFBen as the CO Source. J Org Chem 2019; 84:1421-1429. [DOI: 10.1021/acs.joc.8b02862] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lu-Yang Fu
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Jun Ying
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Xinxin Qi
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Jin-Bao Peng
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
34
|
Zhao Y, Zhang Z, Liu X, Wang Z, Cao Z, Tian L, Yue M, You J. TBAF-Catalyzed O-Nucleophilic Cyclization of Enaminones: A Process for the Synthesis of Dihydroisobenzofuran Derivatives. J Org Chem 2019; 84:1379-1386. [DOI: 10.1021/acs.joc.8b02842] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yulei Zhao
- Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Zheng Zhang
- Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Xu Liu
- Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Zongkang Wang
- Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Ziping Cao
- Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Laijin Tian
- Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Mingbo Yue
- Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810001, China
| |
Collapse
|
35
|
Takahashi I, Nishiwaki Y, Saitoh K, Matsunaga T, Aratake A, Morita T, Hosoi S. Exploration of Moderate Conditions and Substrate Variation in the Direct Condensation between Phthalide and Primary Amine Catalyzed by GaCl3. Are Aliphatic Amines Less Reactive than Aromatic Ones? HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Tang XZ, zhou JX, Liang HJ, Zhang XJ, Yan M, Chan AS. A practical synthesis of functionalized isoindolinones via [3 + 3] benzannulation of 1,3-bissulfonylpropenes and 4-arylmethylene-2,3-dioxopyrrolidines. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.11.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Wu X, Ding G, Yang L, Lu W, Li W, Zhang Z, Xie X. Alkoxide-Catalyzed Hydrosilylation of Cyclic Imides to Isoquinolines via Tandem Reduction and Rearrangement. Org Lett 2018; 20:5610-5613. [DOI: 10.1021/acs.orglett.8b02287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaoyu Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guangni Ding
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liqun Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenkui Lu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanfang Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoguo Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaomin Xie
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
38
|
Kumar A, Janes T, Espinosa-Jalapa NA, Milstein D. Selective Hydrogenation of Cyclic Imides to Diols and Amines and Its Application in the Development of a Liquid Organic Hydrogen Carrier. J Am Chem Soc 2018; 140:7453-7457. [PMID: 29812921 PMCID: PMC6502447 DOI: 10.1021/jacs.8b04581] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Direct hydrogenation of a broad variety of cyclic imides to diols and amines using a ruthenium catalyst is reported here. We have applied this strategy toward the development of a new liquid organic hydrogen carrier system based on the hydrogenation of bis-cyclic imide that is formed by the dehydrogenative coupling of 1,4-butanediol and ethylenediamine using a new ruthenium catalyst. The rechargeable system has a maximum gravimetric hydrogen storage capacity of 6.66 wt%.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Organic Chemistry , The Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Trevor Janes
- Department of Organic Chemistry , The Weizmann Institute of Science , Rehovot 76100 , Israel
| | | | - David Milstein
- Department of Organic Chemistry , The Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
39
|
|
40
|
Catalyst-free Mannich-type reactions in water: Expedient synthesis of naphthol-substituted isoindolinones. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Tri(pentaflurophenyl)borane-catalyzed reduction of cyclic imides with hydrosilanes: Synthesis of pyrrolidines. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
D'Hollander AC, Westwood NJ. Assessment of the regioselectivity in the condensation reaction of unsymmetrical o -phthaldialdehydes with alanine. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.11.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
DeLucia NA, Das N, Vannucci AK. Mild synthesis of silyl ethers via potassium carbonate catalyzed reactions between alcohols and hydrosilanes. Org Biomol Chem 2018; 16:3415-3418. [DOI: 10.1039/c8ob00464a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method has been developed for the silanolysis of alcohols using an abundant and non-corrosive base K2CO3 as a catalyst.
Collapse
Affiliation(s)
- Nicholas A. DeLucia
- University of South Carolina
- Department of Chemistry and Biochemistry
- Columbia
- USA
| | - Nivedita Das
- University of South Carolina
- Department of Chemistry and Biochemistry
- Columbia
- USA
| | - Aaron K. Vannucci
- University of South Carolina
- Department of Chemistry and Biochemistry
- Columbia
- USA
| |
Collapse
|
44
|
Synthesis of 3-acyl, methylene and epoxy substituted isoindolinone derivatives via the ortho-lithiation/cyclization procedures of aromatic imines with carbon monoxide. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Yuan YC, Kamaraj R, Bruneau C, Labasque T, Roisnel T, Gramage-Doria R. Unmasking Amides: Ruthenium-Catalyzed Protodecarbonylation of N-Substituted Phthalimide Derivatives. Org Lett 2017; 19:6404-6407. [DOI: 10.1021/acs.orglett.7b03278] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yu-Chao Yuan
- Organometallics:
Materials and Catalysis Laboratory, Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS, Université de Rennes 1, 35042 Rennes, France
| | - Raghu Kamaraj
- Organometallics:
Materials and Catalysis Laboratory, Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS, Université de Rennes 1, 35042 Rennes, France
| | - Christian Bruneau
- Organometallics:
Materials and Catalysis Laboratory, Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS, Université de Rennes 1, 35042 Rennes, France
| | | | | | - Rafael Gramage-Doria
- Organometallics:
Materials and Catalysis Laboratory, Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS, Université de Rennes 1, 35042 Rennes, France
| |
Collapse
|
46
|
Wu C, Zhang H, Yu B, Chen Y, Ke Z, Guo S, Liu Z. Lactate-Based Ionic Liquid Catalyzed Reductive Amination/Cyclization of Keto Acids under Mild Conditions: A Metal-Free Route To Synthesize Lactams. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02231] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cailing Wu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid,
Interface and Thermodynamics, CAS Research/Education Center for Excellence
in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongye Zhang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid,
Interface and Thermodynamics, CAS Research/Education Center for Excellence
in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bo Yu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid,
Interface and Thermodynamics, CAS Research/Education Center for Excellence
in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu Chen
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid,
Interface and Thermodynamics, CAS Research/Education Center for Excellence
in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengang Ke
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid,
Interface and Thermodynamics, CAS Research/Education Center for Excellence
in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shien Guo
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid,
Interface and Thermodynamics, CAS Research/Education Center for Excellence
in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimin Liu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Colloid,
Interface and Thermodynamics, CAS Research/Education Center for Excellence
in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Synthesis of 11C-Labelled Ureas by Palladium(II)-Mediated Oxidative Carbonylation. Molecules 2017; 22:molecules22101688. [PMID: 28994734 PMCID: PMC6151465 DOI: 10.3390/molecules22101688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 01/12/2023] Open
Abstract
Positron emission tomography is an imaging technique with applications in clinical settings as well as in basic research for the study of biological processes. A PET tracer, a biologically active molecule where a positron-emitting radioisotope such as carbon-11 has been incorporated, is used for the studies. Development of robust methods for incorporation of the radioisotope is therefore of the utmost importance. The urea functional group is present in many biologically active compounds and is thus an attractive target for incorporation of carbon-11 in the form of [11C]carbon monoxide. Starting with amines and [11C]carbon monoxide, both symmetrical and unsymmetrical 11C-labelled ureas were synthesised via a palladium(II)-mediated oxidative carbonylation and obtained in decay-corrected radiochemical yields up to 65%. The added advantage of using [11C]carbon monoxide was shown by the molar activity obtained for an inhibitor of soluble epoxide hydrolase (247 GBq/μmol–319 GBq/μmol). DFT calculations were found to support a reaction mechanism proceeding through an 11C-labelled isocyanate intermediate.
Collapse
|
48
|
Liu L, Bai SH, Li Y, Wang LX, Hu Y, Sung HL, Li J. Synthesis of 2,3-Diarylisoindolin-1-one by Copper-Catalyzed Cascade Annulation of 2-Formylbenzonitriles, Arenes, and Diaryliodonium Salts. J Org Chem 2017; 82:11084-11090. [DOI: 10.1021/acs.joc.7b02035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | | | | | - Hui-Ling Sung
- Division
of Preparatory Programs for Overseas Chinese Students, National Taiwan Normal University, Linkou, 24449, Taiwan
| | | |
Collapse
|
49
|
Ling F, Ai C, Lv Y, Zhong W. Traceless Directing Group Assisted Cobalt-Catalyzed C−H Carbonylation of Benzylamines. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700780] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fei Ling
- Key Laboratory of Pharmaceutical Engineering of Ministry of Education, College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Chongren Ai
- Key Laboratory of Pharmaceutical Engineering of Ministry of Education, College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Yaping Lv
- Key Laboratory of Pharmaceutical Engineering of Ministry of Education, College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Weihui Zhong
- Key Laboratory of Pharmaceutical Engineering of Ministry of Education, College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| |
Collapse
|
50
|
Kumar G, Muthukumar A, Sekar G. A Mild and Chemoselective Hydrosilylation of α-Keto Amides by Using a Cs2
CO3
/PMHS/2-MeTHF System. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Govindharaj Kumar
- Department of Chemistry; Indian Institute of Technology Madras; 600036 Chennai India
| | - Alagesan Muthukumar
- Department of Chemistry; Indian Institute of Technology Madras; 600036 Chennai India
| | - Govindasamy Sekar
- Department of Chemistry; Indian Institute of Technology Madras; 600036 Chennai India
| |
Collapse
|