1
|
Song DX, Song YH, Huang HH, Huang XY, Yang F, Ji K, Chen ZS. Divergent Reactions of α-Diazo 1,3-Dicarbonyl Compounds with Allylic Carbonates Involving Ketene versus Carbene Intermediates Enabled by Cooperative Rh(II)/Pd(0) Dual Catalysis. Org Lett 2024; 26:7920-7925. [PMID: 39248657 DOI: 10.1021/acs.orglett.4c02947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A cooperative Rh(II)/Pd(0) dual-catalysis strategy that enabled divergent reactions of α-diazo 1,3-dicarbonyl compounds with allylic carbonates involving ketene versus carbene intermediates is described. The efficient synthesis of α-quaternary allylated β-keto-esters was accomplished by the Rh(II)/Pd(0) dual-catalysis allylic alkylation of α-diazo 1,3-dicarbonyl compounds. Alternatively, an unprecedented (1+4) annulation of α-diazo 1,3-dicarbonyl compounds with 2-(hydroxymethyl)allyl carbonates via Rh(II)/Pd(0) dual catalysis was also successfully developed, affording a wide variety of α-quaternary tetrahydrofurans in good to high yields.
Collapse
Affiliation(s)
- De-Xin Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Yu-Hua Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Heng-Hua Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Xiao-Yan Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Fang Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Kegong Ji
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zi-Sheng Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
2
|
Chen H, Yang W, Zhang J, Lu B, Wang X. Divergent Geminal Alkynylation-Allylation and Acylation-Allylation of Carbenes: Evolution and Roles of Two Transition-Metal Catalysts. J Am Chem Soc 2024; 146:4727-4740. [PMID: 38330247 DOI: 10.1021/jacs.3c12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Cooperative bimetallic catalysis to access novel reactivities is a powerful strategy for reaction development in transition-metal-catalyzed chemistry. Particularly, elucidation of the evolution of two transition-metal catalysts and understanding their roles in dual catalysis are among the most fundamental goals for bimetallic catalysis. Herein, a novel three-component reaction of a terminal alkyne, a diazo ester, and an allylic carbonate was successfully developed via cooperative Cu/Rh catalysis with Xantphos as the ligand, providing a highly efficient strategy to access 1,5-enynes with an all-carbon quaternary center that can be used as immediate synthetic precursors for complex cyclic molecules. Notably, a Meyer-Schuster rearrangement was involved in the reactions using propargylic alcohols, resulting in an unprecedented acylation-allylation of carbenes. Mechanistic studies suggested that in the course of the reaction Cu(I) species might aggregate to some types of Cu clusters and nanoparticles (NPs), while the Rh(II)2 precursor can dissociate to mono-Rh species, wherein Cu NPs are proposed to be responsible for the alkynylation of carbenes and work in cooperation with Xantphos-coordinated dirhodium(II) or Rh(I)-catalyzed allylic alkylation.
Collapse
Affiliation(s)
- Hongda Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wenhan Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinyu Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bin Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
3
|
Wang GY, Ge Z, Ding K, Wang X. Cooperative Bimetallic Catalysis via One-Metal/Two-Ligands: Mechanistic Insights of Polyfluoroarylation-Allylation of Diazo Compounds. Angew Chem Int Ed Engl 2023; 62:e202307973. [PMID: 37327073 DOI: 10.1002/anie.202307973] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/18/2023]
Abstract
Metal/ligand in situ assembly is crucial for tailoring the reactivity & selectivity in transition metal catalysis. Cooperative catalysis via a single metal/two ligands is still underdeveloped, since it is rather challenging to harness the distinct reactivity profiles of the species generated by self-assembly of a single metal precursor with a mixture of different ligands. Herein, we report a catalytic system composed of a single metal/two ligands for a three-component reaction of polyfluoroarene, α-diazo ester, and allylic electrophile, leading to highly efficient construction of densely functionalized quaternary carbon centers, that are otherwise hardly accessible. Mechanistic studies suggest this reaction follows a cooperative bimetallic pathway via two catalysts with distinct reactivity profiles, which are assembled in situ from a single metal precursor and two ligands and work in concert to escort the transformation.
Collapse
Affiliation(s)
- Gao-Yin Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Oganometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Zhaoliang Ge
- State Key Laboratory of Oganometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Kuiling Ding
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Oganometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoming Wang
- State Key Laboratory of Oganometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
4
|
Cai LY, Song XQ, Wang K, Zhang Y, Zhao HW. Pd-catalyzed decarboxylative 1,4-addition reactions of benzofuran-based azadienes with allyl phenyl carbonates. Org Biomol Chem 2023; 21:6556-6564. [PMID: 37525936 DOI: 10.1039/d3ob00968h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Under the catalysis of Pd(OAc)2/dppf/Na2CO3, the decarboxylative 1,4-addition reaction of benzofuran-based azadienes with allyl phenyl carbonates took place easily and delivered the desired products in reasonable chemical yields. The chemical structure of the target compounds was clearly identified by single crystal X-ray structural analysis.
Collapse
Affiliation(s)
- Lu-Yu Cai
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xiu-Qing Song
- Large-scale Instruments and Equipments Sharing Platform, Beijing University of Technology, Beijing 100124, P. R. China
| | - Kuo Wang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Yue Zhang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Hong-Wu Zhao
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
5
|
Du M, Wang X, Zhang J, Liu P, Li CT. Rh(II)/Pd(0) Dual Catalysis: Interception of Ammonium Ylide with Allyl Palladium to Construct 2,2-Disubstituted Tetrahydroquinoline Derivatives. J Org Chem 2023. [PMID: 37300500 DOI: 10.1021/acs.joc.3c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
New synthetic methods to construct 2,2-disubstituted tetrahydroquinoline derivatives are of significant value in pharmaceutical chemistry. Herein, a Rh(II)/Pd(0) dual-catalyzed diazo α-aminoallylation reaction has been developed between allylpalladium(II) and ammonium ylides derived from the Rh2(OAc)4-mediated intramolecular N-H bond insertion reaction of diazo compounds, affording various 2,2-disubstituted tetrahydroquinoline derivatives in good yields up to 93% with high chemoselectivities under mild reaction conditions. A substrate scope investigation reveals broad ester substituent tolerance, and control experiments provide the basis for a proposed reaction mechanism.
Collapse
Affiliation(s)
- Mingxi Du
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engneering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Xueying Wang
- Analysis and Testing Centre, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Jie Zhang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engneering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Ping Liu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engneering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Chun-Tian Li
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engneering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| |
Collapse
|
6
|
Li S, Tong WY, Zhou Q, Yu X, Shi JL, Li SS, Qu S, Wang J. Palladium-Catalyzed Oxidative Coupling of Dibenzosiloles with α-Diazo Esters: Formal Replacement of the Silyl Group with Carbenes. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Shichao Li
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wen-Yan Tong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Qi Zhou
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Xiang Yu
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jiang-Ling Shi
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Shu-Sen Li
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Shuanglin Qu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Ge Z, Lu B, Teng H, Wang X. Efficient Synthesis of Diaryl Quaternary Centers by Rh(II)/Xantphos Catalyzed Relay C-H Functionalization and Allylic Alkylation. Chemistry 2023; 29:e202202820. [PMID: 36239082 DOI: 10.1002/chem.202202820] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 11/06/2022]
Abstract
A three-component reaction of N, N-disubstituted aniline, α-diazo ester, and an allylic electrophile has been realized by [Rh(II)]2 /Xantphos catalysis, providing a direct access to various aniline derivatives bearing diaryl allylic quaternary centers in good yields. The synthetic utility of this protocol was demonstrated by facile derivatization of the products for preparation of biologically relevant molecules and structural scaffolds, which offers a high potential for increasing the molecular diversity. Mechanistic studies identified α, α-diarylacetate species as an active intermediate, thereby revealing the presence of a C(sp2 )-H functionalization of aniline derivatives/allylic alkylation cascade in this attractive catalytic transformation.
Collapse
Affiliation(s)
- Zhaoliang Ge
- College of Science, Huazhong Agricultural University, Shizishan Avenue, Wuhan, 430070, P. R. China.,State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Bin Lu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Huailong Teng
- College of Science, Huazhong Agricultural University, Shizishan Avenue, Wuhan, 430070, P. R. China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,School of Chemistry and Materials Science Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| |
Collapse
|
8
|
Three-component Chemo-selective Oxy-allylation of α-Diazo Carbonyl Compounds: Access to α-Ternary Carboxylic Esters. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Wang DK, Li LB, Liu FL, Qiu H, Li JZ, Zhang J, Deng C, Wei WT. Fe-Catalyzed Selective Formal Insertion of Diazo Compounds into C(sp)-C(sp 3) Bonds of Propargyl Alcohols: Access to Alkyne-Substituted All-Carbon Quaternary Centers. ACS CENTRAL SCIENCE 2022; 8:1028-1034. [PMID: 35912339 PMCID: PMC9336152 DOI: 10.1021/acscentsci.2c00204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 06/15/2023]
Abstract
The construction of all-carbon quaternary centers, especially those containing an alkyne-substituted framework, represents an important challenge in organic synthesis. Here we present a novel Fe-catalyzed selective formal insertion of diazo compounds into C(sp)-C(sp3) bonds of propargyl alcohols under mild conditions that enables the streamlined construction of alkyne-substituted all-carbon quaternary centers. This unique strategy starts with in situ generation of an ester group in the presence of carboxylic acids, followed by insertion of metal-carbene into C(sp)-C(sp3) bonds, which may open up a new reaction mode for exploring metal-carbene insertion into acyclic C-C bonds.
Collapse
Affiliation(s)
- Dong-Kai Wang
- School
of Materials Science and Chemical Engineering, Key Laboratory of Advanced
Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Liu-Bin Li
- School
of Materials Science and Chemical Engineering, Key Laboratory of Advanced
Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Fa-Liang Liu
- School
of Materials Science and Chemical Engineering, Key Laboratory of Advanced
Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Hui Qiu
- School
of Materials Science and Chemical Engineering, Key Laboratory of Advanced
Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jiao-Zhe Li
- School
of Materials Science and Chemical Engineering, Key Laboratory of Advanced
Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jianfeng Zhang
- School
of Materials Science and Chemical Engineering, Key Laboratory of Advanced
Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chao Deng
- Jiangsu
Key Laboratory of Pesticide Science and Department of Chemistry, College
of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Wen-Ting Wei
- School
of Materials Science and Chemical Engineering, Key Laboratory of Advanced
Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
10
|
Ou P, Zhu L, Yu Y, Ma L, Huang X. Palladium-Catalyzed Three-Component Selective Aminoallylation of Diazo Compounds. Org Lett 2022; 24:4160-4164. [PMID: 35657704 DOI: 10.1021/acs.orglett.2c01399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We describe a Xantphos-containing dinuclear palladium complex-enabled geminal aminoallylation of diazocarbonyl compounds, which selectively provides a range of quaternary α-amino esters. Direct N-H insertion, allylic alkylation of amino nucleophiles, and diene formation were not observed under standard conditions. Mechanistic studies indicated that a relayed pathway via allylation of the N-H insertion product or [2,3]-sigmatropic rearrangement of an ylide intermediate was unlikely.
Collapse
Affiliation(s)
- Pengcheng Ou
- State Key Laboratory of Structure Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Lei Zhu
- State Key Laboratory of Structure Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yinghua Yu
- State Key Laboratory of Structure Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Liyao Ma
- State Key Laboratory of Structure Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xueliang Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
11
|
Xuan Z, chen ZS. Cooperative Rh(II)/Pd(0) Dual‐Catalyzed Gem‐Difunctionalization of α‐Diazo Carbonyl Compounds: Construction of Quaternary Carbon Centers. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zi Xuan
- Gyeongsang National University Department of Chemistry (BK 21 Four) KOREA, REPUBLIC OF
| | - zi-sheng chen
- Northwest A&F University College of Chemistry and Pharmacy Yangling 712100, Shaanxi, P. R. China 712100 Shaanxi CHINA
| |
Collapse
|
12
|
Kattela S, Roque D. Correia C, Ros A, Hornillos V, Iglesias-Sigüenza J, Fernández R, Lassaletta JM. Pd-Catalyzed Dynamic Kinetic Asymmetric Cross-Coupling of Heterobiaryl Bromides with N-Tosylhydrazones. Org Lett 2022; 24:3812-3816. [PMID: 35604334 PMCID: PMC9490869 DOI: 10.1021/acs.orglett.2c01355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
A dynamic kinetic
asymmetric Pd-catalyzed cross-coupling reaction
of heterobiaryl bromides with ketone N-tosylhydrazones
for the synthesis of heterobiaryl styrenes is described. The combination
of Pd(dba)2 as a precatalyst with a TADDOL-derived phosphoramidite
ligand provides the corresponding coupling products in good yields
and high enantioselectivities under mild conditions. Racemization-free N-oxidation and N-alkylation of the products
allowed us to obtain appealing functionalized axially chiral heterobiaryl
derivatives.
Collapse
Affiliation(s)
- Shivashankar Kattela
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | | | - Abel Ros
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Valentín Hornillos
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Javier Iglesias-Sigüenza
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| |
Collapse
|
13
|
Wu M, Ruan X, Han Z, Gong L. Palladium‐Catalyzed Cascade C−H Functionalization/Asymmetric Allylation Reaction of Aryl α‐Diazoamides and Allenes: Lewis Acid Makes a Difference. Chemistry 2022; 28:e202104218. [DOI: 10.1002/chem.202104218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Min‐Song Wu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Xiao‐Yun Ruan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Zhi‐Yong Han
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Liu‐Zhu Gong
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
14
|
Cheng M, Huang XY, Yang F, Zhao DM, Ji K, Chen ZS. Palladium-Catalyzed Carbene Migratory Insertion/Carbonylation Cascade Reaction: Synthesis of 2-Indolones with a C3 All-Carbon Quaternary Center. Org Lett 2022; 24:1237-1242. [PMID: 35099973 DOI: 10.1021/acs.orglett.2c00073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An attractive palladium-catalyzed three-component reaction of ortho-amino aryl diazo esters, allyl carboxylates, and carbon monoxide (CO) has been developed. This catalytic system rendered domino carbene migratory insertion and carbonylation. Remarkably, 2-indolones 3 with a C3 all-carbon quaternary center can be selectively obtained in good to excellent yields via one-pot synthesis, in which two different C-C bonds and one C-N bond were formed in a straightforward manner.
Collapse
Affiliation(s)
- Ming Cheng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Xiao-Yan Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Fang Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Dong-Mei Zhao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Kegong Ji
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zi-Sheng Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
15
|
Kang Z, Chang W, Tian X, Fu X, Zhao W, Xu X, Liang Y, Hu W. Ternary Catalysis Enabled Three-Component Asymmetric Allylic Alkylation as a Concise Track to Chiral α,α-Disubstituted Ketones. J Am Chem Soc 2021; 143:20818-20827. [PMID: 34871492 DOI: 10.1021/jacs.1c09148] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multicomponent reactions that involve interception of onium ylides through Aldol, Mannich, and Michael addition with corresponding bench-stable acceptors have demonstrated broad applications in synthetic chemistry. However, because of the high reactivity and transient survival of these in situ generated intermediates, the substitution-type interception process, especially the asymmetric catalytic version, remains hitherto unknown. Herein, a three-component asymmetric allylation of α-diazo carbonyl compounds with alcohols and allyl carbonates is disclosed by employing a ternary cooperative catalysis of achiral Pd-complex, Rh2(OAc)4, and chiral phosphoric acid CPA. This method represents the first example of three-component asymmetric allylic alkylation through an SN1-type trapping process, which involves a convergent assembly of two active intermediates, Pd-allyl species, and enol derived from onium ylides, providing an expeditious access to chiral α,α-disubstituted ketones in good to high yields with high to excellent enantioselectivity. Combined experimental and computational studies have shed light on the mechanism of this novel three-component reaction, including the critical role of Xantphos ligand and the origin of enantioselectivity.
Collapse
Affiliation(s)
- Zhenghui Kang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenju Chang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xue Tian
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiang Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
16
|
Zhou QQ, Cheng M, Liu Q, Qu BQ, Huang XY, Yang F, Ji K, Chen ZS. Cooperative Rh(II)/Pd(0) Dual Catalysis: Synthesis of Highly Substituted 3(2 H)-Furanones with a C2-Quaternary Center via a Cyclization/Allylic Alkylation Cascade of α-Diazo-δ-keto-esters. Org Lett 2021; 23:9151-9156. [PMID: 34780172 DOI: 10.1021/acs.orglett.1c03469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A cooperative Rh(II)/Pd(0) dual-catalysis strategy that promotes a cyclization/allylic alkylation cascade of stable α-diazo-δ-keto-esters has been developed. Highly substituted 3(2H)-furanones with a C2-quaternary center can be obtained efficiently under mild conditions via one-pot synthesis. Remarkably, this binary catalytic system shows high chemo-, regio-, and stereoselectivity and excellent tolerance to various functionalities.
Collapse
Affiliation(s)
- Qian-Qian Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Ming Cheng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Qing Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Bing-Qian Qu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Xiao-Yan Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Fang Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Kegong Ji
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zi-Sheng Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
17
|
Jiang Z, Niu SL, Zeng Q, Ouyang Q, Chen YC, Xiao Q. Selective Alkynylallylation of the C-C σ Bond of Cyclopropenes. Angew Chem Int Ed Engl 2021; 60:297-303. [PMID: 32909645 DOI: 10.1002/anie.202008886] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/12/2020] [Indexed: 01/04/2023]
Abstract
A Pd-catalyzed regio- and stereoselective alkynylallylation of a specific C-C σ bond in cyclopropenes, using allyl propiolates as both allylation and alkynylation reagents, has been achieved for the first time. By merging selective C(sp2 )-C(sp3 ) bond scission with conjunctive cross-couplings, this decarboxylative reorganization reaction features fascinating atom and step economy and provides an efficient approach to highly functionalized dienynes from readily available substrates. Without further optimization, gram-scale products can be easily obtained by such a simple, neutral, and low-cost catalytic system with high TONs. DFT calculations afford a rationale toward the formation of the products and indicate that the selective insertion of the double bond of cyclopropenes into the C-Pd bond of ambidentate Pd complex and the subsequent nonclassical β-C elimination promoted by 1,4-palladium migration are critical for the success of the reaction.
Collapse
Affiliation(s)
- Zeqi Jiang
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Sheng-Li Niu
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Qiang Zeng
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Qin Ouyang
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Ying-Chun Chen
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Qing Xiao
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| |
Collapse
|
18
|
Jiang Z, Niu S, Zeng Q, Ouyang Q, Chen Y, Xiao Q. Selective Alkynylallylation of the C−C σ Bond of Cyclopropenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zeqi Jiang
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| | - Sheng‐Li Niu
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| | - Qiang Zeng
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| | - Qin Ouyang
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| | - Ying‐Chun Chen
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| | - Qing Xiao
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| |
Collapse
|
19
|
Phan Thi Thanh N, Dang Thi Thu H, Tone M, Inoue H, Iwasa S. Synthesis of Oxindole Derivatives via Intramolecular C–H Insertion of Diazoamides Using Ru(II)-Pheox Catalyst. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Tucker ZD, Hill HM, Smith AL, Ashfeld BL. Diverting β-Hydride Elimination of a π-Allyl Pd II Carbene Complex for the Assembly of Disubstituted Indolines via a Highly Diastereoselective (4 + 1)-Cycloaddition. Org Lett 2020; 22:6605-6609. [PMID: 32806141 DOI: 10.1021/acs.orglett.0c02374] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A Pd0-catalyzed formal (4 + 1)-cycloaddition approach to 2,3-disubstituted dihydroindoles is described. The diastereoselective formation of dihydroindoles that is highlighted by a carbene migratory insertion/reductive elimination sequence proceeding via a π-allyl PdII-species compliments existing methods of indoline assembly.
Collapse
Affiliation(s)
- Zachary D Tucker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Harrison M Hill
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Andrew L Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Brandon L Ashfeld
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
21
|
Affiliation(s)
- Guillaume Pisella
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Alec Gagnebin
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Song B, Xie P, Li Y, Hao J, Wang L, Chen X, Xu Z, Quan H, Lou L, Xia Y, Houk KN, Yang W. Pd-Catalyzed Decarboxylative Olefination: Stereoselective Synthesis of Polysubstituted Butadienes and Macrocyclic P-glycoprotein Inhibitors. J Am Chem Soc 2020; 142:9982-9992. [DOI: 10.1021/jacs.0c00078] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bichao Song
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peipei Xie
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yingzi Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Jiping Hao
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| | - Lu Wang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Zhongliang Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitian Quan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Weibo Yang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan 114051, China
| |
Collapse
|
23
|
Wang ZY, Wang KK, Chen R, Liu H, Chen K. Ynones in Reflex-Michael Addition, CuAAC, and Cycloaddition, as Well as their Use as Nucleophilic Enols, Electrophilic Ketones, and Allenic Precursors. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901921] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhan-Yong Wang
- College of Chemistry and Chemical Engineering; Xinxiang University; 453000 Xinxiang Henan P. R. of China
| | - Kai-Kai Wang
- College of Chemistry and Chemical Engineering; Xinxiang University; 453000 Xinxiang Henan P. R. of China
| | - Rongxiang Chen
- College of Chemistry and Chemical Engineering; Xinxiang University; 453000 Xinxiang Henan P. R. of China
| | - Huan Liu
- College of Chemistry and Chemical Engineering; Xinxiang University; 453000 Xinxiang Henan P. R. of China
| | - Kaijun Chen
- Department of Chemistry; Lishui University; No. 1, Xueyuan Road 323000 Lishui City Zhejiang Province P. R. China
| |
Collapse
|
24
|
Zhu L, Ren X, Yu Y, Ou P, Wang ZX, Huang X. Palladium-Catalyzed Three-Component Coupling Reaction of o-Bromobenzaldehyde, N-Tosylhydrazone, and Methanol. Org Lett 2020; 22:2087-2092. [DOI: 10.1021/acs.orglett.0c00579] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lei Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xiaojian Ren
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Pengcheng Ou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Wang XX, Huang XY, Lei SH, Yang F, Gao JM, Ji K, Chen ZS. Relay Rh(ii)/Pd(0) dual catalysis: synthesis of α-quaternary β-keto-esters via a [1,2]-sigmatropic rearrangement/allylic alkylation cascade of α-diazo tertiary alcohols. Chem Commun (Camb) 2020; 56:782-785. [PMID: 31845674 DOI: 10.1039/c9cc08559a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A relay Rh(ii)/Pd(0) dual catalysis that enables domino [1,2]-sigmatropic rearrangement/allylic alkylation of α-diazo tertiary alcohols is described. This transformation represents a highly efficient method for the one-pot synthesis of α-quaternary β-keto-esters under mild conditions, in which two separate C-C σ-bonds at the carbenic center were formed in a straightforward manner.
Collapse
Affiliation(s)
- Xian-Xu Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Komatsuda M, Kato H, Muto K, Yamaguchi J. Pd-Catalyzed Dearomative Three-Component Reaction of Bromoarenes with Diazo Compounds and Allylborates. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03461] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masaaki Komatsuda
- Department of Applied Chemistry, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| | - Hiroki Kato
- Department of Applied Chemistry, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| | - Kei Muto
- Department of Applied Chemistry, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
27
|
Yu Z, Mendoza A. Enantioselective Assembly of Congested Cyclopropanes using Redox-Active Aryldiazoacetates. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02615] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhunzhun Yu
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden
| | - Abraham Mendoza
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden
| |
Collapse
|
28
|
Li Y, Han J, Luo H, An Q, Cao XP, Li B. Access to Benzylic Quaternary Carbons from Aromatic Ketones. Org Lett 2019; 21:6050-6053. [PMID: 31310556 DOI: 10.1021/acs.orglett.9b02204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The construction of benzylic all-carbon quaternary stereocenters, which are ubiquitous in biomolecules and drugs, is a task of high practical significance. Herein, we disclose a highly efficient one-pot method of constructing all-carbon quaternary structural units from aryl ketones, revealing that the entire process involves three consecutive chemical events, namely nucleophilic addition, Meinwald 1,2-hydrogen migration, and alkylation. Interestingly, dimerization of acetophenones results in formation of 2,4-diarylfurans under the employed conditions rather than the quaternary carbon products.
Collapse
Affiliation(s)
- You Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou , 730000 , P. R. China
| | - Jingpeng Han
- School of Chemistry and Chemical Engineering , Chongqing University , 174 Shazheng Street , Chongqing , 400030 , P. R. China
| | - Han Luo
- School of Chemistry and Chemical Engineering , Chongqing University , 174 Shazheng Street , Chongqing , 400030 , P. R. China
| | - Qiaoyu An
- School of Chemistry and Chemical Engineering , Chongqing University , 174 Shazheng Street , Chongqing , 400030 , P. R. China
| | - Xiao-Ping Cao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou , 730000 , P. R. China
| | - Baosheng Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou , 730000 , P. R. China.,School of Chemistry and Chemical Engineering , Chongqing University , 174 Shazheng Street , Chongqing , 400030 , P. R. China
| |
Collapse
|
29
|
Wei W, Chen S, Xia Y, Li M, Li X, Han Y, Wang C, Liang Y. Palladium‐Catalyzed Intramolecular Self‐Alkylation of Polyfluoroarene via Heck and Decarboxylation Process. ChemCatChem 2019. [DOI: 10.1002/cctc.201900303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wan‐Xu Wei
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P.R. China
| | - Si Chen
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P.R. China
| | - Yu Xia
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P.R. China
| | - Ming Li
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P.R. China
| | - Xue‐Song Li
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P.R. China
| | - Ya‐Ping Han
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P.R. China
| | - Cui‐Tian Wang
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P.R. China
| | - Yong‐Min Liang
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P.R. China
| |
Collapse
|
30
|
Lin WB, Mou Y, Lu HY, Hu ZQ, Chen CF. Metal-free construction of contiguous quaternary stereocentres with a polycyclic framework. Chem Commun (Camb) 2019; 55:4631-4634. [PMID: 30932125 DOI: 10.1039/c9cc01632e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of contiguous all-carbon quaternary stereocentres with an arene-annulated polycyclic framework were constructed efficiently by a metal-free and atom economic acid-catalyzed method. The reactions could be performed by acid-catalyzed cationic cyclization and rearrangement under mild conditions. Moreover, the resulting polycyclic products showed highly twisted architectures with two perpendicular planes.
Collapse
Affiliation(s)
- Wei-Bin Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | |
Collapse
|
31
|
Chen L, Ma Y, Yang F, Huang X, Chen S, Ji K, Chen Z. Chemo‐selective Rh(II)/Pd(0) Dual Catalysis: Synthesis of All‐Carbon C3‐Quaternary Allylic Oxindoles from
N
‐Aryl‐
α
‐Diazo‐
β
‐Keto‐Amides with Functionalized Allyl Carbonates. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801346] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ling‐Hang Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and PharmacyNorthwest A&F University Yangling 712100, Shaanxi People's Republic of China
| | - Yang‐Ting Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and PharmacyNorthwest A&F University Yangling 712100, Shaanxi People's Republic of China
| | - Fang Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and PharmacyNorthwest A&F University Yangling 712100, Shaanxi People's Republic of China
| | - Xiao‐Yan Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and PharmacyNorthwest A&F University Yangling 712100, Shaanxi People's Republic of China
| | - Shu‐Wei Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and PharmacyNorthwest A&F University Yangling 712100, Shaanxi People's Republic of China
| | - Kegong Ji
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and PharmacyNorthwest A&F University Yangling 712100, Shaanxi People's Republic of China
| | - Zi‐Sheng Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and PharmacyNorthwest A&F University Yangling 712100, Shaanxi People's Republic of China
| |
Collapse
|
32
|
Lv X, Yang H, Shi T, Xing D, Xu X, Hu W. Rhodium(II)‐Catalyzed Formal [4+1]‐Cycloaddition of Pyridotriazoles and Propargyl Alcohols: Synthesis of 2,5‐Dihydrofurans. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xinxin Lv
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Chemical EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 People's Republic of China
| | - Haijian Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Chemical EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 People's Republic of China
| | - Taoda Shi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Chemical EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 People's Republic of China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Chemical EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 People's Republic of China
| | - Xinfang Xu
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Wenhao Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Chemical EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 People's Republic of China
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| |
Collapse
|
33
|
Zhou PX, Shi S, Wang J, Zhang Y, Li C, Ge C. Palladium/copper-catalyzed decarbonylative heteroarylation of amides via C–N bond activation. Org Chem Front 2019. [DOI: 10.1039/c9qo00106a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel strategy for the synthesis of 2-arylated oxazole derivatives via palladium/copper-catalyzed decarbonylative heteroarylation of amides via C–N bond activation by ground-state destabilization is reported.
Collapse
Affiliation(s)
- Ping-Xin Zhou
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang
- China
| | - Shuai Shi
- School of Foreign Language
- Xinxiang Medical University
- Xinxiang
- China
| | - Jia Wang
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang
- China
| | - Yalei Zhang
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang
- China
| | - Changzheng Li
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang
- China
| | - Chunpo Ge
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang
- China
| |
Collapse
|
34
|
He F, Koenigs RM. Visible light mediated, metal-free carbene transfer reactions of diazoalkanes with propargylic alcohols. Chem Commun (Camb) 2019; 55:4881-4884. [DOI: 10.1039/c9cc00927b] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The photolysis of donor–acceptor diazoalkanes in the presence of propargylic alcohols furnishes valuable, sterically demanding tetra-substituted cyclopropenes in high yield under metal-free conditions.
Collapse
Affiliation(s)
- Feifei He
- RWTH Aachen University
- Institute of Organic Chemistry
- D-52074 Aachen
- Germany
| | - Rene M. Koenigs
- RWTH Aachen University
- Institute of Organic Chemistry
- D-52074 Aachen
- Germany
| |
Collapse
|
35
|
Ping Y, Chang T, Wang K, Huo J, Wang J. Palladium-catalyzed oxidative borylation of conjugated enynones through carbene migratory insertion: synthesis of furyl-substituted alkenylboronates. Chem Commun (Camb) 2019; 55:59-62. [DOI: 10.1039/c8cc09024f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A new method for the synthesis of furyl-substituted alkenylboronates has been developed by palladium-catalyzed oxidative borylation reaction of conjugated enynones.
Collapse
Affiliation(s)
- Yifan Ping
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Taiwei Chang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Kang Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Jingfeng Huo
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|
36
|
Albéniz AC. Reactive Palladium Carbenes: Migratory Insertion and Other Carbene–Hydrocarbyl Coupling Reactions on Well‐Defined Systems. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ana C. Albéniz
- IU CINQUIMA/Química Inorgánica Universidad de Valladolid 47071 Valladolid Spain
| |
Collapse
|
37
|
Li PH, Yu LZ, Zhang XY, Shi M. Cu(I)-Catalyzed Coupling and Cycloisomerization of Diazo Compounds with Terminal Yne-Alkylidenecyclopropanes: Synthesis of Functionalized Cyclopenta[b]naphthalene Derivatives. Org Lett 2018; 20:4516-4520. [DOI: 10.1021/acs.orglett.8b01812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Peng-Hua Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People’s Republic of China
| | - Liu-Zhu Yu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People’s Republic of China
| | - Xiao-Yu Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People’s Republic of China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People’s Republic of China
- State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, People’s Republic of China
| |
Collapse
|
38
|
Zhou PX, Zhang Y, Ge C, Liang YM, Li C. Palladium-Catalyzed Carbene Migratory Insertion and Trapping with Sulfinic Acid Salts toward Allylic Sulfones. J Org Chem 2018; 83:4762-4768. [DOI: 10.1021/acs.joc.8b00615] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ping-Xin Zhou
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yalei Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Chunbo Ge
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Changzheng Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| |
Collapse
|
39
|
Jana S, Roy A, Lepore SD. Diversification reactions of γ-silyl allenyl esters: selective conversion to all-carbon quaternary centers and γ-allene dicarbinols. Chem Commun (Camb) 2018; 53:5125-5127. [PMID: 28435948 DOI: 10.1039/c7cc01708a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unique reactivity of γ-silyl allenyl esters is described. Taking advantage of the silyl group as a fluoride acceptor, these allenoates readily underwent addition to a variety of electrophiles to selectively yield products with all-carbon quaternary centers or allenoate dicarbinols. These dicarbinols were subsequently converted to novel highly substituted 6-hydro-2-pyrones.
Collapse
Affiliation(s)
- Susovan Jana
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431-0991, USA.
| | | | | |
Collapse
|
40
|
Guo W, Kuniyil R, Gómez JE, Maseras F, Kleij AW. A Domino Process toward Functionally Dense Quaternary Carbons through Pd-Catalyzed Decarboxylative C(sp3)–C(sp3) Bond Formation. J Am Chem Soc 2018; 140:3981-3987. [DOI: 10.1021/jacs.7b12608] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wusheng Guo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Rositha Kuniyil
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - José Enrique Gómez
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química, Universitat Autónoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
41
|
Xia Y, Qiu D, Wang J. Transition-Metal-Catalyzed Cross-Couplings through Carbene Migratory Insertion. Chem Rev 2017; 117:13810-13889. [PMID: 29091413 DOI: 10.1021/acs.chemrev.7b00382] [Citation(s) in RCA: 800] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transition-metal-catalyzed cross-coupling reactions have been well-established as indispensable tools in modern organic synthesis. One of the major research goals in cross-coupling area is expanding the scope of the coupling partners. In the past decade, diazo compounds (or their precursors N-tosylhydrazones) have emerged as nucleophilic cross-coupling partners in C-C single bond or C═C double bond formations in transition-metal-catalyzed reactions. This type of coupling reaction involves the following general steps. First, the organometallic species is generated by various processes, including oxidative addition, transmetalation, cyclization, C-C bond cleavage, and C-H bond activation. Subsequently, the organometallic species reacts with the diazo substrate to generate metal carbene intermediate, which undergoes rapid migratory insertion to form a C-C bond. The new organometallic species generated from migratory insertion may undergo various transformations. This type of carbene-based coupling has proven to be general: various transition metals including Pd, Cu, Rh, Ni, Co, and Ir are effective catalysts; the scope of the reaction has also been extended to substrates other than diazo compounds; and various cascade processes have also been devised based on the carbene migratory insertion. This review will summarize the achievements made in this field since 2001.
Collapse
Affiliation(s)
- Ying Xia
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Di Qiu
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| |
Collapse
|
42
|
Wang K, Lu Y, Hu F, Yang J, Zhang Y, Wang ZX, Wang J. Palladium-Catalyzed Reductive Cross-Coupling Reaction of Aryl Chromium(0) Fischer Carbene Complexes with Aryl Iodides. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Kang Wang
- Beijing National
Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry, Peking University, Beijing 100871, People’s Republic of China
| | - Yu Lu
- School
of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Fangdong Hu
- Beijing National
Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry, Peking University, Beijing 100871, People’s Republic of China
| | - Jinghui Yang
- Beijing National
Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry, Peking University, Beijing 100871, People’s Republic of China
| | - Yan Zhang
- Beijing National
Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry, Peking University, Beijing 100871, People’s Republic of China
| | - Zhi-Xiang Wang
- School
of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jianbo Wang
- Beijing National
Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
43
|
Chen ZS, Huang XY, Chen LH, Gao JM, Ji K. Rh(II)/Pd(0) Dual Catalysis: Regiodivergent Transformations of Alkylic Oxonium Ylides. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02909] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zi-Sheng Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People’s Republic of China
| | - Xiao-Yan Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People’s Republic of China
| | - Ling-Hang Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People’s Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People’s Republic of China
| | - Kegong Ji
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People’s Republic of China
| |
Collapse
|
44
|
Li MM, Wei Y, Liu J, Chen HW, Lu LQ, Xiao WJ. Sequential Visible-Light Photoactivation and Palladium Catalysis Enabling Enantioselective [4+2] Cycloadditions. J Am Chem Soc 2017; 139:14707-14713. [DOI: 10.1021/jacs.7b08310] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Miao-Miao Li
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People’s Republic of China
| | - Yi Wei
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People’s Republic of China
| | - Jie Liu
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People’s Republic of China
| | - Hong-Wei Chen
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People’s Republic of China
| | - Liang-Qiu Lu
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People’s Republic of China
- State Key Laboratory for Oxo Synthesis and Selective
Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Wen-Jing Xiao
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| |
Collapse
|
45
|
Chen S, Wei W, Wang J, Xia Y, Shen Y, Wu X, Jing H, Liang Y. Palladium‐Catalyzed Isocyanide Insertion with Allylic Esters: Synthesis of
N
‐(But‐2‐enoyl)‐
N
‐(
tert
‐butyl)benzamide Derivatives
via
Intramolecular Acyl Transfer Termination. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Si Chen
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Wan‐Xu Wei
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jia Wang
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Yu Xia
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Yi Shen
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xin‐Xing Wu
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 People's Republic of China
| | - Huanwang Jing
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| | - Yong‐Min Liang
- Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
46
|
Reddy ACS, Choutipalli VSK, Ghorai J, Subramanian V, Anbarasan P. Stereoselective Palladium-Catalyzed Synthesis of Indolines via Intramolecular Trapping of N-Ylides with Alkenes. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Jayanta Ghorai
- Department
of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Pazhamalai Anbarasan
- Department
of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
47
|
Bera S, Daniliuc CG, Studer A. Durch N-heterocyclische Carbene katalysierte oxidative Dearomatisierung von Indolen zu spirocyclischen Indoleninen mit quartärem Stereozentrum. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701485] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Srikrishna Bera
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstraße 40 48149 Münster Deutschland
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstraße 40 48149 Münster Deutschland
| | - Armido Studer
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
48
|
Bera S, Daniliuc CG, Studer A. Oxidative N-Heterocyclic Carbene Catalyzed Dearomatization of Indoles to Spirocyclic Indolenines with a Quaternary Carbon Stereocenter. Angew Chem Int Ed Engl 2017; 56:7402-7406. [PMID: 28471010 DOI: 10.1002/anie.201701485] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/31/2017] [Indexed: 01/02/2023]
Abstract
An efficient method for the asymmetric intramolecular dearomatization of indoles by using oxidative N-heterocyclic carbene catalysis is demonstrated. Valuable optically active spirocyclic indolenines bearing an all-carbon quaternary stereocenter are obtained in excellent yields and with excellent enantioselectivity. The starting indoles are readily prepared and the reactions proceed through an intramolecular indole 3-acylation with an in situ generated acyl azolium intermediate to form a spirocyclic ketone moiety.
Collapse
Affiliation(s)
- Srikrishna Bera
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
49
|
Fu L, Mighion JD, Voight EA, Davies HML. Synthesis of 2,2,2,-Trichloroethyl Aryl- and Vinyldiazoacetates by Palladium-Catalyzed Cross-Coupling. Chemistry 2017; 23:3272-3275. [PMID: 28093820 DOI: 10.1002/chem.201700101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 11/11/2022]
Abstract
An efficient and convenient synthesis of 2,2,2-trichloroethyl (TCE) aryl- and vinyldiazoacetates was achieved by palladium-catalyzed cross-coupling reactions between TCE diazoacetates and aryl or vinyl iodides. The broad substrate scope allows for rapid and facile formation of TCE aryl- and vinyldiazoacetates, which recently have emerged as versatile reagents for rhodium-carbene chemistry.
Collapse
Affiliation(s)
- Liangbing Fu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, USA
| | - Jeffrey D Mighion
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, USA
| | - Eric A Voight
- Research & Development, AbbVie, 1 North Waukegan Road, North Chicago, Illinois, 60064, USA
| | - Huw M L Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, USA
| |
Collapse
|
50
|
Lei R, Wu Y, Dong S, Jia K, Liu S, Hu W. A Diastereoselective Multicomponent Reaction for Construction of Alkynylamide-Substituted α,β-Diamino Acid Derivatives To Hunt Hits. J Org Chem 2017; 82:2862-2869. [DOI: 10.1021/acs.joc.6b02761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ruirui Lei
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Chemical Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yong Wu
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Chemical Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Suzhen Dong
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Chemical Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Kaili Jia
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Chemical Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Shunying Liu
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Chemical Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wenhao Hu
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Chemical Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|