1
|
Funai T, Tanaka N, Sugimachi R, Wada SI, Urata H. Zn 2+ ions improve the fidelity of metal-mediated primer extension while suppressing intrinsic and Mn 2+-induced mutagenic effects by DNA polymerases. Org Biomol Chem 2024. [PMID: 39446115 DOI: 10.1039/d4ob01433b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
While Mn2+ ions are well-established for reducing the fidelity of DNA polymerases, leading to the misincorporation of nucleotides, our investigation of the effects of metal ions revealed a contrasting role of Zn2+. Here, we demonstrate that Zn2+ ions enhance the fidelity of DNA polymerases (the 3' → 5' exonuclease-deficient Klenow fragment and Taq DNA polymerase) by suppressing misincorporation during primer extension reactions. Remarkably, Zn2+ ions inhibit both intrinsic misincorporation and Mn2+-induced misincorporation of nucleotides. Furthermore, Zn2+ ions also effectively suppressed misincorporation during metal-mediated primer extension reactions, which involved forming Ag+ and Hg2+ ion-mediated base pairs. These findings suggest that Zn2+ ions inhibit both intrinsic and Mn2+-induced mismatched base pair formation. Consequently, the combined use of Mn2+ and Zn2+ ions may offer a strategy for precisely regulating the fidelity of DNA polymerases. Remarkably, Zn2+ ions even suppress misincorporation in primer extension reactions that rely on metal-mediated base pairs, and conversely, this suggests that DNA polymerases recognize metal-mediated base pairs such as T-Hg2+-T, C-Ag+-A, and C-Ag+-T as relatively stable base pairs. These results imply that Zn2+ ions may also enhance the fidelity of DNA polymerases when incorporating non-canonical nucleobases, potentially paving the way for the expansion of the genetic alphabet.
Collapse
Affiliation(s)
- Tatsuya Funai
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Natsumi Tanaka
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Riyo Sugimachi
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Shun-Ichi Wada
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Hidehito Urata
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
2
|
Takezawa Y, Shionoya M. Enzymatic synthesis of ligand-bearing oligonucleotides for the development of metal-responsive DNA materials. Org Biomol Chem 2024; 22:7259-7270. [PMID: 38967487 DOI: 10.1039/d4ob00947a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Metal-mediated artificial base pairs are some of the most promising building blocks for constructing DNA-based supramolecules and functional materials. These base pairs are formed by coordination bonds between ligand-type nucleobases and a bridging metal ion and have been exploited to develop metal-responsive DNA materials and DNA-templated metal arrays. In this review, we provide an overview of methods for the enzymatic synthesis of DNA strands containing ligand-type artificial nucleotides that form metal-mediated base pairs. Conventionally, ligand-bearing DNA oligomers have been synthesized via solid-phase synthesis using a DNA synthesizer. In recent years, there has been growing interest in enzymatic methods as an alternative approach to synthesize ligand-bearing DNA oligomers, because enzymatic reactions proceed under mild conditions and do not require protecting groups. DNA polymerases are used to incorporate ligand-bearing unnatural nucleotides into DNA, and DNA ligases are used to connect artificial DNA oligomers to natural DNA fragments. Template-independent polymerases are also utilized to post-synthetically append ligand-bearing nucleotides to DNA oligomers. In addition, enzymatic replication of DNA duplexes containing metal-mediated base pairs has been intensively studied. Enzymatic methods facilitate the synthesis of DNA strands containing ligand-bearing nucleotides at both internal and terminal positions. Enzymatically synthesized ligand-bearing DNAs have been applied to metal-dependent self-assembly of DNA structures and the allosteric control of DNAzyme activity through metal-mediated base pairing. Therefore, the enzymatic synthesis of ligand-bearing oligonucleotides holds great potential in advancing the development of various metal-responsive DNA materials, such as molecular sensors and machines, providing a versatile tool for DNA supramolecular chemistry and nanotechnology.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.
| |
Collapse
|
3
|
Wang LJ, Liu Q, Lu YY, Liang L, Zhang CY. Silver-Coordinated Watson-Crick Pairing-Driven Three-Dimensional DNA Walker for Locus-Specific Detection of Genomic N6-Methyladenine and N4-Methylcytosine at the Single-Molecule Level. Anal Chem 2024; 96:2191-2198. [PMID: 38282288 DOI: 10.1021/acs.analchem.3c05184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
N6-Methyladenine (6mdA) and N4-methylcytosine (4mdC) are the two most dominant DNA modifications in both prokaryotes and eukaryotes, but standard hybridization-based techniques cannot be applied for the 6mdA/4mdC assay. Herein, we demonstrate the silver-coordinated Watson-Crick pairing-driven three-dimensional (3D) DNA walker for locus-specific detection of genomic 6mdA/4mdC at the single-molecule level. 6mdA-DNA and 4mdC-DNA can selectively hybridize with the binding probes (BP1 and BP2) to form 6mdA-DNA-BP1 and 4mdC-DNA-BP2 duplexes. The 6mdA-C/4mdC-A mismatches cannot be stabilized by AgI, and thus, 18-nt BP1/BP2 cannot be extended by the catalysis of KF exonuclease. Through toehold-mediated strand displacement (TMSD), the signal probe (SP1/SP2) functionalized on the gold nanoparticles (AuNPs) can competitively bind to BP1/BP2 in 6mdA-DNA-BP1/4mdC-DNA-BP2 duplex to obtain SP1-18-nt BP1 and SP2-18-nt BP2 duplexes. The resulting DNA duplexes can act as the substrates of lambda exonuclease, leading to the cleavage of SP1/SP2 and the release of Cy3/Cy5 and 18-nt BP1/BP2. The released 18-nt BP1/BP2 can subsequently serve as the walker DNA, moving along the surface of the AuNP to activate dynamic 3D DNA walking and releasing abundant Cy3/Cy5. The released Cy3/Cy5 can be quantified by single-molecule imaging. This nanosensor exhibits high sensitivity with a limit of detection (LOD) of 9.80 × 10-15 M for 6mdA-DNA and 9.97 × 10-15 M for 4mdC-DNA. It can discriminate 6mdA-/4mdC-DNA from unmodified genomic DNAs, distinguish 0.01% 6mdA-/4mdC-DNA from excess unmethylated DNAs, and quantify 6mdA-/4mdC-DNA at specific sites in genomic DNAs of liver cancer cells and Escherichia coli plasmid cloning vector, providing a new platform for locus-specific analysis of 6mdA/4mdC in genomic DNAs.
Collapse
Affiliation(s)
- Li-Juan Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qian Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ying-Ying Lu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Le Liang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Bethur E, Guha R, Zhao Z, Katz BB, Ashby PD, Zeng H, Copp SM. Formation and Nanomechanical Properties of Silver-Mediated Guanine DNA Duplexes in Aqueous Solution. ACS NANO 2024; 18:3002-3010. [PMID: 38227309 PMCID: PMC10832345 DOI: 10.1021/acsnano.3c08008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Silver cations can mediate base pairing of guanine (G) DNA oligomers, yielding linear parallel G-Ag+-G duplexes with enhanced stabilities compared to those of canonical DNA duplexes. To enable their use in programmable DNA nanotechnologies, it is critical to understand solution-state formation and the nanomechanical stiffness of G-Ag+-G duplexes. Using temperature-controlled circular dichroism (CD) spectroscopy, we find that heating mixtures of G oligomers and silver salt above 50 °C fully destabilizes G-quadruplex structures and converts oligomers to G-Ag+-G duplexes. Electrospray ionization mass spectrometry supports that G-Ag+-G duplexes form at stoichiometries of 1 Ag+ per base pair, and CD spectroscopy suggests that as the Ag+/base stoichiometry increases further, G-Ag+-G duplexes undergo additional morphological changes. Using liquid-phase atomic force microscopy, we find that this excess Ag+ enables assembly of long fiberlike structures with ∼2.5 nm heights equivalent to a single DNA duplex but with lengths that far exceed a single duplex. Finally, using the conditions established to form single G-Ag+-G duplexes, we use a surface forces apparatus (SFA) to compare the solution-phase stiffness of single G-Ag+-G duplexes with dG-dC Watson-Crick-Franklin duplexes. SFA shows that G-Ag+-G duplexes are 1.3 times stiffer than dG-dC duplexes, confirming gas-phase ion mobility spectrometry measurements and computational predictions. These findings may guide the development of structural DNA nanotechnologies that rely on silver-mediated base pairing.
Collapse
Affiliation(s)
- Eshana Bethur
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Rweetuparna Guha
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Ziqian Zhao
- Department
of Chemical and Materials Engineering, University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Benjamin B. Katz
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Paul D. Ashby
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hongbo Zeng
- Department
of Chemical and Materials Engineering, University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Stacy M. Copp
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
5
|
Hao J, Cao D, Zhao Q, Zhang D, Wang H. Intramolecular Folding of PolyT Oligonucleotides Induced by Cooperative Binding of Silver(I) Ions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227842. [PMID: 36431941 PMCID: PMC9694225 DOI: 10.3390/molecules27227842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Ag+-bridged T-Ag+-T was recently discovered in a Ag+-DNA nanowire crystal, but it was reported that Ag+ had little to no affinity to T nucleobases and T-rich oligonucleotides in solution. Therefore, the binding mode for the formation of this type of novel metallo base pair in solution is elusive. Herein, we demonstrate that Ag+ can interact with polyT oligonucleotides once the concentration of Ag+ in solution exceeds a threshold value. The threshold value is independent of the concentration of the polyT oligonucleotide but is inversely proportional to the length of the polyT oligonucleotide. The polyT oligonucleotides are intramolecularly folded due to their positively cooperative formation and the stack of T-Ag+-T base pairs, resulting in the 5'- and 3'-ends being in close proximity to each other. The intramolecular Ag+-folded polyT oligonucleotide has a higher thermal stability than the duplex and can be reversibly modulated by cysteine.
Collapse
Affiliation(s)
- Jinghua Hao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiang Zhao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dapeng Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-10-62849611; Fax: +86-10-62849600
| | - Hailin Wang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Levi-Acobas F, McKenzie LK, Hollenstein M. Towards polymerase-mediated synthesis of artificial RNA–DNA metal base pairs. NEW J CHEM 2022. [DOI: 10.1039/d2nj00427e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polymerase-mediated synthesis of RNA-DNA metal base pairs.
Collapse
Affiliation(s)
- Fabienne Levi-Acobas
- Institut Pasteur, Université de Paris, CNRS UMR3523, Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Luke K. McKenzie
- Institut Pasteur, Université de Paris, CNRS UMR3523, Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Marcel Hollenstein
- Institut Pasteur, Université de Paris, CNRS UMR3523, Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
7
|
Zheng Q, Wang T, Li X, Qian H, Bian X, Li X, Bai H, Ding S, Yan Y. Femtomolar and locus-specific detection of N 6-methyladenine in DNA by integrating double-hindered replication and nucleic acid-functionalized MB@Zr-MOF. J Nanobiotechnology 2021; 19:408. [PMID: 34876148 PMCID: PMC8650346 DOI: 10.1186/s12951-021-01156-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/21/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, a novel electrochemical biosensor was constructed for ultrasensitive and locus-specific detection of N6-Methyladenine (m6A) in DNA using double-hindered replication and nucleic acid-coated methylene blue (MB)@Zr-MOF. Based on the combination of m6A-impeded replication and AgI-mediated mismatch replication, this mode could effectively stop the extension of the strand once DNA polymerase encountered m6A site, which specifically distinguish the m6A site from natural A site in DNA. Also, Zr-MOF with high porosity and negative surface potential features was carefully chose to load cationic MB, resulting a stable and robust MB@Zr-MOF electrochemical tag. As a result, the developed biosensor exhibited a wide linear range from 1 fM to 1 nM with detection limit down to 0.89 fM. Profiting from the high sensitivity and selectivity, the biosensing strategy revealed good applicability, which had been demonstrated by quantitating m6A DNA at specific site in biological matrix. Thus, the biosensor provides a promising platform for locus-specific m6A DNA analysis. ![]()
Collapse
Affiliation(s)
- Qingyuan Zheng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Tong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xinmin Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.,Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400016, China
| | - Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xintong Bian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xingrong Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Huijie Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
Bhai S, Ganguly B. Role of pH in the stability of cytosine-cytosine mismatch and canonical AT and GC base pairs mediated with silver ion: a DFT study. Struct Chem 2021. [DOI: 10.1007/s11224-021-01814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Li W, Yang H, Wang Y, Weng X, Wang F. Highly sensitive detection of 6mA at single-base resolution based on A-C mismatch. Analyst 2021; 146:4450-4453. [PMID: 34190229 DOI: 10.1039/d1an00918d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We first demonstrated that 6mA can be selectively recognized based on the selective ligation reaction of DNA ligase toward A-C mismatch and 6mA-C mismatch. This method, when further combined with amplification using RCA, achieved highly sensitive identification of 6mA in dsDNA at single-base resolution.
Collapse
Affiliation(s)
- Wei Li
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P. R. China.
| | - Hongmei Yang
- Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P. R. China.
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, P. R. China.
| | - Fang Wang
- Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
10
|
Flamme M, Figazzolo C, Gasser G, Hollenstein M. Enzymatic construction of metal-mediated nucleic acid base pairs. Metallomics 2021; 13:6206861. [PMID: 33791776 DOI: 10.1093/mtomcs/mfab016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Artificial metal base pairs have become increasingly important in nucleic acids chemistry due to their high thermal stability, water solubility, orthogonality to natural base pairs, and low cost of production. These interesting properties combined with ease of chemical and enzymatic synthesis have prompted their use in several practical applications, including the construction of nanomolecular devices, ions sensors, and metal nanowires. Chemical synthesis of metal base pairs is highly efficient and enables the rapid screening of novel metal base pair candidates. However, chemical synthesis is limited to rather short oligonucleotides and requires rather important synthetic efforts. Herein, we discuss recent progress made for the enzymatic construction of metal base pairs that can alleviate some of these limitations. First, we highlight the possibility of generating metal base pairs using canonical nucleotides and then describe how modified nucleotides can be used in this context. We also provide a description of the main analytical techniques used for the analysis of the nature and the formation of metal base pairs together with relevant examples of their applications.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.,Université de Paris, 12 rue de l'École de Médecine, 75006 Paris, France.,Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Chiara Figazzolo
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.,Université de Paris, 12 rue de l'École de Médecine, 75006 Paris, France.,Centre de Recherches Interdisciplinaires CRI, 8 rue Charles V, 75004 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
11
|
Nakagawa O, Aoyama H, Fujii A, Kishimoto Y, Obika S. Crystallographic Structure of Novel Types of Ag I -Mediated Base Pairs in Non-canonical DNA Duplex Containing 2'-O,4'-C-Methylene Bridged Nucleic Acids. Chemistry 2021; 27:3842-3848. [PMID: 33274789 DOI: 10.1002/chem.202004819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Indexed: 11/08/2022]
Abstract
Metal-mediated base pairs have widespread applications, such as in DNA-metal nanodevices and sensors. Here, we focused on their sugar conformation in duplexes and observed the crystallographic structure of the non-canonical DNA/DNA duplex containing 2'-O,4'-C-methylene bridged nucleic acid in the presence of AgI ions. The X-ray crystallographic structure was successfully obtained at a resolution of 1.5 Å. A novel type of AgI -mediated base pair between the N1 positions of anti-conformation of adenines in the duplex was observed. In the central non-canonical region, a hexad nucleobase structure containing AgI -mediated base pairs between the N7 positions of guanines was formed. A highly bent non-canonical structure was formed at the origin of AgI -mediated base pairs in the central region. The bent duplex structure induced by the addition of AgI ions might become a powerful tool for dynamic structural changes in DNA nanotechnology applications.
Collapse
Affiliation(s)
- Osamu Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan.,Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahoji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Akane Fujii
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Yuki Kishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| |
Collapse
|
12
|
Chhipa H, Srinivasa Reddy T, Soni SK, Selvakannan PR, Bhargava SK. Self-assembled nanostructures of phosphomolybdate, nucleobase and metal ions synthesis and their in vitro cytotoxicity studies on cancer cell lines. J Mater Chem B 2020; 8:11044-11054. [PMID: 33196727 DOI: 10.1039/d0tb01945c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of the multidentate nucleobases, adenine and thymine, to coordinate polyoxometalate and metal ions leading to the formation of self-assembled nanostructures and their strong cytotoxicity toward cancer cell lines have been demonstrated. A unique synthetic approach is developed to make a series of functional nanoscale hybrid materials consisting of nucleobases (adenine and thymine) and phosphomolybdic acid (PMA) through solid state chemical reaction and self-assembly process. Adenine was protonated through its ring nitrogen, while the ketone group in thymine was protonated during the addition of PMA to these nucleobases. The self-assembled nanostructures formed as a result of the electrostatic interaction between the protonated nucleobases and polyanionic PMA. To promote the base pairing between the nucleobases, chloroaurate ions and silver ions were added to each PMA/adenine and PMA/thymine nanostructures. The complexation between the nucleobases and the added metal ions was found to drive the formation of subsequent self-assembled nanostructures. All the materials were screened for their anticancer activity against breast (MDAMB-231) and prostate (PC-3) cancer cells, and non-cancerous keratinocyte cells HaCaT. PMA/adenine/[AuCl4]- and PMA/thymine/Ag+ nanostructures were found to have strong anti-cancer activity, while PMA/adenine/Ag+, PMA/thymine/[AuCl4]-, and PMA/pdenine, PMA/thymine nanostructures did not exhibit such activity. The unique redox properties of these materials and the self-assembly of the PMA and metal ions were the major factors responsible for the cytotoxicity. This unique approach of making functional nanomaterials incorporate the nucleobase, PMA and metal ions using solid state self-assembly and their anti-cancer applications are considered to be an effective approach for the development of inorganic nucleoside analogue bio-pharmaceutical agents.
Collapse
Affiliation(s)
- Hemraj Chhipa
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, Australia.
| | - T Srinivasa Reddy
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, Australia.
| | - Sarvesh K Soni
- BioSciences and Food Technology, School of Science, RMIT University, Melbourne, Australia
| | - P R Selvakannan
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, Australia.
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, Australia.
| |
Collapse
|
13
|
Heddinga MH, Müller J. Incorporation of a metal-mediated base pair into an ATP aptamer - using silver(I) ions to modulate aptamer function. Beilstein J Org Chem 2020; 16:2870-2879. [PMID: 33299485 PMCID: PMC7705865 DOI: 10.3762/bjoc.16.236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
For the first time, a metal-mediated base pair has been used to modulate the affinity of an aptamer towards its target. In particular, two artificial imidazole 2’-deoxyribonucleosides (Im) were incorporated into various positions of an established ATP-binding aptamer (ATP, adenosine triphosphate), resulting in the formation of three aptamer derivatives bearing Im:Im mispairs with a reduced ATP affinity. A fluorescence spectroscopy assay and a binding assay with immobilized ATP were used to evaluate the aptamer derivatives. Upon the addition of one Ag(I) ion per mispair, stabilizing Im–Ag(I)–Im base pairs were formed. As a result, the affinity of the aptamer derivative towards ATP is restored again. The silver(I)-mediated base-pair formation was particularly suitable to modulate the aptamer function when the Im:Im mispairs (and hence the resulting metal-mediated base pairs) were located close to the ATP-binding pocket of the aptamer. Being able to trigger the aptamer function opens new possibilities for applications of oligonucleotides.
Collapse
Affiliation(s)
- Marius H Heddinga
- Institut für Anorganische und Analytische Chemie & Cells in Motion Interfaculty Center, Westfälische Wilhelms-Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie & Cells in Motion Interfaculty Center, Westfälische Wilhelms-Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
| |
Collapse
|
14
|
Flamme M, Röthlisberger P, Levi-Acobas F, Chawla M, Oliva R, Cavallo L, Gasser G, Marlière P, Herdewijn P, Hollenstein M. Enzymatic Formation of an Artificial Base Pair Using a Modified Purine Nucleoside Triphosphate. ACS Chem Biol 2020; 15:2872-2884. [PMID: 33090769 DOI: 10.1021/acschembio.0c00396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expansion of the genetic alphabet with additional, unnatural base pairs (UBPs) is an important and long-standing goal in synthetic biology. Nucleotides acting as ligands for the coordination of metal cations have advanced as promising candidates for such an expansion of the genetic alphabet. However, the inclusion of artificial metal base pairs in nucleic acids mainly relies on solid-phase synthesis approaches, and very little is known about polymerase-mediated synthesis. Herein, we report the selective and high yielding enzymatic construction of a silver-mediated base pair (dImC-AgI-dPurP) as well as a two-step protocol for the synthesis of DNA duplexes containing such an artificial metal base pair. Guided by DFT calculations, we also shed light into the mechanism of formation of this artificial base pair as well as into the structural and energetic preferences. The enzymatic synthesis of the dImC-AgI-dPurP artificial metal base pair provides valuable insights for the design of future, more potent systems aiming at expanding the genetic alphabet.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
- Université Paris Descartes, Sorbonne Paris Cité, 12 rue de l’École de Médecine, 75006 Paris, France
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Fabienne Levi-Acobas
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900 Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900 Saudi Arabia
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Philippe Marlière
- University of Paris Saclay, CNRS, iSSB, UEVE, Genopole, 5 Rue Henri Desbrueres, 91030 Evry, France
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat, 3000 Leuven, Belgium
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
15
|
Shen F, Mao S, Mathivanan J, Wu Y, Chandrasekaran AR, Liu H, Gan J, Sheng J. Short DNA Oligonucleotide as a Ag + Binding Detector. ACS OMEGA 2020; 5:28565-28570. [PMID: 33195907 PMCID: PMC7658945 DOI: 10.1021/acsomega.0c03372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Ag+ has been known to mediate several natural metallo-base pairs. Based on the unique structural information of a short 8-mer DNA strand (5'-GCACGCGC-3') induced by Ag+, we constructed several fluorescent DNA beacons for the detection of Ag+ according to the increase in the fluorescence emission on Ag+ binding. This Ag+ detection assay is quick, sensitive, and easy to adapt and can function in a wide range of temperatures from 5 to 65 °C.
Collapse
Affiliation(s)
- Fusheng Shen
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
- The
RNA Institute, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
| | - Song Mao
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
- The
RNA Institute, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
| | - Johnsi Mathivanan
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
- The
RNA Institute, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
| | - Ying Wu
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
- The
RNA Institute, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
| | - Arun Richard Chandrasekaran
- The
RNA Institute, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
| | - Hehua Liu
- Shanghai
Public Health Clinical Center, State Key Laboratory of Genetic Engineering,
Collaborative Innovation Center of Genetics and Development, School
of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianhua Gan
- Shanghai
Public Health Clinical Center, State Key Laboratory of Genetic Engineering,
Collaborative Innovation Center of Genetics and Development, School
of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jia Sheng
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
- The
RNA Institute, University at Albany, State
University of New York, 1400 Washington Ave., Albany, New York 12222, United
States
| |
Collapse
|
16
|
Bachmann J, Schönrath I, Müller J, Doltsinis NL. Dynamic Structure and Stability of DNA Duplexes Bearing a Dinuclear Hg(II)-Mediated Base Pair. Molecules 2020; 25:E4942. [PMID: 33114568 PMCID: PMC7663159 DOI: 10.3390/molecules25214942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Quantum mechanical (QM) and hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations of a recently reported dinuclear mercury(II)-mediated base pair were performed aiming to analyse its intramolecular bonding pattern, its stability, and to obtain clues on the mechanism of the incorporation of mercury(II) into the DNA. The dynamic distance constraint was employed to find initial structures, control the dissociation process in an unbiased fashion and to determine the free energy required. A strong influence of the exocyclic carbonyl or amino groups of neighbouring base pairs on both the bonding pattern and the mechanism of incorporation was observed. During the dissociation simulation, an amino group of an adenine moiety of the adjacent base pair acts as a turnstile to rotate the mercury(II) ion out of the DNA core region. The calculations provide an important insight into the mechanism of formation of this dinuclear metal-mediated base pair and indicate that the exact location of a transition metal ion in a metal-mediated base pair may be more ambiguous than derived from simple model building.
Collapse
Affiliation(s)
- Jim Bachmann
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Westfälische-Wilhelms Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany;
| | - Isabell Schönrath
- Institut für Anorganische und Analytische Chemie, Westfälische-Wilhelms Universität Münster, Corrensstraße 30, 48149 Münster, Germany;
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie, Westfälische-Wilhelms Universität Münster, Corrensstraße 30, 48149 Münster, Germany;
| | - Nikos L. Doltsinis
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Westfälische-Wilhelms Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany;
| |
Collapse
|
17
|
Hossain MN, Ahmad S, Kraatz H. Consecutive Silver(I) Ion Incorporation into Oligonucleotides containing Cytosine‐Cytosine Mispairs. Chempluschem 2020; 86:224-231. [DOI: 10.1002/cplu.202000607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/25/2020] [Indexed: 12/18/2022]
Affiliation(s)
- M. Nur Hossain
- Department of Physical and Environmental Sciences University of Toronto Scarborough 11265 Military Trail Toronto M1 C 1 A4 Canada
| | - Syed Ahmad
- Department of Physical and Environmental Sciences University of Toronto Scarborough 11265 Military Trail Toronto M1 C 1 A4 Canada
- Department of Chemistry University of Toronto 80 St. George Street Toronto M5S 3H6 Canada
| | - Heinz‐Bernhard Kraatz
- Department of Physical and Environmental Sciences University of Toronto Scarborough 11265 Military Trail Toronto M1 C 1 A4 Canada
- Department of Chemistry University of Toronto 80 St. George Street Toronto M5S 3H6 Canada
| |
Collapse
|
18
|
Flamme M, Levi-Acobas F, Hensel S, Naskar S, Röthlisberger P, Sarac I, Gasser G, Müller J, Hollenstein M. Enzymatic Construction of Artificial Base Pairs: The Effect of Metal Shielding. Chembiochem 2020; 21:3398-3409. [PMID: 32673442 DOI: 10.1002/cbic.202000402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Th formation of metal base pairs is a versatile method for the introduction of metal cations into nucleic acids that has been used in numerous applications including the construction of metal nanowires, development of energy, charge-transfer devices and expansion of the genetic alphabet. As an alternative, enzymatic construction of metal base pairs is an alluring strategy that grants access to longer sequences and offers the possibility of using such unnatural base pairs (UBPs) in SELEX experiments for the identification of functional nucleic acids. This method remains rather underexplored, and a better understanding of the key parameters in the design of efficient nucleotides is required. We have investigated the effect of methylation of the imidazole nucleoside (dImnMe TP) on the efficiency of the enzymatic construction of metal base pairs. The presence of methyl substituents on dImTP facilitates the polymerase-driven formation of dIm4Me -AgI -dIm and dIm2Me TP-CrIII -dIm base pairs. Steric factors rather than the basicity of the imidazole nucleobase appear to govern the enzymatic formation of such metal base pairs. We also demonstrate the compatibility of other metal cations rarely considered in the construction of artificial metal bases by enzymatic DNA synthesis under both primer extension reaction and PCR conditions. These findings open up new directions for the design of nucleotide analogues for the development of metal base pairs.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France.,Université Paris Descartes, Sorbonne Paris Cité, 12 rue de l'École de Médecine, 75006, Paris, France.,Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 11, rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabienne Levi-Acobas
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Susanne Hensel
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 30, 48149, Münster, Germany
| | - Shuvankar Naskar
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 30, 48149, Münster, Germany
| | - Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Ivo Sarac
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 11, rue Pierre et Marie Curie, 75005, Paris, France
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 30, 48149, Münster, Germany
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
19
|
Funai T, Tagawa C, Nakagawa O, Wada SI, Ono A, Urata H. Enzymatic formation of consecutive thymine–HgII–thymine base pairs by DNA polymerases. Chem Commun (Camb) 2020; 56:12025-12028. [DOI: 10.1039/d0cc04423g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ten consecutive T–HgII–T base pairs were successfully formed by DNA polymerase-catalyzed primer extension reactions.
Collapse
Affiliation(s)
- Tatsuya Funai
- Department of Bioorganic Chemistry
- Osaka University of Pharmaceutical Sciences
- 4-20-1 Nasahara
- Takatsuki
- Japan
| | - Chizuko Tagawa
- Department of Bioorganic Chemistry
- Osaka University of Pharmaceutical Sciences
- 4-20-1 Nasahara
- Takatsuki
- Japan
| | - Osamu Nakagawa
- Department of Bioorganic Chemistry
- Osaka University of Pharmaceutical Sciences
- 4-20-1 Nasahara
- Takatsuki
- Japan
| | - Shun-ichi Wada
- Department of Bioorganic Chemistry
- Osaka University of Pharmaceutical Sciences
- 4-20-1 Nasahara
- Takatsuki
- Japan
| | - Akira Ono
- Department of Material & Life Chemistry
- Faculty of Engineering, Kanagawa University
- 3-27-1 Rokkakubashi
- Kanagawa-ku
- Japan
| | - Hidehito Urata
- Department of Bioorganic Chemistry
- Osaka University of Pharmaceutical Sciences
- 4-20-1 Nasahara
- Takatsuki
- Japan
| |
Collapse
|
20
|
Funai T, Aotani M, Kiriu R, Nakamura J, Miyazaki Y, Nakagawa O, Wada S, Torigoe H, Ono A, Urata H. Silver(I)‐Ion‐Mediated Cytosine‐Containing Base Pairs: Metal Ion Specificity for Duplex Stabilization and Susceptibility toward DNA Polymerases. Chembiochem 2019; 21:517-522. [DOI: 10.1002/cbic.201900450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Tatsuya Funai
- Department of Bioorganic ChemistryOsaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| | - Megumi Aotani
- Department of Bioorganic ChemistryOsaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| | - Risa Kiriu
- Department of Bioorganic ChemistryOsaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| | - Junko Nakamura
- Department of Bioorganic ChemistryOsaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| | - Yuki Miyazaki
- Department of Bioorganic ChemistryOsaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| | - Osamu Nakagawa
- Department of Bioorganic ChemistryOsaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
- Present address: Graduate School of Pharmaceutical SciencesOsaka University 1–6 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Shun‐ichi Wada
- Department of Bioorganic ChemistryOsaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| | - Hidetaka Torigoe
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Akira Ono
- Department of Material and Life ChemistryFaculty of EngineeringKanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Japan
| | - Hidehito Urata
- Department of Bioorganic ChemistryOsaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| |
Collapse
|
21
|
Levi-Acobas F, Röthlisberger P, Sarac I, Marlière P, Herdewijn P, Hollenstein M. On the Enzymatic Formation of Metal Base Pairs with Thiolated and pK a -Perturbed Nucleotides. Chembiochem 2019; 20:3032-3040. [PMID: 31216100 DOI: 10.1002/cbic.201900399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Indexed: 12/15/2022]
Abstract
The formation of artificial metal base pairs is an alluring and versatile method for the functionalization of nucleic acids. Access to DNA functionalized with metal base pairs is granted mainly by solid-phase synthesis. An alternative, yet underexplored method, envisions the installation of metal base pairs through the polymerization of modified nucleoside triphosphates. Herein, we have explored the possibility of using thiolated and pKa -perturbed nucleotides for the enzymatic construction of artificial metal base pairs. The thiolated nucleotides S2C, S6G, and S4T as well as the fluorinated analogue 5FU are readily incorporated opposite a templating S4T nucleotide through the guidance of metal cations. Multiple incorporation of the modified nucleotides along with polymerase bypass of the unnatural base pairs are also possible under certain conditions. The thiolated nucleotides S4T, S4T, S2C, and S6G were also shown to be compatible with the synthesis of modified, high molecular weight single-stranded (ss)DNA products through TdT-mediated tailing reactions. Thus, sulfur-substitution and pKa perturbation represent alternative strategies for the design of modified nucleotides compatible with the enzymatic construction of metal base pairs.
Collapse
Affiliation(s)
- Fabienne Levi-Acobas
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Pascal Röthlisberger
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Ivo Sarac
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Philippe Marlière
- University of Paris Saclay, CNRS, iSSB, UEVE, Genopole, 5 Rue Henri Desbruères, 91030, Evry, France
| | - Piet Herdewijn
- Department of Medicinal Chemistry, Institute for Medical Research, KU Leuven, Herestraat, 49, Leuven, 3000, Belgium
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
22
|
|
23
|
Manna S, Srivatsan SG. Synthesis and Enzymatic Incorporation of a Responsive Ribonucleoside Probe That Enables Quantitative Detection of Metallo-Base Pairs. Org Lett 2019; 21:4646-4650. [PMID: 31184159 PMCID: PMC6794643 DOI: 10.1021/acs.orglett.9b01544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Synthesis of a highly
responsive fluorescent ribonucleoside analogue
based on a 5-methoxybenzofuran uracil core, enzymatic incorporation
of its triphosphate substrate into RNA transcripts, and its utility
in the specific detection and estimation of Hg2+-ion-mediated
metallo-base pair formation in DNA–RNA and RNA–RNA duplexes
are described.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department of Chemistry , Indian Institute of Science Education and Research (IISER) Pune , Dr. Homi Bhabha Road , Pune 411008 , India
| | - Seergazhi G Srivatsan
- Department of Chemistry , Indian Institute of Science Education and Research (IISER) Pune , Dr. Homi Bhabha Road , Pune 411008 , India
| |
Collapse
|
24
|
Fujii A, Nakagawa O, Kishimoto Y, Okuda T, Nakatsuji Y, Nozaki N, Kasahara Y, Obika S. 1,3,9-Triaza-2-oxophenoxazine: An Artificial Nucleobase Forming Highly Stable Self-Base Pairs with Three Ag I Ions in a Duplex. Chemistry 2019; 25:7443-7448. [PMID: 30843298 DOI: 10.1002/chem.201900373] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 12/23/2022]
Abstract
Metal-mediated base pairs (MMBPs) formed by natural or artificial nucleobases have recently been developed. The metal ions can be aligned linearly in a duplex by MMBP formation. The development of a three- or more-metal-coordinated MMBPs has the potential to improve the conductivity and enable the design of metal ion architectures in a duplex. This study aimed to develop artificial self-bases coordinated by three linearly aligned AgI ions within an MMBP. Thus, artificial nucleic acids with a 1,3,9-triaza-2-oxophenoxazine (9-TAP) nucleobase were designed and synthesized. In a DNA/DNA duplex, self-base pairs of 9-TAP could form highly stable MMBPs with three AgI ions. Nine equivalents of AgI led to the formation of three consecutive 9-TAP self-base pairs with extremely high stability. The complex structures of 9-TAP MMBPs were determined by using electrospray ionization mass spectrometry and UV titration experiments. Highly stable self-9-TAP MMBPs with three AgI ions are expected to be applicable to new DNA nanotechnologies.
Collapse
Affiliation(s)
- Akane Fujii
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Osamu Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Yuki Kishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Takumi Okuda
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Yusuke Nakatsuji
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Natsumi Nozaki
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Yuuya Kasahara
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| |
Collapse
|
25
|
Mistry L, El-Zubir O, Dura G, Clegg W, Waddell PG, Pope T, Hofer WA, Wright NG, Horrocks BR, Houlton A. Addressing the properties of "Metallo-DNA" with a Ag(i)-mediated supramolecular duplex. Chem Sci 2019; 10:3186-3195. [PMID: 30996900 PMCID: PMC6429620 DOI: 10.1039/c8sc05103h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/08/2019] [Indexed: 01/04/2023] Open
Abstract
The silver-nucleoside complex [Ag(i)-(N3-cytidine)2]+, 1, self-assembles to form a supramolecular metal-mediated base-pair array highly analogous to those seen in metallo-DNA.
The silver-nucleoside complex [Ag(i)-(N3-cytidine)2], 1, self-assembles to form a supramolecular metal-mediated base-pair array highly analogous to those seen in metallo-DNA. A combination of complementary hydrogen-bonding, hydrophobic and argentophilic interactions drive the formation of a double-helix with a continuous silver core. Electrical measurements on 1 show that despite having Ag···Ag distances within <5% of the metallic radii, the material is electrically insulating. This is due to the electronic structure which features a filled valence band, an empty conduction band dominated by the ligand, and a band gap of 2.5 eV. Hence, as-prepared, such Ag(i)-DNA systems should not be considered molecular nanowires but, at best, proto-wires. The structural features seen in 1 are essentially retained in the corresponding organogel which exhibits thixotropic self-healing that can be attributed to the reversible nature of the intermolecular interactions. Photo-reduced samples of the gel exhibit luminescence confirming that these poly-cytidine sequences appropriately pre-configure silver ions for the formation of quantum-confined metal clusters in line with contemporary views on DNA-templated clusters. Microscopy data reveals the resulting metal cluster/particles are approximately spherical and crystalline with lattice spacing (111) similar to bulk Ag.
Collapse
Affiliation(s)
- Liam Mistry
- Chemical Nanoscience Laboratory , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK .
| | - Osama El-Zubir
- Chemical Nanoscience Laboratory , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK .
| | - Gema Dura
- Chemical Nanoscience Laboratory , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK .
| | - William Clegg
- Chemistry , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK
| | - Paul G Waddell
- Chemistry , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK
| | - Thomas Pope
- Chemistry , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK
| | - Werner A Hofer
- Chemistry , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK
| | - Nick G Wright
- School of Engineering , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK
| | - Benjamin R Horrocks
- Chemical Nanoscience Laboratory , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK .
| | - Andrew Houlton
- Chemical Nanoscience Laboratory , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK .
| |
Collapse
|
26
|
Metal-mediated base pairing in DNA involving the artificial nucleobase imidazole-4-carboxylate. J Inorg Biochem 2019; 191:85-93. [DOI: 10.1016/j.jinorgbio.2018.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/18/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
|
27
|
Oh T, Park SS, Mirkin CA. Stabilization of Colloidal Crystals Engineered with DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805480. [PMID: 30370680 DOI: 10.1002/adma.201805480] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/24/2018] [Indexed: 05/23/2023]
Abstract
A postsynthetic method for stabilizing colloidal crystals programmed from DNA is developed. The method relies on Ag+ ions to stabilize the particle-connecting DNA duplexes within the crystal lattice, essentially transforming them from loosely bound structures to ones with very strong interparticle links. Such crystals do not dissociate as a function of temperature like normal DNA or DNA-interconnected superlattices, and they can be moved from water to organic media or the solid state, and stay intact. The Ag+ -stabilization of the DNA bonds is accompanied by a nondestructive ≈25% contraction of the lattice, and both the stabilization and contraction are reversible with the chemical extraction of the Ag+ ions, by AgCl precipitation with NaCl. This synthetic tool is important, since it allows scientists and engineers to study such crystals in environments that are incompatible with structures made by conventional DNA programmable methods and without the influence of a matrix such as silica.
Collapse
Affiliation(s)
- Taegon Oh
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Sarah S Park
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
28
|
Nakagawa O, Fujii A, Kishimoto Y, Nakatsuji Y, Nozaki N, Obika S. 2'-O,4'-C-Methylene-Bridged Nucleic Acids Stabilize Metal-Mediated Base Pairing in a DNA Duplex. Chembiochem 2018; 19:2372-2379. [PMID: 30168891 DOI: 10.1002/cbic.201800448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 11/08/2022]
Abstract
The 2'-O,4'-C-methylene-bridged or locked nucleic acid (2',4'-BNA/LNA), with an N-type sugar conformation, effectively improves duplex-forming ability. 2',4'-BNA/LNA is widely used to improve gene knockdown in nucleic acid based therapies and is used in gene diagnosis. Metal-mediated base pairs (MMBPs), such as thymine (T)-HgII -T and cytosine (C)-AgI -C have been developed and used as attractive tools in DNA nanotechnology studies. This study aimed to investigate the application of 2',4'-BNA/LNA in the field of MMBPs. 2',4'-BNA/LNA with 5-methylcytosine stabilized the MMBP of C with AgI ions. Moreover, the 2',4'-BNA/LNA sugar significantly improved the duplex-forming ability of the DNA/DNA complex, relative to that by the unmodified sugar. These results suggest that the sugar conformation is important for improving the stability of duplex-containing MMBPs. The results indicate that 2',4'-BNA/LNA can be applied not only to nucleic acid based therapies, but also to MMBP technologies.
Collapse
Affiliation(s)
- Osamu Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Akane Fujii
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Yuki Kishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Yusuke Nakatsuji
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Natsumi Nozaki
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| |
Collapse
|
29
|
Schmidt OP, Benz AS, Mata G, Luedtke NW. HgII binds to C-T mismatches with high affinity. Nucleic Acids Res 2018; 46:6470-6479. [PMID: 29901748 PMCID: PMC6061796 DOI: 10.1093/nar/gky499] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/04/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023] Open
Abstract
Binding reactions of HgII and AgI to pyrimidine-pyrimidine mismatches in duplex DNA were characterized using fluorescent nucleobase analogs, thermal denaturation and 1H NMR. Unlike AgI, HgII exhibited stoichiometric, site-specific binding of C-T mismatches. The on- and off-rates of HgII binding were approximately 10-fold faster to C-T mismatches (kon ≈ 105 M-1 s-1, koff ≈ 10-3 s-1) as compared to T-T mismatches (kon ≈ 104 M-1 s-1, koff ≈ 10-4 s-1), resulting in very similar equilibrium binding affinities for both types of 'all natural' metallo base pairs (Kd ≈ 10-150 nM). These results are in contrast to thermal denaturation analyses, where duplexes containing T-T mismatches exhibited much larger increases in thermal stability upon addition of HgII (ΔTm = 6-19°C), as compared to those containing C-T mismatches (ΔTm = 1-4°C). In addition to revealing the high thermodynamic and kinetic stabilities of C-HgII-T base pairs, our results demonstrate that fluorescent nucleobase analogs enable highly sensitive detection and characterization of metal-mediated base pairs - even in situations where metal binding has little or no impact on the thermal stability of the duplex.
Collapse
Affiliation(s)
- Olivia P Schmidt
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | - Andrea S Benz
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | - Guillaume Mata
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | - Nathan W Luedtke
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| |
Collapse
|
30
|
Röthlisberger P, Levi-Acobas F, Sarac I, Marlière P, Herdewijn P, Hollenstein M. On the enzymatic incorporation of an imidazole nucleotide into DNA. Org Biomol Chem 2018; 15:4449-4455. [PMID: 28485736 DOI: 10.1039/c7ob00858a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expansion of the genetic alphabet with an additional, artificial base pair is of high relevance for numerous applications in synthetic biology. The enzymatic construction of metal base pairs is an alluring strategy that would ensure orthogonality to canonical nucleic acids. So far, very little is known on the enzymatic fabrication of metal base pairs. Here, we report on the synthesis and the enzymatic incorporation of an imidazole nucleotide into DNA. The imidazole nucleotide dIm is known to form highly stable dIm-Ag+-dIm artificial base pairs that cause minimal structural perturbation of DNA duplexes and was considered to be an ideal candidate for the enzymatic construction of metal base pairs. We demonstrate that dImTP is incorporated with high efficiency and selectivity opposite a templating dIm nucleotide by the Kf exo-. The presence of Mn2+, and to a smaller extent Ag+, enhances the efficiency of this polymerization reaction, however, without being strictly required. In addition, multiple incorporation events could be observed, albeit with modest efficiency. We demonstrate that the dIm-Mn+-dIm cannot be constructed by DNA polymerases and suggest that parameters other than stability of a metal base pair and its impact on the structure of DNA duplexes govern the enzymatic formation of artificial metal base pairs.
Collapse
Affiliation(s)
- Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | |
Collapse
|
31
|
Li J, Fu W, Bao J, Wang Z, Dai Z. Fluorescence Regulation of Copper Nanoclusters via DNA Template Manipulation toward Design of a High Signal-to-Noise Ratio Biosensor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6965-6971. [PMID: 29363949 DOI: 10.1021/acsami.7b19055] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Because of bioaccumulation of food chain and disability of biodegradation, concentration of toxic mercury ions (Hg2+) in the environment dramatically varies from picomolar to micromolar, indicating the importance of well-performed Hg2+ analytical methods. Herein, reticular DNA is constructed by introducing thymine (T)-Hg2+-T nodes in poly(T) DNA, and copper nanoclusters (CuNCs) with aggregate morphology are prepared using this reticular DNA as a template. Intriguingly, the prepared CuNCs exhibit enhanced fluorescence. Meanwhile, the reticular DNA reveals evident resistance to enzyme digestion, further clarifying the fluorescence enhancement of CuNCs. Relying on the dual function of DNA manipulation, a high signal-to-noise ratio biosensor is designed. This analytical approach can quantify Hg2+ in a very wide range (50 pM to 500 μM) with an ultralow detection limit (16 pM). Besides, depending on the specific interaction between Hg2+ and reduced l-glutathione (GSH), this biosensor is able to evaluate the inhibition of GSH toward Hg2+. In addition, pollution of Hg2+ in three lakes is tested using this method, and the obtained results are in accord with those from inductively coupled plasma mass spectrometry. In general, this work provides an alternative way to regulate the properties of DNA-templated nanomaterials and indicates the applicability of this way by fabricating an advanced biosensor.
Collapse
Affiliation(s)
- Junyao Li
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, and ‡Center for Analysis and Testing, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Wenxin Fu
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, and ‡Center for Analysis and Testing, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Jianchun Bao
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, and ‡Center for Analysis and Testing, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Zhaoyin Wang
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, and ‡Center for Analysis and Testing, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Zhihui Dai
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, and ‡Center for Analysis and Testing, Nanjing Normal University , Nanjing 210023, P. R. China
| |
Collapse
|
32
|
Guo X, Leonard P, Ingale SA, Seela F. Gemcitabine, Pyrrologemcitabine, and 2'-Fluoro-2'-Deoxycytidines: Synthesis, Physical Properties, and Impact of Sugar Fluorination on Silver Ion Mediated Base Pairing. Chemistry 2017; 23:17740-17754. [PMID: 28906062 DOI: 10.1002/chem.201703427] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/05/2017] [Indexed: 01/06/2023]
Abstract
The stability of silver-mediated "dC-dC" base pairs relies not only on the structure of the nucleobase, but is also sensitive to structural modification of the sugar moiety. 2'-Fluorinated 2'-deoxycytidines with fluorine atoms in the arabino (up) and ribo (down) configuration as well as with geminal fluorine substitution (anticancer drug gemcitabine) and the novel fluorescent phenylpyrrolo-gemcitabine (ph PyrGem) have been synthesized. All the nucleosides display the recognition face of naturally occurring 2'-deoxycytidine. The nucleosides were converted into phosphoramidites and incorporated into 12-mer oligonucleotides by solid-phase synthesis. The addition of silver ions to DNA duplexes with a fluorine-modified "dC-dC" pair near the central position led to significant duplex stabilization. The increase in stability was higher for duplexes with fluorinated sugar residues than for those with an unchanged 2'-deoxyribose moiety. Similar observations were made for "dC-dT" pairs and to a minor extent for "dC-dA" pairs. The increase in silver ion mediated base-pair stability was reversed by annulation of a pyrrole ring to the cytosine moiety, as shown for 2'-fluorinated ph PyrGem in comparison with phenylpyrrolo-dC (ph PyrdC). This phenomenon results from stereoelectronic effects induced by fluoro substitution, which are transmitted from the sugar moiety to the silver ion mediated base pairs. The extent of the effect depends on the number of fluorine substituents, their configuration, and the structure of the nucleobase.
Collapse
Affiliation(s)
- Xiurong Guo
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
| | - Sachin A Ingale
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| |
Collapse
|
33
|
Liu H, Cai C, Haruehanroengra P, Yao Q, Chen Y, Yang C, Luo Q, Wu B, Li J, Ma J, Sheng J, Gan J. Flexibility and stabilization of HgII-mediated C:T and T:T base pairs in DNA duplex. Nucleic Acids Res 2017; 45:2910-2918. [PMID: 27998930 PMCID: PMC5389650 DOI: 10.1093/nar/gkw1296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022] Open
Abstract
Owing to their great potentials in genetic code extension and the development of nucleic acid-based functional nanodevices, DNA duplexes containing HgII-mediated base pairs have been extensively studied during the past 60 years. However, structural basis underlying these base pairs remains poorly understood. Herein, we present five high-resolution crystal structures including one first-time reported C–HgII–T containing duplex, three T–HgII–T containing duplexes and one native duplex containing T–T pair without HgII. Our structures suggest that both C–T and T–T pairs are flexible in interacting with the HgII ion with various binding modes including N3–HgII–N3, N4–HgII–N3, O2–HgII–N3 and N3–HgII–O4. Our studies also reveal that the overall conformations of the C–HgII–T and T–HgII–T pairs are affected by their neighboring residues via the interactions with the solvent molecules or other metal ions, such as SrII. These results provide detailed insights into the interactions between HgII and nucleobases and the structural basis for the rational design of C–HgII–T or T–HgII–T containing DNA nanodevices in the future.
Collapse
Affiliation(s)
- Hehua Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chen Cai
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Phensinee Haruehanroengra
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Qingqing Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yiqing Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chun Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qiang Luo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Baixing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
34
|
Liu H, Shen F, Haruehanroengra P, Yao Q, Cheng Y, Chen Y, Yang C, Zhang J, Wu B, Luo Q, Cui R, Li J, Ma J, Sheng J, Gan J. A DNA Structure Containing AgI
-Mediated G:G and C:C Base Pairs. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704891] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hehua Liu
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Physiology and Biophysics; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Fusheng Shen
- Department of Chemistry and The RNA Institute; University at Albany; State University of New York; Albany NY 12222 USA
| | - Phensinee Haruehanroengra
- Department of Chemistry and The RNA Institute; University at Albany; State University of New York; Albany NY 12222 USA
| | - Qingqing Yao
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Yunshan Cheng
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Physiology and Biophysics; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Yiqing Chen
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Physiology and Biophysics; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Chun Yang
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Physiology and Biophysics; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Jing Zhang
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Physiology and Biophysics; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Baixing Wu
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Qiang Luo
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Ruixue Cui
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Physiology and Biophysics; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Jia Sheng
- Department of Chemistry and The RNA Institute; University at Albany; State University of New York; Albany NY 12222 USA
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Physiology and Biophysics; School of Life Sciences; Fudan University; Shanghai 200433 China
| |
Collapse
|
35
|
Liu H, Shen F, Haruehanroengra P, Yao Q, Cheng Y, Chen Y, Yang C, Zhang J, Wu B, Luo Q, Cui R, Li J, Ma J, Sheng J, Gan J. A DNA Structure Containing AgI
-Mediated G:G and C:C Base Pairs. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/anie.201704891] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hehua Liu
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Physiology and Biophysics; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Fusheng Shen
- Department of Chemistry and The RNA Institute; University at Albany; State University of New York; Albany NY 12222 USA
| | - Phensinee Haruehanroengra
- Department of Chemistry and The RNA Institute; University at Albany; State University of New York; Albany NY 12222 USA
| | - Qingqing Yao
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Yunshan Cheng
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Physiology and Biophysics; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Yiqing Chen
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Physiology and Biophysics; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Chun Yang
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Physiology and Biophysics; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Jing Zhang
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Physiology and Biophysics; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Baixing Wu
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Qiang Luo
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Ruixue Cui
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Physiology and Biophysics; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai 200433 China
| | - Jia Sheng
- Department of Chemistry and The RNA Institute; University at Albany; State University of New York; Albany NY 12222 USA
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering; Collaborative Innovation Center of Genetics and Development; Department of Physiology and Biophysics; School of Life Sciences; Fudan University; Shanghai 200433 China
| |
Collapse
|
36
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
37
|
Takezawa Y, Müller J, Shionoya M. Artificial DNA Base Pairing Mediated by Diverse Metal Ions. CHEM LETT 2017. [DOI: 10.1246/cl.160985] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| |
Collapse
|
38
|
Zhao H, Leonard P, Guo X, Yang H, Seela F. Silver-Mediated Base Pairs in DNA Incorporating Purines, 7-Deazapurines, and 8-Aza-7-deazapurines: Impact of Reduced Nucleobase Binding Sites and an Altered Glycosylation Position. Chemistry 2017; 23:5529-5540. [PMID: 28195414 DOI: 10.1002/chem.201605982] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 02/05/2023]
Abstract
Formation of silver-mediated DNA was studied with oligonucleotides incorporating 8-aza-7-deazapurine, 7-deazapurine, and purine nucleosides. The investigation was performed on non-self-complementary duplexes with one or two modifications and self-complementary duplexes with an alternating dA-dT motif. Homo base pairs as well as base pair mismatches of dA analogues with dC and Watson-Crick pairs with dT were studied by stoichiometric silver ion titration and Tm measurements. N8 -Glycosylated 8-aza-7-deazaadenine forms silver-ion-mediated base pairs capturing two silver ions (low silver content) whereas regularly glycosylated 8-aza-7-deazapurine, 7-deazapurine (c7 Ad ), and dA do not form comparable structures. Stable silver-mediated "dA-dC" base pair mismatches were detected for all nucleosides. Two silver ions per base pair are bound by 8-aza-7-deazapurine whereas c7 Ad binds only one silver ion. The situation is different when the equivalents of silver ions were increased to the number of total base pairs. Surprisingly, in 12-mer duplexes as well as in related 25-mer duplexes every base pair consumed one silver ion.
Collapse
Affiliation(s)
- Hang Zhao
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie Neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie Neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Xiurong Guo
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie Neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Haozhe Yang
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie Neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie Neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| |
Collapse
|
39
|
Mandal S, Müller J. Metal-mediated DNA assembly with ligand-based nucleosides. Curr Opin Chem Biol 2017; 37:71-79. [PMID: 28214670 DOI: 10.1016/j.cbpa.2017.01.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/22/2017] [Accepted: 01/24/2017] [Indexed: 01/12/2023]
Abstract
Nucleic acids such as DNA are increasingly being applied in nanotechnology, as a result of their capability to self-assemble reversibly. The formal replacement of canonical base pairs by metal-mediated ones enables a site-specific introduction of metal-based functionality into these biomolecules, leading to the formation of predesigned metal arrays. This article offers an overview of structural aspects of metal-mediated base pairs, reviews recent advances in the field of metal-mediated base pairing and presents potential applications of the resulting metal-modified nucleic acids. It particularly focuses on recently developed metal-mediated base pairs with purine-derived nucleosides, gives an overview of metal-responsive systems relying on metal-mediated base pairs and summarizes various applications beyond metal-ion sensors.
Collapse
Affiliation(s)
- Soham Mandal
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany(*)
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany(*).
| |
Collapse
|
40
|
Hong T, Yuan Y, Wang T, Ma J, Yao Q, Hua X, Xia Y, Zhou X. Selective detection of N6-methyladenine in DNA via metal ion-mediated replication and rolling circle amplification. Chem Sci 2017; 8:200-205. [PMID: 28451166 PMCID: PMC5308289 DOI: 10.1039/c6sc02271e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/09/2016] [Indexed: 01/02/2023] Open
Abstract
N6-methyladenine (6mA) is reported as a potential epigenetic marker in eukaryotic genomes. However, accurate identification of the location of 6mA in DNA remains a challenging task. Here, we show that Ag+ can selectively stabilize the A-C mismatch and efficiently promote primer extension. In contrast, the complex of 6mA-Ag+-C is instable and therefore cannot be recognized by DNA polymerases, resulting in the termination of primer extension. Based on this finding, we successfully identified and quantified 6mA at the single-base level through the analysis of gel bands of extended primers and fluorescence measurements combined with rolling circle amplification. The high selectivity and sensitivity of this strategy may provide a new platform for the efficient analysis of 6mA in DNA in the future.
Collapse
Affiliation(s)
- Tingting Hong
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Yushu Yuan
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Tianlu Wang
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Jingwei Ma
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Qian Yao
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Xiaoluan Hua
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Yu Xia
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| |
Collapse
|
41
|
Structure and properties of a copper-mediated nucleobase pair from density functional theory investigation. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.03.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Dairaku T, Furuita K, Sato H, Šebera J, Nakashima K, Kondo J, Yamanaka D, Kondo Y, Okamoto I, Ono A, Sychrovský V, Kojima C, Tanaka Y. Structure Determination of an AgI-Mediated Cytosine-Cytosine Base Pair within DNA Duplex in Solution with1H/15N/109Ag NMR Spectroscopy. Chemistry 2016; 22:13028-31. [DOI: 10.1002/chem.201603048] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Takenori Dairaku
- School of Pharmaceutical Sciences; Ohu University; 31-1 Misumido, Tomita-machi, Koriyama Fukushima 963-8611 Japan
- Graduate School of Pharmaceutical Sciences; Tohoku University; 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai Miyagi 980-8578 Japan
| | - Kyoko Furuita
- Institute for Protein Research; Osaka University; 3-2 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Hajime Sato
- Application, Bruker BioSpin K. K.; 3-9 Moriya-cho, Kanagawa-ku, Yokohama Kanagawa 221-0022 Japan
| | - Jakub Šebera
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic, v.v.i.; Flemingovo náměstí 2 16610 Praha 6 Czech Republic
| | - Katsuyuki Nakashima
- Faculty of Phamaceutical Scienes; Tokushima Bunri University; Yamashiro-cho Tokushima 770-8514 Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences; Faculty of Science and Technology, Sophia University; 7-1 Kioi-cho, Chiyoda-ku Tokyo 102-8554 Japan
| | - Daichi Yamanaka
- Graduate School of Pharmaceutical Sciences; Tohoku University; 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai Miyagi 980-8578 Japan
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences; Tohoku University; 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai Miyagi 980-8578 Japan
| | - Itaru Okamoto
- Department of Material & Life Chemistry, Faculty of Engineering; Kanagawa University; 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama Kanagawa 221-8686 Japan
| | - Akira Ono
- Department of Material & Life Chemistry, Faculty of Engineering; Kanagawa University; 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama Kanagawa 221-8686 Japan
| | - Vladimír Sychrovský
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic, v.v.i.; Flemingovo náměstí 2 16610 Praha 6 Czech Republic
- Czech Technical University in Prague; Faculty of Electrical Engineering, Department of Electrotechnology; Technická 2 166 27 Praha 6 Czech Republic
| | - Chojiro Kojima
- Institute for Protein Research; Osaka University; 3-2 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Yoshiyuki Tanaka
- Graduate School of Pharmaceutical Sciences; Tohoku University; 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai Miyagi 980-8578 Japan
- Faculty of Phamaceutical Scienes; Tokushima Bunri University; Yamashiro-cho Tokushima 770-8514 Japan
| |
Collapse
|
43
|
Yang H, Seela F. Silver Ions in Non-canonical DNA Base Pairs: Metal-Mediated Mismatch Stabilization of 2'-Deoxyadenosine and 7-Deazapurine Derivatives with 2'-Deoxycytidine and 2'-Deoxyguanosine. Chemistry 2016; 22:13336-46. [PMID: 27492501 DOI: 10.1002/chem.201602103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 12/18/2022]
Abstract
Novel silver-mediated dA-dC, dA*-dC, and dA*-dG base pairs were formed in a natural DNA double helix environment (dA* denotes 7-deaza-dA, 7-deaza-7-iodo-dA, and 7-cyclopropyl-7-deaza-dA). 7-Deazapurine nucleosides enforce silver ion binding and direct metal-mediated base pair formation to their Watson-Crick face. New phosphoramidites were prepared from 7-deaza-dA, 7-deaza-7-iodo-dA, and 7-cyclopropyl-7-deaza-dA, which contain labile isobutyryl protecting groups. Solid-phase synthesis furnished oligonucleotides that contain mismatches in near central positions. Increased thermal stabilities (higher Tm values) were observed for oligonucleotide duplexes with non-canonical dA*-dC and dA-dC pairs in the presence of silver ions. The stability of the silver-mediated base pairs was pH dependent. Silver ion binding was not observed for the dA-dG mismatch but took place when mismatches were formed between 7-deazaadenine and guanine. The specific binding of silver ions was confirmed by stoichiometric UV titration experiments, which proved that one silver ion is captured by one mismatch. The stability increase of canonical DNA mismatches might have an impact on cellular DNA repair.
Collapse
Affiliation(s)
- Haozhe Yang
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany), Fax.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany), Fax. .,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany.
| |
Collapse
|
44
|
Takezawa Y, Kobayashi T, Shionoya M. The Effects of Magnesium Ions on the Enzymatic Synthesis of Ligand-Bearing Artificial DNA by Template-Independent Polymerase. Int J Mol Sci 2016; 17:E906. [PMID: 27338351 PMCID: PMC4926440 DOI: 10.3390/ijms17060906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 02/04/2023] Open
Abstract
A metal-mediated base pair, composed of two ligand-bearing nucleotides and a bridging metal ion, is one of the most promising components for developing DNA-based functional molecules. We have recently reported an enzymatic method to synthesize hydroxypyridone (H)-type ligand-bearing artificial DNA strands. Terminal deoxynucleotidyl transferase (TdT), a template-independent DNA polymerase, was found to oligomerize H nucleotides to afford ligand-bearing DNAs, which were subsequently hybridized through copper-mediated base pairing (H-Cu(II)-H). In this study, we investigated the effects of a metal cofactor, Mg(II) ion, on the TdT-catalyzed polymerization of H nucleotides. At a high Mg(II) concentration (10 mM), the reaction was halted after several H nucleotides were appended. In contrast, at lower Mg(II) concentrations, H nucleotides were further appended to the H-tailed product to afford longer ligand-bearing DNA strands. An electrophoresis mobility shift assay revealed that the binding affinity of TdT to the H-tailed DNAs depends on the Mg(II) concentration. In the presence of excess Mg(II) ions, TdT did not bind to the H-tailed strands; thus, further elongation was impeded. This is possibly because the interaction with Mg(II) ions caused folding of the H-tailed strands into unfavorable secondary structures. This finding provides an insight into the enzymatic synthesis of longer ligand-bearing DNA strands.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Teruki Kobayashi
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
45
|
Wu Y, Lai RY. A reagentless DNA-based electrochemical silver(I) sensor for real time detection of Ag(I) - the effect of probe sequence and orientation on sensor response. Biotechnol J 2016; 11:788-96. [PMID: 26901685 DOI: 10.1002/biot.201500428] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/11/2015] [Accepted: 02/16/2016] [Indexed: 11/09/2022]
Abstract
Ag(I) is known to interact with cytosine (C) via the formation C-Ag(I)-C complexes. The authors have utilized this concept to design six electrochemical Ag(I) sensors using C-rich DNA probes. Alternating current voltammetry and cyclic voltammetry were used to analyze the sensors. The results show that the dual-probe sensors that require the use of both 5'- and 3'-thiolated DNA probes are not suitable for this application, the differences in probe orientation impedes formation of C-Ag(I)-C complexes. Sensors fabricated with DNA probes containing both thymine (T) and C, independent of the location of the alkanethiol linker, do not response to Ag(I) either; T-T mismatches destabilize the duplex even in the presence of Ag(I). However, sensors fabricated with DNA probes containing both adenine (A) and C are ideal for this application, owing to the formation of C-Ag(I)-C complexes, as well as other lesser known interactions between A and Ag(I). Both sensors are sensitive, specific and selective enough to be used in 50% human saliva. They can also be used to detect silver sulfadiazine, a commonly prescribed antimicrobial drug. With further optimization, this sensing strategy may offer a promising approach for detection of Ag(I) in environmental and clinical samples.
Collapse
Affiliation(s)
- Yao Wu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rebecca Y Lai
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
46
|
Formation of Silver Nanoclusters from a DNA Template Containing Ag(I)-Mediated Base Pairs. Bioinorg Chem Appl 2016; 2016:7485125. [PMID: 27034627 PMCID: PMC4791510 DOI: 10.1155/2016/7485125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/22/2015] [Accepted: 12/27/2015] [Indexed: 11/18/2022] Open
Abstract
A series of DNA double helices containing different numbers of silver(I)-mediated base pairs involving the artificial nucleobases imidazole or 2-methylimidazole has been applied for the generation of DNA-templated silver nanoclusters. The original Ag(I)-containing nucleic acids as well as the resulting nanoclusters and nanoparticles have been characterized by means of UV/Vis spectroscopy, circular dichroism (CD) spectroscopy, fluorescence spectroscopy, and transmission electron microscopy (TEM). The results show for the first time that metal-mediated base pairs can be used for the templated growth of metal nanoclusters.
Collapse
|
47
|
Wang W, Kang TS, Chan PWH, Lu JJ, Chen XP, Leung CH, Ma DL. A label-free G-quadruplex-based mercury detection assay employing the exonuclease III-mediated cleavage of T-Hg 2+-T mismatched DNA. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:065004. [PMID: 27877846 PMCID: PMC5069990 DOI: 10.1088/1468-6996/16/6/065004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 05/30/2023]
Abstract
We report herein the use of an exonuclease III and G-quadruplex probe to construct a G-quadruplex-based luminescence detection platform for Hg2+. Unlike common DNA-based Hg2+ detection methods, when using the dsDNA probe to monitor the hairpin formation, the intercalation of the dsDNA probe may be influenced by the distortion of dsDNA. This 'mix-and-detect' methodology utilized the G-quadruplex probe as the signal transducer and is simple, rapid, convenient to use and can detect down to 20 nM of Hg2+.
Collapse
Affiliation(s)
- Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Philip Wai Hong Chan
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiu-Ping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
48
|
Scharf P, Jash B, Kuriappan JA, Waller MP, Müller J. Sequence-Dependent Duplex Stabilization upon Formation of a Metal-Mediated Base Pair. Chemistry 2015; 22:295-301. [PMID: 26584591 DOI: 10.1002/chem.201503405] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 12/20/2022]
Abstract
An artificial nucleoside surrogate with 1H-imidazo[4,5-f][1,10]phenanthroline (P) acting as an aglycone has been introduced into DNA oligonucleotide duplexes. This nucleoside surrogate can act as a bidentate ligand, and so is useful in the context of metal-mediated base pairs. Several duplexes involving a hetero base pair with an imidazole nucleoside have been investigated. The stability of DNA duplexes incorporating the respective Ag(I) -mediated base pairs strongly depends on the sequence context. Quantum mechanical/molecular mechanical (QM/MM) calculations have been performed in order to gain insight into the factors determining this sequence dependence. The results indicated that, in addition to the stabilizing effect that results from the formation of coordinative bonds, destabilizing effects may occur when the artificial base pair does not fit optimally into the surrounding B-DNA duplex.
Collapse
Affiliation(s)
- Philipp Scharf
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 28/30, 48149 Münster (Germany).,Current address: University of Iceland, Science Institute, Dunhagi 3, 107 Reykjavík (Iceland)
| | - Biswarup Jash
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 28/30, 48149 Münster (Germany).,Westfälische Wilhelms-Universität Münster, Graduate School of Chemistry, Corrensstrasse 28/30, 48149 Münster (Germany)
| | - Jissy A Kuriappan
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstrasse 40, 48149 Münster (Germany)
| | - Mark P Waller
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstrasse 40, 48149 Münster (Germany)
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 28/30, 48149 Münster (Germany). .,Westfälische Wilhelms-Universität Münster, Graduate School of Chemistry, Corrensstrasse 28/30, 48149 Münster (Germany).
| |
Collapse
|
49
|
Dairaku T, Furuita K, Sato H, Kondo Y, Kojima C, Ono A, Tanaka Y. Exploring a DNA Sequence for the Three-Dimensional Structure Determination of a Silver(I)-Mediated C-C Base Pair in a DNA Duplex By (1)H NMR Spectroscopy. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:877-900. [PMID: 26576739 DOI: 10.1080/15257770.2015.1088160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, we discovered novel silver(I)-mediated cytosine-cytosine base pair (C-Ag(I)-C) in DNA duplexes. To understand the properties of these base pairs, we searched for a DNA sequence that can be used in NMR structure determination. After extensive sequence optimizations, a non-symmetric 15-base-paired DNA duplex with a single C-Ag(I)-C base pair flanked by 14 A-T base pairs was selected. In spite of its challenging length for NMR measurements (30 independent residues) with small sequence variation, we could assign most non-exchangeable protons (254 out of 270) and imino protons for structure determination.
Collapse
Affiliation(s)
- Takenori Dairaku
- a Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku , Sendai , Miyagi , Japan
| | - Kyoko Furuita
- b Institute for Protein Research, Osaka University , Suita , Osaka , Japan
| | - Hajime Sato
- c Bruker BioSpin K.K. , Yokohama , Kanagawa , Japan
| | - Yoshinori Kondo
- a Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku , Sendai , Miyagi , Japan
| | - Chojiro Kojima
- b Institute for Protein Research, Osaka University , Suita , Osaka , Japan
| | - Akira Ono
- d Department of Material & Life Chemistry , Kangawa University, Kanagawa-ku , Yokohama , Kanagawa , Japan
| | - Yoshiyuki Tanaka
- a Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku , Sendai , Miyagi , Japan.,e Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University , Yamashiro-cho , Tokushima , Japan
| |
Collapse
|
50
|
Kondo J, Tada Y, Dairaku T, Saneyoshi H, Okamoto I, Tanaka Y, Ono A. High‐Resolution Crystal Structure of a Silver(I)–RNA Hybrid Duplex Containing Watson–Crick‐like CSilver(I)C Metallo‐Base Pairs. Angew Chem Int Ed Engl 2015; 54:13323-6. [DOI: 10.1002/anie.201507894] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7‐1 Kioi‐cho, Chiyoda‐ku, Tokyo 102‐8554 (Japan)
- Graduate School of Science and Technology, Sophia University, 7‐1 Kioi‐cho, Chiyoda‐ku, Tokyo 102‐8554 (Japan)
| | - Yoshinari Tada
- Graduate School of Science and Technology, Sophia University, 7‐1 Kioi‐cho, Chiyoda‐ku, Tokyo 102‐8554 (Japan)
| | - Takenori Dairaku
- Laboratory of Molecular Transformation, Graduate School of Pharmaceutical Sciences, Tohoku University, 6‐3 Aza‐Aoba, Aramaki, Aoba‐ku, Sendai 980‐8578 (Japan)
| | - Hisao Saneyoshi
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3‐27‐1 Rokkakubashi, Kanagawa‐ku, Yokohama 221‐8686 (Japan)
| | - Itaru Okamoto
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3‐27‐1 Rokkakubashi, Kanagawa‐ku, Yokohama 221‐8686 (Japan)
| | - Yoshiyuki Tanaka
- Laboratory of Molecular Transformation, Graduate School of Pharmaceutical Sciences, Tohoku University, 6‐3 Aza‐Aoba, Aramaki, Aoba‐ku, Sendai 980‐8578 (Japan)
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro‐cho, 770‐8514 Tokushima (Japan)
| | - Akira Ono
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3‐27‐1 Rokkakubashi, Kanagawa‐ku, Yokohama 221‐8686 (Japan)
| |
Collapse
|