1
|
Forino NM, Woo JZ, Zaug AJ, Jimenez AG, Edelson E, Cech TR, Rouskin S, Stone MD. Telomerase RNA structural heterogeneity in living human cells detected by DMS-MaPseq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560962. [PMID: 37873413 PMCID: PMC10592977 DOI: 10.1101/2023.10.04.560962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Telomerase is a specialized reverse transcriptase that uses an intrinsic RNA subunit as the template for telomeric DNA synthesis. Biogenesis of human telomerase requires its RNA subunit (hTR) to fold into a multi-domain architecture that includes the template-containing pseudoknot (t/PK) and the three-way junction (CR4/5). These two hTR domains bind the telomerase reverse transcriptase (hTERT) protein and are thus essential for telomerase catalytic activity. Here, we probe the structure of hTR in living cells using dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) and ensemble deconvolution analysis. Unexpectedly, approximately 15% of the steady state population of hTR has a CR4/5 conformation lacking features thought to be required for hTERT binding. The proportion of hTR CR4/5 that is folded into the primary functional conformation does not require hTERT expression and the fraction of hTR that assumes a misfolded CR4/5 domain is not refolded by overexpression of its hTERT binding partner. This result suggests a functional role for an RNA folding cofactor other than hTERT during telomerase biogenesis. Mutagenesis demonstrates that stabilization of the alternative CR4/5 conformation is detrimental to telomerase assembly and activity. Moreover, the alternative CR4/5 conformation is not found in telomerase RNP complexes purified from cells via an epitope tag on hTERT, supporting the hypothesis that only the major CR4/5 conformer is active. We propose that this misfolded portion of the cellular hTR pool is either slowly refolded or degraded. Thus, kinetic traps for RNA folding that have been so well-studied in vitro may also present barriers for assembly of ribonucleoprotein complexes in vivo.
Collapse
Affiliation(s)
- Nicholas M Forino
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Jia Zheng Woo
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Arthur J Zaug
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | | | - Eva Edelson
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| |
Collapse
|
2
|
Li C, Wang M, Li PF, Sheng J, Fu Q. Construction of Smart DNA-Based Drug Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306257. [PMID: 38377302 DOI: 10.1002/smll.202306257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/10/2024] [Indexed: 02/22/2024]
Abstract
Due to the disadvantages of poor targeting, slow action, and low effectiveness of current commonly used cancer treatments, including surgery, chemotherapy, and radiotherapy, researchers have turned to DNA as a biomaterial for constructing drug delivery nanocarriers. DNA is favored for its biocompatibility and programmability. In order to overcome the limitations associated with traditional drug delivery systems (DDSs), researchers have developed smart-responsive DNA DDSs that can control drug release in response to specific physical or chemical stimuli at targeted sites. In this review, a summary of multiple targeted ligand structures is provided, various shapes of stable DNA nanomaterials, and different stimuli-responsive drug release strategies in DNA DDSs. Specifically, targeted cell recognition, in vivo stable transport, and controlled drug release of smart DDSs are focused. Finally, the further development prospects and challenges of clinical application of DNA nanomaterials in the field of smart drug delivery are discussed. The objective of this review is to enhance researchers' comprehension regarding the potential application of DNA nanomaterials in precision drug delivery, with the aim of expediting the clinical implementation of intelligent DDSs.
Collapse
Affiliation(s)
- Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Junyue Sheng
- Qingdao No.58 High School of Shandong Province, 20 Jiushui Road, Qingdao, 266100, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
3
|
Wang J, Koduru T, Harish B, McCallum SA, Larsen KP, Patel KS, Peters EV, Gillilan RE, Puglisi EV, Puglisi JD, Makhatadze G, Royer CA. Pressure pushes tRNA Lys3 into excited conformational states. Proc Natl Acad Sci U S A 2023; 120:e2215556120. [PMID: 37339210 PMCID: PMC10293818 DOI: 10.1073/pnas.2215556120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
Conformational dynamics play essential roles in RNA function. However, detailed structural characterization of excited states of RNA remains challenging. Here, we apply high hydrostatic pressure (HP) to populate excited conformational states of tRNALys3, and structurally characterize them using a combination of HP 2D-NMR, HP-SAXS (HP-small-angle X-ray scattering), and computational modeling. HP-NMR revealed that pressure disrupts the interactions of the imino protons of the uridine and guanosine U-A and G-C base pairs of tRNALys3. HP-SAXS profiles showed a change in shape, but no change in overall extension of the transfer RNA (tRNA) at HP. Configurations extracted from computational ensemble modeling of HP-SAXS profiles were consistent with the NMR results, exhibiting significant disruptions to the acceptor stem, the anticodon stem, and the D-stem regions at HP. We propose that initiation of reverse transcription of HIV RNA could make use of one or more of these excited states.
Collapse
Affiliation(s)
- Jinqiu Wang
- Graduate Program in Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Tejaswi Koduru
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | | | - Scott A. McCallum
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Kevin P. Larsen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Karishma S. Patel
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Edgar V. Peters
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY12180
| | | | - Elisabetta V. Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Joseph D. Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - George Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Catherine A. Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| |
Collapse
|
4
|
Fuks C, Falkner S, Schwierz N, Hengesbach M. Combining Coarse-Grained Simulations and Single Molecule Analysis Reveals a Three-State Folding Model of the Guanidine-II Riboswitch. Front Mol Biosci 2022; 9:826505. [PMID: 35573739 PMCID: PMC9094411 DOI: 10.3389/fmolb.2022.826505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Riboswitch RNAs regulate gene expression by conformational changes induced by environmental conditions and specific ligand binding. The guanidine-II riboswitch is proposed to bind the small molecule guanidinium and to subsequently form a kissing loop interaction between the P1 and P2 hairpins. While an interaction was shown for isolated hairpins in crystallization and electron paramagnetic resonance experiments, an intrastrand kissing loop formation has not been demonstrated. Here, we report the first evidence of this interaction in cis in a ligand and Mg2+ dependent manner. Using single-molecule FRET spectroscopy and detailed structural information from coarse-grained simulations, we observe and characterize three interconvertible states representing an open and kissing loop conformation as well as a novel Mg2+ dependent state for the guanidine-II riboswitch from E. coli. The results further substantiate the proposed switching mechanism and provide detailed insight into the regulation mechanism for the guanidine-II riboswitch class. Combining single molecule experiments and coarse-grained simulations therefore provides a promising perspective in resolving the conformational changes induced by environmental conditions and to yield molecular insights into RNA regulation.
Collapse
Affiliation(s)
- Christin Fuks
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Sebastian Falkner
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Computational and Soft Matter Physics, University of Vienna, Vienna, VIA, Austria
| | - Nadine Schwierz
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Pseudoknot length modulates the folding, conformational dynamics, and robustness of Xrn1 resistance of flaviviral xrRNAs. Nat Commun 2021; 12:6417. [PMID: 34741027 PMCID: PMC8571300 DOI: 10.1038/s41467-021-26616-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/04/2021] [Indexed: 01/15/2023] Open
Abstract
To understand how RNA dynamics is regulated and connected to its function, we investigate the folding, conformational dynamics and robustness of Xrn1 resistance of a set of flaviviral xrRNAs using SAXS, smFRET and in vitro enzymatic assays. Flaviviral xrRNAs form discrete ring-like 3D structures, in which the length of a conserved long-range pseudoknot (PK2) ranges from 2 bp to 7 bp. We find that xrRNAs' folding, conformational dynamics and Xrn1 resistance are strongly correlated and highly Mg2+-dependent, furthermore, the Mg2+-dependence is modulated by PK2 length variations. xrRNAs with long PK2 require less Mg2+ to stabilize their folding, exhibit reduced conformational dynamics and strong Xrn1 resistance even at low Mg2+, and tolerate mutations at key tertiary motifs at high Mg2+, which generally are destructive to xrRNAs with short PK2. These results demonstrate an unusual regulatory mechanism of RNA dynamics providing insights into the functions and future biomedical applications of xrRNAs.
Collapse
|
6
|
Schmidt A, Hanspach G, Hengesbach M. Structural dynamics govern substrate recruitment and catalytic turnover in H/ACA RNP pseudouridylation. RNA Biol 2021; 18:1300-1309. [PMID: 33111609 PMCID: PMC8354600 DOI: 10.1080/15476286.2020.1842984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 01/17/2023] Open
Abstract
H/ACA ribonucleoproteins catalyse the sequence-dependent pseudouridylation of ribosomal and spliceosomal RNAs. Here, we reconstitute site-specifically fluorophore labelled H/ACA complexes and analyse their structural dynamics using single-molecule FRET spectroscopy. Our results show that the guide RNA is distorted into a substrate-binding competent conformation by specific protein interactions. Analysis of the reaction pathway using atomic mutagenesis establishes a new model how individual protein domains contribute to catalysis. Taken together, these results identify and characterize individual roles for all accessory proteins on the assembly and function of H/ACA RNPs.
Collapse
Affiliation(s)
- Andreas Schmidt
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gerd Hanspach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
7
|
Akiyama BM, Graham ME, O′Donoghue Z, Beckham J, Kieft J. Three-dimensional structure of a flavivirus dumbbell RNA reveals molecular details of an RNA regulator of replication. Nucleic Acids Res 2021; 49:7122-7138. [PMID: 34133732 PMCID: PMC8266583 DOI: 10.1093/nar/gkab462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 11/14/2022] Open
Abstract
Mosquito-borne flaviviruses (MBFVs) including dengue, West Nile, yellow fever, and Zika viruses have an RNA genome encoding one open reading frame flanked by 5' and 3' untranslated regions (UTRs). The 3' UTRs of MBFVs contain regions of high sequence conservation in structured RNA elements known as dumbbells (DBs). DBs regulate translation and replication of the viral RNA genome, functions proposed to depend on the formation of an RNA pseudoknot. To understand how DB structure provides this function, we solved the x-ray crystal structure of the Donggang virus DB to 2.1Å resolution and used structural modeling to reveal the details of its three-dimensional fold. The structure confirmed the predicted pseudoknot and molecular modeling revealed how conserved sequences form a four-way junction that appears to stabilize the pseudoknot. Single-molecule FRET suggests that the DB pseudoknot is a stable element that can regulate the switch between translation and replication during the viral lifecycle by modulating long-range RNA conformational changes.
Collapse
Affiliation(s)
- Benjamin M Akiyama
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
| | - Monica E Graham
- Department of Immunology and Microbiology, Aurora, CO 80045, USA
| | - Zoe O′Donoghue
- Department of Immunology and Microbiology, Aurora, CO 80045, USA
| | - J David Beckham
- Department of Immunology and Microbiology, Aurora, CO 80045, USA
- Department of Medicine Division of Infectious Diseases, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Müller D, Trucks S, Schwalbe H, Hengesbach M. Genetic Code Expansion Facilitates Position-Selective Modification of Nucleic Acids and Proteins. Chempluschem 2020; 85:1233-1243. [PMID: 32515171 DOI: 10.1002/cplu.202000150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Transcription and translation obey to the genetic code of four nucleobases and 21 amino acids evolved over billions of years. Both these processes have been engineered to facilitate the use of non-natural building blocks in both nucleic acids and proteins, enabling researchers with a decent toolbox for structural and functional analyses. Here, we review the most common approaches for how labeling of both nucleic acids as well as proteins in a site-selective fashion with either modifiable building blocks or spectroscopic probes can be facilitated by genetic code expansion. We emphasize methodological approaches and how these can be adapted for specific modifications, both during as well as after biomolecule synthesis. These modifications can facilitate, for example, a number of different spectroscopic analysis techniques and can under specific circumstances even be used in combination.
Collapse
Affiliation(s)
- Diana Müller
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Sven Trucks
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Cooperative Analysis of Structural Dynamics in RNA-Protein Complexes by Single-Molecule Förster Resonance Energy Transfer Spectroscopy. Molecules 2020; 25:molecules25092057. [PMID: 32354083 PMCID: PMC7248720 DOI: 10.3390/molecules25092057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
RNA-protein complexes (RNPs) are essential components in a variety of cellular processes, and oftentimes exhibit complex structures and show mechanisms that are highly dynamic in conformation and structure. However, biochemical and structural biology approaches are mostly not able to fully elucidate the structurally and especially conformationally dynamic and heterogeneous nature of these RNPs, to which end single molecule Förster resonance energy transfer (smFRET) spectroscopy can be harnessed to fill this gap. Here we summarize the advantages of strategic smFRET studies to investigate RNP dynamics, complemented by structural and biochemical data. Focusing on recent smFRET studies of three essential biological systems, we demonstrate that investigation of RNPs on a single molecule level can answer important functional questions that remained elusive with structural or biochemical approaches alone: The complex structural rearrangements throughout the splicing cycle, unwinding dynamics of the G-quadruplex (G4) helicase RHAU, and aspects in telomere maintenance regulation and synthesis.
Collapse
|
10
|
Wang Y, Sušac L, Feigon J. Structural Biology of Telomerase. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032383. [PMID: 31451513 DOI: 10.1101/cshperspect.a032383] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Telomerase is a DNA polymerase that extends the 3' ends of chromosomes by processively synthesizing multiple telomeric repeats. It is a unique ribonucleoprotein (RNP) containing a specialized telomerase reverse transcriptase (TERT) and telomerase RNA (TER) with its own template and other elements required with TERT for activity (catalytic core), as well as species-specific TER-binding proteins important for biogenesis and assembly (core RNP); other proteins bind telomerase transiently or constitutively to allow association of telomerase and other proteins with telomere ends for regulation of DNA synthesis. Here we describe how nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography of TER and protein domains helped define the structure and function of the core RNP, laying the groundwork for interpreting negative-stain and cryo electron microscopy (cryo-EM) density maps of Tetrahymena thermophila and human telomerase holoenzymes. As the resolution has improved from ∼30 Å to ∼5 Å, these studies have provided increasingly detailed information on telomerase architecture and mechanism.
Collapse
Affiliation(s)
- Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| | - Lukas Sušac
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095-1569
| |
Collapse
|
11
|
Jansson LI, Stone MD. Single-Molecule Analysis of Reverse Transcriptase Enzymes. Cold Spring Harb Perspect Biol 2019; 11:11/9/a032458. [PMID: 31481455 DOI: 10.1101/cshperspect.a032458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The original discovery of enzymes that synthesize DNA using an RNA template appeared to contradict the central dogma of biology, in which information is transferred, in a unidirectional way, from DNA genes into RNA molecules. The paradigm-shifting discovery of RNA-dependent DNA polymerases, also called reverse transcriptases (RTs), reshaped existing views for how cells function; however, the scope of the impact RTs impose on biology had yet to be realized. In the decades of research since the early 1970s, the biomedical and biotechnological significance of retroviral RTs, as well as the evolutionarily related telomerase enzyme, has become exceedingly clear. One common theme that has emerged in the course of RT-related research is the central role of nucleic acid binding and dynamics during enzyme function. However, directly interrogating these dynamic properties is challenging because of the stochastic properties of biological macromolecules. In this review, we describe how the development of single-molecule biophysical techniques has opened new windows through which to observe the dynamic behavior of this remarkable class of enzymes. Specifically, we focus on how the powerful single-molecule Förster resonance energy transfer (FRET) method has been exploited to study the structure and function of the human immunodeficiency virus (HIV) RT and telomerase ribonucleoprotein (RNP) enzymes. These exciting studies have refined our understanding of RT catalysis, have revealed unforeseen structural rearrangements between RTs and their nucleic acid substrates, and have helped to characterize the mode of action of RT-inhibiting drugs. We conclude with a discussion of how the ongoing development of single-molecule technologies will continue to empower researchers to probe RT mechanisms in new and exciting ways.
Collapse
Affiliation(s)
- Linnea I Jansson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064.,The Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064.,The Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064
| |
Collapse
|
12
|
Sayed ME, Cheng A, Yadav GP, Ludlow AT, Shay JW, Wright WE, Jiang QX. Catalysis-dependent inactivation of human telomerase and its reactivation by intracellular telomerase-activating factors (iTAFs). J Biol Chem 2019; 294:11579-11596. [PMID: 31186347 DOI: 10.1074/jbc.ra118.007234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Human telomerase maintains genome stability by adding telomeric repeats to the ends of linear chromosomes. Although previous studies have revealed profound insights into telomerase functions, the low cellular abundance of functional telomerase and the difficulties in quantifying its activity leave its thermodynamic and kinetic properties only partially characterized. Employing a stable cell line overexpressing both the human telomerase RNA component and the N-terminally biotinylated human telomerase reverse transcriptase and using a newly developed method to count individual extension products, we demonstrate here that human telomerase holoenzymes contain fast- and slow-acting catalytic sites. Surprisingly, both active sites became inactive after two consecutive rounds of catalysis, named single-run catalysis. The fast active sites turned off ∼40-fold quicker than the slow ones and exhibited higher affinities to DNA substrates. In a dimeric enzyme, the two active sites work in tandem, with the faster site functioning before the slower one, and in the monomeric enzyme, the active sites also perform single-run catalysis. Interestingly, inactive enzymes could be reactivated by intracellular telomerase-activating factors (iTAFs) from multiple cell types. We conclude that the single-run catalysis and the iTAF-triggered reactivation serve as an unprecedented control circuit for dynamic regulation of telomerase. They endow native telomerase holoenzymes with the ability to match their total number of active sites to the number of telomeres they extend. We propose that the exquisite kinetic control of telomerase activity may play important roles in both cell division and cell aging.
Collapse
Affiliation(s)
- Mohammed E Sayed
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,School of Kinesiology Integrative Molecular Genetics Lab, University of Michigan, Ann Arbor, Michigan 48109
| | - Ao Cheng
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gaya P Yadav
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Andrew T Ludlow
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,School of Kinesiology Integrative Molecular Genetics Lab, University of Michigan, Ann Arbor, Michigan 48109
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Woodring E Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Qiu-Xing Jiang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 .,Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
13
|
Hanspach G, Trucks S, Hengesbach M. Strategic labelling approaches for RNA single-molecule spectroscopy. RNA Biol 2019; 16:1119-1132. [PMID: 30874475 DOI: 10.1080/15476286.2019.1593093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most single-molecule techniques observing RNA in vitro or in vivo require fluorescent labels that have to be connected to the RNA of interest. In recent years, a plethora of methods has been developed to achieve site-specific labelling, in many cases under near-native conditions. Here, we review chemical as well as enzymatic labelling methods that are compatible with single-molecule fluorescence spectroscopy or microscopy and show how these can be combined to offer a large variety of options to site-specifically place one or more labels in an RNA of interest. By either chemically forming a covalent bond or non-covalent hybridization, these techniques are prerequisites to perform state-of-the-art single-molecule experiments.
Collapse
Affiliation(s)
- Gerd Hanspach
- a Goethe-University Frankfurt, Institute for Organic Chemistry and Chemical Biology , Frankfurt , Germany
| | - Sven Trucks
- a Goethe-University Frankfurt, Institute for Organic Chemistry and Chemical Biology , Frankfurt , Germany
| | - Martin Hengesbach
- a Goethe-University Frankfurt, Institute for Organic Chemistry and Chemical Biology , Frankfurt , Germany
| |
Collapse
|
14
|
Combined smFRET and NMR analysis of riboswitch structural dynamics. Methods 2019; 153:22-34. [DOI: 10.1016/j.ymeth.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
|
15
|
Schmidt A, Altincekic N, Gustmann H, Wachtveitl J, Hengesbach M. The Protein Microenvironment Governs the Suitability of Labeling Sites for Single-Molecule Spectroscopy of RNP Complexes. ACS Chem Biol 2018; 13:2472-2483. [PMID: 30060648 DOI: 10.1021/acschembio.8b00348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Single-molecule techniques allow unique insights into biological systems as they provide unrivaled access to structural dynamics and conformational heterogeneity. One major bottleneck for reliable single-molecule Förster resonance energy transfer (smFRET) analysis is the identification of suitable fluorophore labeling sites that neither impair the function of the biological system nor cause photophysical artifacts of the fluorophore. To address this issue, we identified the contribution of virtually all individual parameters that affect Förster resonance energy transfer between two fluorophores attached to a ribonucleoprotein complex consisting of the RNA-binding protein L7Ae and a cognate kink turn containing RNA. A non-natural amino acid was incorporated at various positions of the protein using an amber suppression system (pEVOL) to label the protein via copper(I)-catalyzed alkyne-azide cycloaddition. On the basis of simulations followed by functional, structural, and multiparameter fluorescence analysis of five different smFRET RNPs, new insights into the design of smFRET RNPs were obtained. From this, a correlation between the photophysical properties of fluorophores attached to the protein and the predictability of the corresponding smFRET construct was established. Additionally, we identify a straightforward experimental method for characterizing selected labeling sites. Overall, this protocol allows fast generation and assessment of functional RNPs for accurate single-molecule experiments.
Collapse
Affiliation(s)
- Andreas Schmidt
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Nadide Altincekic
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Henrik Gustmann
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
16
|
Deshpande AP, Collins K. Mechanisms of template handling and pseudoknot folding in human telomerase and their manipulation to expand the sequence repertoire of processive repeat synthesis. Nucleic Acids Res 2018; 46:7886-7901. [PMID: 29986069 PMCID: PMC6125678 DOI: 10.1093/nar/gky601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/26/2018] [Indexed: 01/12/2023] Open
Abstract
Telomerase adds telomeric repeats to chromosome ends by processive copying of a template within the telomerase RNA bound to telomerase reverse transcriptase. Telomerase RNAs have single-stranded regions that separate the template from a 5' stem and 3' pseudoknot, and mammals gained additional stem P2a.1 separating the template from the pseudoknot. Using human telomerase, we show that the length of template 3'-flanking single-stranded RNA is a determinant of repeat addition processivity whereas template 5'-flanking single-stranded RNA and P2a.1 are critical for activity but not processivity. In comparison, requirements for the template sequence itself are confounding: different substitutions of the same position have strikingly different consequences, from improved processivity and activity to complete inactivation. We discovered that some altered-template sequences stabilize an alternative RNA conformation that precludes the pseudoknot by base-pairing of one pseudoknot strand to the template 3' end. Using mutations to reduce over-stability of the alternative conformation, we restore high activity and processivity to otherwise inactive altered-template telomerase ribonucleoproteins. In cells, over-stabilization or destabilization of the alternative state severely inhibited biogenesis of active telomerase. Our findings delineate roles for human telomerase RNA template-flanking regions, establish a biologically relevant pseudoknot-alternative RNA conformation, and expand the repertoire of human telomerase repeat synthesis.
Collapse
Affiliation(s)
- Aishwarya P Deshpande
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
Monovalent ions modulate the flux through multiple folding pathways of an RNA pseudoknot. Proc Natl Acad Sci U S A 2018; 115:E7313-E7322. [PMID: 30012621 PMCID: PMC6077692 DOI: 10.1073/pnas.1717582115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The assembly mechanism of RNA, vital to describing its functions, depends on both the sequence and the metal ion concentration. How the latter influences the folding trajectories remains an important unsolved problem. Here, we examine the folding pathways of an RNA pseudoknot (PK) with key functional roles in transcription and translation, using a combination of experiments and simulations. We demonstrate that the PK, consisting of two hairpins with differing stabilities, folds by parallel pathways. Surprisingly, the flux between them is modulated by monovalent salt concentration. Our work shows that the order of assembly of PKs is determined by the relative stability of the hairpins, implying that the folding landscape can be controlled by sequence and ion concentration. The functions of RNA pseudoknots (PKs), which are minimal tertiary structural motifs and an integral part of several ribozymes and ribonucleoprotein complexes, are determined by their structure, stability, and dynamics. Therefore, it is important to elucidate the general principles governing their thermodynamics/folding mechanisms. Here, we combine laser temperature-jump experiments and coarse-grained simulations to determine the folding/unfolding pathways of VPK, a variant of the mouse mammary tumor virus (MMTV) PK involved in ribosomal frameshifting. Fluorescent nucleotide analogs (2-aminopurine and pyrrolocytidine) placed at different stem/loop positions in the PK serve as local probes allowing us to monitor the order of assembly of VPK that has two constituent hairpins with different intrinsic stabilities. We show that at 50 mM KCl, the dominant folding pathway populates only the more stable hairpin intermediate; as the salt concentration is increased, a parallel folding pathway emerges involving the less stable hairpin as an alternate intermediate. Notably, the flux between the pathways is modulated by the ionic strength. Our findings support the principle that the order of PK structure formation is determined by the relative stabilities of the hairpins, which can be altered by sequence variations or salt concentrations. The experimental results of salt effects on the partitioning between the two folding pathways are in remarkable agreement with simulations that were performed with no adjustable parameters. Our study not only unambiguously demonstrates that VPK folds by parallel pathways but also showcases the power of combining experiments and simulations for a more enriched description of RNA self-assembly.
Collapse
|
18
|
Ma Y, Wang Z, Ma Y, Han Z, Zhang M, Chen H, Gu Y. A Telomerase-Responsive DNA Icosahedron for Precise Delivery of Platinum Nanodrugs to Cisplatin-Resistant Cancer. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yi Ma
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Zhaohui Wang
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Yuxuan Ma
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Zhihao Han
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Min Zhang
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Haiyan Chen
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| |
Collapse
|
19
|
Ma Y, Wang Z, Ma Y, Han Z, Zhang M, Chen H, Gu Y. A Telomerase-Responsive DNA Icosahedron for Precise Delivery of Platinum Nanodrugs to Cisplatin-Resistant Cancer. Angew Chem Int Ed Engl 2018; 57:5389-5393. [DOI: 10.1002/anie.201801195] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Yi Ma
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Zhaohui Wang
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Yuxuan Ma
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Zhihao Han
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Min Zhang
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Haiyan Chen
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| |
Collapse
|
20
|
Wang Y, Feigon J. Structural biology of telomerase and its interaction at telomeres. Curr Opin Struct Biol 2017; 47:77-87. [PMID: 28732250 PMCID: PMC5564310 DOI: 10.1016/j.sbi.2017.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022]
Abstract
Telomerase is an RNP that synthesizes the 3' ends of linear chromosomes and is an important regulator of telomere length. It contains a single long non-coding telomerase RNA (TER), telomerase reverse transcriptase (TERT), and other proteins that vary among organisms. Recent progress in structural biology of telomerase includes reports of the first cryo-electron microscopy structure of telomerase, from Tetrahymena, new crystal structures of TERT domains, telomerase RNA structures and models, and identification in Tetrahymena telomerase holoenzyme of human homologues of telomere-associated proteins that have provided a more unified view of telomerase interaction at telomeres as well as insights into the role of telomerase RNA in activity and assembly.
Collapse
Affiliation(s)
- Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|
21
|
Muttach F, Muthmann N, Reichert D, Anhäuser L, Rentmeister A. A benzylic linker promotes methyltransferase catalyzed norbornene transfer for rapid bioorthogonal tetrazine ligation. Chem Sci 2017; 8:7947-7953. [PMID: 29619168 PMCID: PMC5858020 DOI: 10.1039/c7sc03631k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/09/2017] [Indexed: 01/21/2023] Open
Abstract
Site-specific alkylation of complex biomolecules is critical for late-stage product diversification as well as post-synthetic labeling and manipulation of proteins and nucleic acids. Promiscuous methyltransferases in combination with analogs of S-adenosyl-l-methionine (AdoMet) can functionalize all major classes of biomolecules. We show that benzylic moieties are transferred by Ecm1 with higher catalytic efficiency than the natural AdoMet. A relative specificity of up to 80% is achieved when a norbornene moiety is placed in para-position, enabling for the first time enzymatic norbornene transfer to specific positions in DNA and RNA- even in cell lysate. Subsequent tetrazine ligation of the stable norbornene moiety is fast, efficient, biocompatible and - in combination with an appropriate tetrazine - fluorogenic.
Collapse
Affiliation(s)
- F Muttach
- University of Münster , Department of Chemistry , Institute of Biochemistry , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - N Muthmann
- University of Münster , Department of Chemistry , Institute of Biochemistry , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - D Reichert
- University of Münster , Department of Chemistry , Institute of Biochemistry , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
- Cells-in-Motion Cluster of Excellence (EXC1003-CiM) , University of Münster , Germany .
| | - L Anhäuser
- University of Münster , Department of Chemistry , Institute of Biochemistry , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - A Rentmeister
- University of Münster , Department of Chemistry , Institute of Biochemistry , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
- Cells-in-Motion Cluster of Excellence (EXC1003-CiM) , University of Münster , Germany .
| |
Collapse
|
22
|
Musgrove C, Jansson LI, Stone MD. New perspectives on telomerase RNA structure and function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29124890 DOI: 10.1002/wrna.1456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Abstract
Telomerase is an ancient ribonucleoprotein (RNP) that protects the ends of linear chromosomes from the loss of critical coding sequences through repetitive addition of short DNA sequences. These repeats comprise the telomere, which together with many accessory proteins, protect chromosomal ends from degradation and unwanted DNA repair. Telomerase is a unique reverse transcriptase (RT) that carries its own RNA to use as a template for repeat addition. Over decades of research, it has become clear that there are many diverse, crucial functions played by telomerase RNA beyond simply acting as a template. In this review, we highlight recent findings in three model systems: ciliates, yeast and vertebrates, that have shifted the way the field views the structural and mechanistic role(s) of RNA within the functional telomerase RNP complex. Viewed in this light, we hope to demonstrate that while telomerase RNA is just one example of the myriad functional RNA in the cell, insights into its structure and mechanism have wide-ranging impacts. WIREs RNA 2018, 9:e1456. doi: 10.1002/wrna.1456 This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Cherie Musgrove
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Linnea I Jansson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.,Center for Molecular Biology of RNA, University of California, Santa Cruz, CA, USA
| |
Collapse
|
23
|
Warhaut S, Mertinkus KR, Höllthaler P, Fürtig B, Heilemann M, Hengesbach M, Schwalbe H. Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy. Nucleic Acids Res 2017; 45:5512-5522. [PMID: 28204648 PMCID: PMC5605240 DOI: 10.1093/nar/gkx110] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/06/2017] [Indexed: 01/20/2023] Open
Abstract
The full-length translation-regulating add adenine riboswitch (Asw) from Vibrio vulnificus has a more complex conformational space than its isolated aptamer domain. In addition to the predicted apo (apoA) and holo conformation that feature the conserved three-way junctional purine riboswitch aptamer, it adopts a second apo (apoB) conformation with a fundamentally different secondary structure. Here, we characterized the ligand-dependent conformational dynamics of the full-length add Asw by NMR and by single-molecule FRET (smFRET) spectroscopy. Both methods revealed an adenine-induced secondary structure switch from the apoB-form to the apoA-form that involves no tertiary structural interactions between aptamer and expression platform. This strongly suggests that the add Asw triggers translation by capturing the apoA-form secondary structure in the holo state. Intriguingly, NMR indicated a homogenous, docked aptamer kissing loop fold for apoA and holo, while smFRET showed persistent aptamer kissing loop docking dynamics between comparably stable, undocked and docked substates of the apoA and the holo conformation. Unraveling the folding of large junctional riboswitches thus requires the integration of complementary solution structural techniques such as NMR and smFRET.
Collapse
Affiliation(s)
- Sven Warhaut
- Institute of Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Klara Rebecca Mertinkus
- Institute of Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Philipp Höllthaler
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Boris Fürtig
- Institute of Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Martin Hengesbach
- Institute of Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität, Frankfurt am Main, Hessen 60438, Germany
| |
Collapse
|
24
|
Zhang H, Lei Z, Tian R, Wang Z. Polyamidoamine starburst dendrimer-activated chromatography paper-based assay for sensitive detection of telomerase activity. Talanta 2017; 178:116-121. [PMID: 29136800 DOI: 10.1016/j.talanta.2017.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 02/05/2023]
Abstract
Telomerase is extensively expressed in various cancer cells and recognized as a target for cancer drug discovery. In the present study, a simple and amplification-free fluorescence assay based on polyamidoamine starburst dendrimer (PAMAM dendrimer)-activated paper device is proposed for sensitive detection of telomerase activity through hybridization of Cy5 modified single strand DNA probes with telomerase extension products. The paper substrate is fabricated by hand drawing according to a template, which is low cost, instrument free and easy operation. PAMAM is rich in amino groups on its surface and employed to immobilize the telomerase substrate (TS) primer. Highly sensitive detection of telomerase activity in HeLa cell lysate of 10 cells is achieved since the PAMAM dendrimer-activated paper surface can provide high density of binding sites for immobilization of TS primer. The experimental results also demonstrate that the assay can be employed to evaluate telomerase activity levels of various cell lines and screen telomerase inhibitors.
Collapse
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zhen Lei
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Rongrong Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| |
Collapse
|
25
|
Abstract
Telomerase is an RNA-protein complex that extends the 3' ends of linear chromosomes, using a unique telomerase reverse transcriptase (TERT) and template in the telomerase RNA (TR), thereby helping to maintain genome integrity. TR assembles with TERT and species-specific proteins, and telomerase function in vivo requires interaction with telomere-associated proteins. Over the past two decades, structures of domains of TR and TERT as well as other telomerase- and telomere-interacting proteins have provided insights into telomerase function. A recently reported 9-Å cryo-electron microscopy map of the Tetrahymena telomerase holoenzyme has provided a framework for understanding how TR, TERT, and other proteins from ciliate as well as vertebrate telomerase fit and function together as well as unexpected insight into telomerase interaction at telomeres. Here we review progress in understanding the structural basis of human and Tetrahymena telomerase activity, assembly, and interactions.
Collapse
Affiliation(s)
- Henry Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| | - Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| |
Collapse
|
26
|
Zhang Z, Jiao Y, Zhu M, Zhang S. Nuclear-Shell Biopolymers Initiated by Telomere Elongation for Individual Cancer Cell Imaging and Drug Delivery. Anal Chem 2017; 89:4320-4327. [DOI: 10.1021/acs.analchem.7b00591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhen Zhang
- Shandong
Province Key Laboratory of Detection Technology for Tumor Makers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Yuting Jiao
- Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Mengting Zhu
- Shandong
Province Key Laboratory of Life-Organic Analysis, College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. of China
| | - Shusheng Zhang
- Shandong
Province Key Laboratory of Detection Technology for Tumor Makers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| |
Collapse
|
27
|
Abstract
Telomeres are specialized chromatin structures that protect chromosome ends from dangerous processing events. In most tissues, telomeres shorten with each round of cell division, placing a finite limit on cell growth. In rapidly dividing cells, including the majority of human cancers, cells bypass this growth limit through telomerase-catalyzed maintenance of telomere length. The dynamic properties of telomeres and telomerase render them difficult to study using ensemble biochemical and structural techniques. This review describes single-molecule approaches to studying how individual components of telomeres and telomerase contribute to function. Single-molecule methods provide a window into the complex nature of telomeres and telomerase by permitting researchers to directly visualize and manipulate the individual protein, DNA, and RNA molecules required for telomere function. The work reviewed in this article highlights how single-molecule techniques have been utilized to investigate the function of telomeres and telomerase.
Collapse
Affiliation(s)
- Joseph W Parks
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064; .,Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064; .,Center for Molecular Biology of RNA, Santa Cruz, California 95064
| |
Collapse
|
28
|
Parks JW, Kappel K, Das R, Stone MD. Single-molecule FRET-Rosetta reveals RNA structural rearrangements during human telomerase catalysis. RNA (NEW YORK, N.Y.) 2017; 23:175-188. [PMID: 28096444 PMCID: PMC5238793 DOI: 10.1261/rna.058743.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Abstract
Maintenance of telomeres by telomerase permits continuous proliferation of rapidly dividing cells, including the majority of human cancers. Despite its direct biomedical significance, the architecture of the human telomerase complex remains unknown. Generating homogeneous telomerase samples has presented a significant barrier to developing improved structural models. Here we pair single-molecule Förster resonance energy transfer (smFRET) measurements with Rosetta modeling to map the conformations of the essential telomerase RNA core domain within the active ribonucleoprotein. FRET-guided modeling places the essential pseudoknot fold distal to the active site on a protein surface comprising the C-terminal element, a domain that shares structural homology with canonical polymerase thumb domains. An independently solved medium-resolution structure of Tetrahymena telomerase provides a blind test of our modeling methodology and sheds light on the structural homology of this domain across diverse organisms. Our smFRET-Rosetta models reveal nanometer-scale rearrangements within the RNA core domain during catalysis. Taken together, our FRET data and pseudoatomic molecular models permit us to propose a possible mechanism for how RNA core domain rearrangement is coupled to template hybrid elongation.
Collapse
Affiliation(s)
- Joseph W Parks
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Kalli Kappel
- Biophysics Program, Stanford University, Stanford, California 94305, USA
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford, California 94305, USA
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
29
|
Cash DD, Feigon J. Structure and folding of the Tetrahymena telomerase RNA pseudoknot. Nucleic Acids Res 2016; 45:482-495. [PMID: 27899638 PMCID: PMC5224487 DOI: 10.1093/nar/gkw1153] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 12/21/2022] Open
Abstract
Telomerase maintains telomere length at the ends of linear chromosomes using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). An essential part of TER is the template/pseudoknot domain (t/PK) which includes the template, for adding telomeric repeats, template boundary element (TBE), and pseudoknot, enclosed in a circle by stem 1. The Tetrahymena telomerase holoenzyme catalytic core (p65-TER-TERT) was recently modeled in our 9 Å resolution cryo-electron microscopy map by fitting protein and TER domains, including a solution NMR structure of the Tetrahymena pseudoknot. Here, we describe in detail the structure and folding of the isolated pseudoknot, which forms a compact structure with major groove U•A-U and novel C•G-A+ base triples. Base substitutions that disrupt the base triples reduce telomerase activity in vitro. NMR studies also reveal that the pseudoknot does not form in the context of full-length TER in the absence of TERT, due to formation of a competing structure that sequesters pseudoknot residues. The residues around the TBE remain unpaired, potentially providing access by TERT to this high affinity binding site during an early step in TERT-TER assembly. A model for the assembly pathway of the catalytic core is proposed.
Collapse
Affiliation(s)
- Darian D Cash
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
30
|
Structural conservation in the template/pseudoknot domain of vertebrate telomerase RNA from teleost fish to human. Proc Natl Acad Sci U S A 2016; 113:E5125-34. [PMID: 27531956 DOI: 10.1073/pnas.1607411113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomerase is an RNA-protein complex that includes a unique reverse transcriptase that catalyzes the addition of single-stranded telomere DNA repeats onto the 3' ends of linear chromosomes using an integral telomerase RNA (TR) template. Vertebrate TR contains the template/pseudoknot (t/PK) and CR4/5 domains required for telomerase activity in vitro. All vertebrate pseudoknots include two subdomains: P2ab (helices P2a and P2b with a 5/6-nt internal loop) and the minimal pseudoknot (P2b-P3 and associated loops). A helical extension of P2a, P2a.1, is specific to mammalian TR. Using NMR, we investigated the structures of the full-length TR pseudoknot and isolated subdomains in Oryzias latipes (Japanese medaka fish), which has the smallest vertebrate TR identified to date. We determined the solution NMR structure and studied the dynamics of medaka P2ab, and identified all base pairs and tertiary interactions in the minimal pseudoknot. Despite differences in length and sequence, the structure of medaka P2ab is more similar to human P2ab than predicted, and the medaka minimal pseudoknot has the same tertiary interactions as the human pseudoknot. Significantly, although P2a.1 is not predicted to form in teleost fish, we find that it forms in the full-length pseudoknot via an unexpected hairpin. Model structures of the subdomains are combined to generate a model of t/PK. These results provide evidence that the architecture for the vertebrate t/PK is conserved from teleost fish to human. The organization of the t/PK on telomerase reverse transcriptase for medaka and human is modeled based on the cryoEM structure of Tetrahymena telomerase, providing insight into function.
Collapse
|
31
|
Abstract
Fluorescence microscopy can be used to assess the dynamic localization and intensity of single entities
in vitro or in living cells. It has been applied with aplomb to many different cellular processes and has significantly enlightened our understanding of the heterogeneity and complexity of biological systems. Recently, high-resolution fluorescence microscopy has been brought to bear on telomeres, leading to new insights into telomere spatial organization and accessibility, and into the mechanistic nuances of telomere elongation. We provide a snapshot of some of these recent advances with a focus on mammalian systems, and show how three-dimensional, time-lapse microscopy and single-molecule fluorescence shine a new light on the end of the chromosome.
Collapse
Affiliation(s)
- Yahya Benslimane
- Department of Molecular Biology, University of Montreal, Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Lea Harrington
- Department of Molecular Biology, University of Montreal, Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada; Department of Biochemistry, University of Montreal, Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada; Department of Medicine, University of Montreal, Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Ma Y, Wang Z, Zhang M, Han Z, Chen D, Zhu Q, Gao W, Qian Z, Gu Y. A Telomerase-Specific Doxorubicin-Releasing Molecular Beacon for Cancer Theranostics. Angew Chem Int Ed Engl 2016; 55:3304-8. [DOI: 10.1002/anie.201509182] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/23/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Yi Ma
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Zhaohui Wang
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Min Zhang
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Zhihao Han
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Dan Chen
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Qiuyun Zhu
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Weidong Gao
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Zhiyu Qian
- Department of Biomedical Engineering; School of Automation; Nanjing University of Aeronautics and Astronautics; 29 Yudao Street Nanjing 210016 China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| |
Collapse
|
33
|
Ma Y, Wang Z, Zhang M, Han Z, Chen D, Zhu Q, Gao W, Qian Z, Gu Y. A Telomerase-Specific Doxorubicin-Releasing Molecular Beacon for Cancer Theranostics. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yi Ma
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Zhaohui Wang
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Min Zhang
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Zhihao Han
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Dan Chen
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Qiuyun Zhu
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Weidong Gao
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| | - Zhiyu Qian
- Department of Biomedical Engineering; School of Automation; Nanjing University of Aeronautics and Astronautics; 29 Yudao Street Nanjing 210016 China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines; Department of Biomedical Engineering; School of Engineering; China Pharmaceutical University; 24 Tongjia Road Nanjing 210009 China
| |
Collapse
|
34
|
Liu Y, Sousa R, Wang YX. Specific labeling: An effective tool to explore the RNA world. Bioessays 2015; 38:192-200. [DOI: 10.1002/bies.201500119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Liu
- Protein-Nucleic Acid Interaction Section; Structural Biophysics Laboratory; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Frederick MD USA
| | - Rui Sousa
- Department of Biochemistry; University of Texas Health Science Center; San Antonio TX USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section; Structural Biophysics Laboratory; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Frederick MD USA
| |
Collapse
|
35
|
Rinaldi AJ, Suddala KC, Walter NG. Native purification and labeling of RNA for single molecule fluorescence studies. Methods Mol Biol 2015; 1240:63-95. [PMID: 25352138 DOI: 10.1007/978-1-4939-1896-6_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent discovery that non-coding RNAs are considerably more abundant and serve a much wider range of critical cellular functions than recognized over previous decades of research into molecular biology has sparked a renewed interest in the study of structure-function relationships of RNA. To perform their functions in the cell, RNAs must dominantly adopt their native conformations, avoiding deep, non-productive kinetic traps that may exist along a frustrated (rugged) folding free energy landscape. Intracellularly, RNAs are synthesized by RNA polymerase and fold co-transcriptionally starting from the 5' end, sometimes with the aid of protein chaperones. By contrast, in the laboratory RNAs are commonly generated by in vitro transcription or chemical synthesis, followed by purification in a manner that includes the use of high concentrations of urea, heat and UV light (for detection), resulting in the denaturation and subsequent refolding of the entire RNA. Recent studies into the nature of heterogeneous RNA populations resulting from this process have underscored the need for non-denaturing (native) purification methods that maintain the co-transcriptional fold of an RNA. Here, we present protocols for the native purification of an RNA after its in vitro transcription and for fluorophore and biotin labeling methods designed to preserve its native conformation for use in single molecule fluorescence resonance energy transfer (smFRET) inquiries into its structure and function. Finally, we present methods for taking smFRET data and for analyzing them, as well as a description of plausible overall preparation schemes for the plethora of non-coding RNAs.
Collapse
Affiliation(s)
- Arlie J Rinaldi
- W. M. Keck Science Center, The Claremont Colleges, Claremont, CA, 91711, USA
| | | | | |
Collapse
|
36
|
Bian Y, Zhang J, Wang J, Wang J, Wang W. Free energy landscape and multiple folding pathways of an H-type RNA pseudoknot. PLoS One 2015; 10:e0129089. [PMID: 26030098 PMCID: PMC4451515 DOI: 10.1371/journal.pone.0129089] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/24/2015] [Indexed: 11/19/2022] Open
Abstract
How RNA sequences fold to specific tertiary structures is one of the key problems for understanding their dynamics and functions. Here, we study the folding process of an H-type RNA pseudoknot by performing a large-scale all-atom MD simulation and bias-exchange metadynamics. The folding free energy landscapes are obtained and several folding intermediates are identified. It is suggested that the folding occurs via multiple mechanisms, including a step-wise mechanism starting either from the first helix or the second, and a cooperative mechanism with both helices forming simultaneously. Despite of the multiple mechanism nature, the ensemble folding kinetics estimated from a Markov state model is single-exponential. It is also found that the correlation between folding and binding of metal ions is significant, and the bound ions mediate long-range interactions in the intermediate structures. Non-native interactions are found to be dominant in the unfolded state and also present in some intermediates, possibly hinder the folding process of the RNA.
Collapse
Affiliation(s)
- Yunqiang Bian
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jian Zhang
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- * E-mail: (JZ); (WW)
| | - Jun Wang
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- * E-mail: (JZ); (WW)
| |
Collapse
|
37
|
Zhong Z, Soh LH, Lim MH, Chen G. A U⋅U Pair-to-U⋅C Pair Mutation-Induced RNA Native Structure Destabilisation and Stretching-Force-Induced RNA Misfolding. Chempluschem 2015; 80:1267-1278. [PMID: 31973291 DOI: 10.1002/cplu.201500144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/21/2015] [Indexed: 12/21/2022]
Abstract
Little is known about how a non-Watson-Crick pair affects the RNA folding dynamics. We studied the effects of a U⋅U-to-U⋅C pair mutation on the folding of a hairpin in human telomerase RNA. The ensemble thermal melting of the hairpins shows an on-pathway intermediate with the disruption of the internal loop structure containing the U⋅U/U⋅C pairs. By using optical tweezers, we applied a stretching force on the terminal ends of the hairpins to probe directly the non-nearest-neighbour effects upon the mutations. The single U⋅U to U⋅C mutations are observed to 1) lower the mechanical unfolding force by approximately 1 picoNewton (pN) per mutation without affecting the unfolding reaction transition-state position (thus suggesting that removing a single hydrogen bond affects the structural dynamics at least two base pairs away), 2) result in more frequent misfolding into a small hairpin at approximately 10 pN and 3) shift the folding reaction transition-state position towards the native hairpin structure and slightly increase the mechanical folding kinetics (thus suggesting that untrapping from the misfolded state is not the rate-limiting step).
Collapse
Affiliation(s)
- Zhensheng Zhong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore), Fax: (+65) 6791-1961
| | - Lai Huat Soh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore), Fax: (+65) 6791-1961
| | - Ming Hui Lim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore), Fax: (+65) 6791-1961
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore), Fax: (+65) 6791-1961
| |
Collapse
|
38
|
Gophane DB, Sigurdsson ST. TEMPO-derived spin labels linked to the nucleobases adenine and cytosine for probing local structural perturbations in DNA by EPR spectroscopy. Beilstein J Org Chem 2015; 11:219-27. [PMID: 25815073 PMCID: PMC4362019 DOI: 10.3762/bjoc.11.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/15/2015] [Indexed: 02/04/2023] Open
Abstract
Three 2´-deoxynucleosides containing semi-flexible spin labels, namely (T)A, (U)A and (U)C, were prepared and incorporated into deoxyoligonucleotides using the phosphoramidite method. All three nucleosides contain 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) connected to the exocyclic amino group; (T)A directly and (U)A as well as (U)C through a urea linkage. (T)A and (U)C showed a minor destabilization of a DNA duplex, as registered by a small decrease in the melting temperature, while (U)A destabilized the duplex by more than 10 °C. Circular dichroism (CD) measurements indicated that all three labels were accommodated in B-DNA duplex. The mobility of the spin label (T)A varied with different base-pairing partners in duplex DNA, with the (T)A•T pair being the least mobile. Furthermore, (T)A showed decreased mobility under acidic conditions for the sequences (T)A•C and (T)A•G, to the extent that the EPR spectrum of the latter became nearly superimposable to that of (T)A•T. The reduced mobility of the (T)A•C and (T)A•G mismatches at pH 5 is consistent with the formation of (T)AH(+)•C and (T)AH(+)•G, in which protonation of N1 of A allows the formation of an additional hydrogen bond to N3 of C and N7 of G, respectively, with G in a syn-conformation. The urea-based spin labels (U)A and (U)C were more mobile than (T)A, but still showed a minor variation in their EPR spectra when paired with A, G, C or T in a DNA duplex. (U)A and (U)C had similar mobility order for the different base pairs, with the lowest mobility when paired with C and the highest when paired with T.
Collapse
Affiliation(s)
- Dnyaneshwar B Gophane
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Snorri Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| |
Collapse
|
39
|
Niederer RO, Zappulla DC. Refined secondary-structure models of the core of yeast and human telomerase RNAs directed by SHAPE. RNA (NEW YORK, N.Y.) 2015; 21:254-261. [PMID: 25512567 PMCID: PMC4338352 DOI: 10.1261/rna.048959.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
Telomerase catalyzes the addition of nucleotides to the ends of chromosomes to complete genomic DNA replication in eukaryotes and is implicated in multiple diseases, including most cancers. The core enzyme is composed of a reverse transcriptase and an RNA subunit, which provides the template for DNA synthesis. Despite extensive divergence at the sequence level, telomerase RNAs share several structural features within the catalytic core, suggesting a conserved enzyme mechanism. We have investigated the structure of the core of the human and yeast telomerase RNAs using SHAPE, which interrogates flexibility of each nucleotide. We present improved secondary-structure models, refined by addition of five base triples within the yeast pseudoknot and an alternate pairing within the human-specific element J2a.1 in the human pseudoknot, both of which have implications for thermodynamic stability. We also identified a potentially structured CCC region within the template that may facilitate substrate binding and enzyme mechanism. Overall, the SHAPE findings reveal multiple similarities between the Saccharomyces cerevisiae and Homo sapiens telomerase RNA cores.
Collapse
Affiliation(s)
- Rachel O Niederer
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
40
|
Gazzaniga FS, Blackburn EH. An antiapoptotic role for telomerase RNA in human immune cells independent of telomere integrity or telomerase enzymatic activity. Blood 2014; 124:3675-84. [PMID: 25320237 PMCID: PMC4263978 DOI: 10.1182/blood-2014-06-582254] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/26/2014] [Indexed: 01/28/2023] Open
Abstract
Telomerase is a ribonucleoprotein complex that adds telomeric DNA to the ends of linear chromosomes. It contains two core canonical components: the essential RNA component, hTR, which provides the template for DNA synthesis, and the reverse transcriptase protein component, hTERT. Low telomerase activity in circulating peripheral blood mononuclear cells has been associated with a variety of diseases. It is unknown, however, whether telomerase, in addition to its long-term requirement for telomere maintenance, is also necessary for short-term immune cell proliferation and survival. We report that overexpression of enzymatically inactive hTR mutants protected against dexamethasone-induced apoptosis in stimulated CD4 T cells. Furthermore, hTR knockdown reproducibly induced apoptosis in the absence of any detectable telomere shortening or DNA damage response. In contrast, hTERT knockdown did not induce apoptosis. Strikingly, overexpression of hTERT protein caused apoptosis that was rescued by overexpression of enzymatically inactive hTR mutants. Hence, we propose that hTR can function as a noncoding RNA that protects from apoptosis independent of its function in telomerase enzymatic activity and long-term telomere maintenance in normal human immune cells. These results imply that genetic or environmental factors that alter hTR levels can directly affect immune cell function to influence health and disease.
Collapse
Affiliation(s)
- Francesca S Gazzaniga
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA
| | - Elizabeth H Blackburn
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
41
|
Sloane JL, Greenberg MM. Interstrand cross-link and bioconjugate formation in RNA from a modified nucleotide. J Org Chem 2014; 79:9792-8. [PMID: 25295850 PMCID: PMC4201359 DOI: 10.1021/jo501982r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
RNA
oligonucleotides containing a phenyl selenide derivative of
5-methyluridine were chemically synthesized by solid-phase synthesis.
The phenyl selenide is rapidly converted to an electrophilic, allylic
phenyl seleneate under mild oxidative conditions. The phenyl seleneate
yields interstrand cross-links when part of a duplex and is useful
for synthesizing oligonucleotide conjugates. Formation of the latter
is illustrated by reaction of an oligonucleotide containing the phenyl
selenide with amino acids in the presence of mild oxidant. The products
formed are analogous to those observed in tRNA that are believed to
be formed posttranslationally via a biosynthetic intermediate that
is chemically homologous to the phenyl seleneate.
Collapse
Affiliation(s)
- Jack L Sloane
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
42
|
Devi G, Zhou Y, Zhong Z, Toh DFK, Chen G. RNA triplexes: from structural principles to biological and biotech applications. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:111-28. [DOI: 10.1002/wrna.1261] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 06/30/2014] [Accepted: 07/14/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Gitali Devi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore Singapore
| | - Yuan Zhou
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore Singapore
| | - Zhensheng Zhong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore Singapore
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore Singapore
| |
Collapse
|
43
|
Parks JW, Stone MD. Coordinated DNA dynamics during the human telomerase catalytic cycle. Nat Commun 2014; 5:4146. [PMID: 24923681 PMCID: PMC4107311 DOI: 10.1038/ncomms5146] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/15/2014] [Indexed: 11/09/2022] Open
Abstract
The human telomerase reverse transcriptase (hTERT) utilizes a template within the integral RNA subunit (hTR) to direct extension of telomeres. Telomerase exhibits repeat addition processivity (RAP) and must therefore translocate the nascent DNA product into a new RNA:DNA hybrid register to prime each round of telomere repeat synthesis. Here we use single-molecule FRET and nuclease protection assays to monitor telomere DNA structure and dynamics during the telomerase catalytic cycle. DNA translocation during RAP proceeds through a previously uncharacterized kinetic sub-step during which the 3′-end of the DNA substrate base pairs downstream within the hTR template. The rate constant for DNA primer re-alignment reveals this step is not rate-limiting for RAP, suggesting a second slow conformational change repositions the RNA:DNA hybrid into the telomerase active site and drives the extrusion of the 5′-end of the DNA primer out of the enzyme complex.
Collapse
Affiliation(s)
- Joseph W Parks
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - Michael D Stone
- 1] Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA [2] Center for Molecular Biology of RNA, University of California, 1156 High Street, Santa Cruz, California 95064, USA
| |
Collapse
|
44
|
Holmstrom ED, Nesbitt DJ. Single-molecule fluorescence resonance energy transfer studies of the human telomerase RNA pseudoknot: temperature-/urea-dependent folding kinetics and thermodynamics. J Phys Chem B 2014; 118:3853-63. [PMID: 24617561 PMCID: PMC4030807 DOI: 10.1021/jp501893c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Indexed: 02/06/2023]
Abstract
The ribonucleoprotein telomerase is an RNA-dependent DNA polymerase that catalyzes the repetitive addition of a short, species-specific, DNA sequence to the ends of linear eukaryotic chromosomes. The single RNA component of telomerase contains both the template sequence for DNA synthesis and a functionally critical pseudoknot motif, which can also exist as a less stable hairpin. Here we use a minimal version of the human telomerase RNA pseudoknot to study this hairpin-pseudoknot structural equilibrium using temperature-controlled single-molecule fluorescence resonance energy transfer (smFRET) experiments. The urea dependence of these experiments aids in determination of the folding kinetics and thermodynamics. The wild-type pseudoknot behavior is compared and contrasted to a mutant pseudoknot sequence implicated in a genetic disorder-dyskeratosis congenita. These findings clearly identify that this 2nt noncomplementary mutation destabilizes the folding of the wild-type pseudoknot by substantially reducing the folding rate constant (≈ 400-fold) while only nominally increasing the unfolding rate constant (≈ 5-fold). Furthermore, the urea dependence of the equilibrium and rate constants is used to develop a free energy landscape for this unimolecular equilibrium and propose details about the structure of the transition state. Finally, the urea-dependent folding experiments provide valuable physical insights into the mechanism for destabilization of RNA pseudoknots by such chemical denaturants.
Collapse
Affiliation(s)
- Erik D. Holmstrom
- JILA, University of Colorado and National
Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - David J. Nesbitt
- JILA, University of Colorado and National
Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
45
|
Lin J, Kaur P, Countryman P, Opresko PL, Wang H. Unraveling secrets of telomeres: one molecule at a time. DNA Repair (Amst) 2014; 20:142-153. [PMID: 24569170 DOI: 10.1016/j.dnarep.2014.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 01/03/2014] [Accepted: 01/13/2014] [Indexed: 01/23/2023]
Abstract
Telomeres play important roles in maintaining the stability of linear chromosomes. Telomere maintenance involves dynamic actions of multiple proteins interacting with long repetitive sequences and complex dynamic DNA structures, such as G-quadruplexes, T-loops and t-circles. Given the heterogeneity and complexity of telomeres, single-molecule approaches are essential to fully understand the structure-function relationships that govern telomere maintenance. In this review, we present a brief overview of the principles of single-molecule imaging and manipulation techniques. We then highlight results obtained from applying these single-molecule techniques for studying structure, dynamics and functions of G-quadruplexes, telomerase, and shelterin proteins.
Collapse
Affiliation(s)
- Jiangguo Lin
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Preston Countryman
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219, USA
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
46
|
Progress in structural studies of telomerase. Curr Opin Struct Biol 2014; 24:115-24. [PMID: 24508601 DOI: 10.1016/j.sbi.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/01/2014] [Accepted: 01/08/2014] [Indexed: 02/01/2023]
Abstract
Telomerase is the ribonucleoprotein (RNP) reverse transcriptase responsible for synthesizing the 3' ends of linear chromosomes. It plays critical roles in tumorigenesis, cellular aging, and stem cell renewal. The past two years have seen exciting progress in determining telomerase holoenzyme architecture and the structural basis of telomerase activity. Notably, the first electron microscopy structures of telomerase were reported, of the Tetrahymena thermophila telomerase holoenzyme and a human telomerase dimer. In addition to new structures of TERT and TER domains, the first structures of telomerase protein domains beyond TERT, and their complexes with TER or telomeric single-stranded DNA, were reported. Together these studies provide the first glimpse into the organization of the proteins and RNA in the telomerase RNP.
Collapse
|
47
|
Vasilkova DV, Azhibek DM, Zatsepin TS, Naraikina YV, Prassolov VS, Prokofjeva MM, Zvereva MI, Rubtsova MP. Dynamics of human telomerase RNA structure revealed by antisense oligonucleotide technique. Biochimie 2013; 95:2423-8. [PMID: 24035778 DOI: 10.1016/j.biochi.2013.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 09/02/2013] [Indexed: 11/17/2022]
Abstract
Telomeres are the nucleoprotein complexes that cap the linear chromosome ends. Telomerase is a ribonucleoprotein that maintains telomere length in stem, embryonic and cancer cells. Somatic cells don't contain active telomerase and telomere function as mitotic clock and telomere length determines the number of cell divisions. Telomerase RNA (TER) contains the template for telomere synthesis and serves as a structural scaffold for holoenzyme assembly. We compared different oligonucleotide based methods for telomerase RNA inhibition, such as antisense oligonucleotides, knockdown by transient siRNA transfection and silencing by miRNA derived from short expressed RNA hairpin in HEK293 cells. All of these methods were applied to different TER regions. Our results revealed that CR2/CR3 domain of TER is accessible in vitro and in vivo and could serve as an optimal site for oligonucleotide-based telomerase silencing.
Collapse
Affiliation(s)
- Daria V Vasilkova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Pyrimidine motif triple helix in the Kluyveromyces lactis telomerase RNA pseudoknot is essential for function in vivo. Proc Natl Acad Sci U S A 2013; 110:10970-5. [PMID: 23776224 DOI: 10.1073/pnas.1309590110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Telomerase is a ribonucleoprotein complex that extends the 3' ends of linear chromosomes. The specialized telomerase reverse transcriptase requires a multidomain RNA (telomerase RNA, TER), which includes an integral RNA template and functionally important template-adjacent pseudoknot. The structure of the human TER pseudoknot revealed that the loops interact with the stems to form a triple helix shown to be important for activity in vitro. A similar triple helix has been predicted to form in diverse fungi TER pseudoknots. The solution NMR structure of the Kluyveromyces lactis pseudoknot, presented here, reveals that it contains a long pyrimidine motif triple helix with unexpected features that include three individual bulge nucleotides and a C(+)•G-C triple adjacent to a stem 2-loop 2 junction. Despite significant differences in sequence and base triples, the 3D shape of the human and K. lactis TER pseudoknots are remarkably similar. Analysis of the effects of nucleotide substitutions on cell growth and telomere lengths provides evidence that this conserved structure forms in endogenously assembled telomerase and is essential for telomerase function in vivo.
Collapse
|