1
|
Mahapatra SP, Pahan S, Chatterjee A, Roy S, Puneeth Kumar DR, Gopi HN. Exploring Macroscopic Dipoles of Designed Cyclic Peptide Ordered Assemblies to Harvest Piezoelectric Properties. Angew Chem Int Ed Engl 2024; 63:e202409969. [PMID: 38924219 DOI: 10.1002/anie.202409969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Crystalline materials exhibiting non-centrosymmetry and possessing substantial surface dipole moments play a critical role in piezoelectricity. Designing biocompatible self-assembled materials with these attributes is particularly challenging when compared to inorganic materials and ceramics. In this study, we elucidate the crystal conformations of novel cyclic peptides that exhibit self-assembly into tubular structures characterized by unidirectional hydrogen bonding and piezoelectric properties. Unlike cyclic peptides derived from alternating L- and D-amino acids, those derived from new δ-amino acids demonstrate the formation of self-assembled tubes with unidirectional hydrogen bonds. Further, the tightly packed tubular assemblies and higher macrodipole moments result in superior piezoelectric coefficients compared to peptides with lower macrodipole moments. Our findings underscore the potential for designing cyclic peptides with unidirectional hydrogen bonds, thereby paving the way for their application in design of biocompatible piezo- and ferroelectric materials.
Collapse
Affiliation(s)
- Souvik Panda Mahapatra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Saikat Pahan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Abhijit Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Souvik Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| | - D R Puneeth Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Hosahudya N Gopi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
2
|
Adak A, Castelletto V, Mendes B, Barrett G, Seitsonen J, Hamley IW. Chirality and pH Influence the Self-Assembly of Antimicrobial Lipopeptides with Diverse Nanostructures. ACS APPLIED BIO MATERIALS 2024; 7:5553-5565. [PMID: 39042039 PMCID: PMC11337160 DOI: 10.1021/acsabm.4c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Chirality plays a crucial role in the self-assembly of biomolecules in nature. Peptides show chirality-dependent conformation and self-assembly. Lipidation of peptides occurs in vivo and has recently been exploited in designed conjugates to drive self-assembly and enhance bioactivity. Here, a library of pH-responsive homochiral and heterochiral lipidated tripeptides has been designed. The designed lipopeptides comprise homochiral C16-YKK or C16-WKK (where all the amino acids are l-isomers), and two heterochiral conjugates C16-Ykk and C16-Wkk (where the two lysines are d-isomers). The self-assembly of all the synthesized lipopeptides in aqueous solution was examined using a combination of spectroscopic methods along with cryogenic-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS). Interestingly, it was observed that at acidic pH all the lipopeptides self-assemble into micelles, whereas at basic pH the homochiral lipopeptides self-assemble into nanofibers, whereas the heterochiral lipopeptides self-assemble into nanotapes and nanotubes. A pH switch was demonstrated using a thioflavin T fluorescence probe of β-sheet structure present in the extended structures at pH 8. We demonstrate that both chirality and pH in lipopeptides influence the self-assembly behavior of the model tripeptides, which also show promising bioactivity. Good cytocompatibility is observed in hemolytic assays and antimicrobial activity against both Gram-negative and Gram-positive bacteria is shown through the determination of minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) values and live/dead bacteria staining assay.
Collapse
Affiliation(s)
- Anindyasundar Adak
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Valeria Castelletto
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Bruno Mendes
- School
of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Glyn Barrett
- School
of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Ian W. Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
3
|
Roy S, Laha J, Reja A, Das D. Allosteric Control of the Catalytic Properties of Dipeptide-Based Supramolecular Assemblies. J Am Chem Soc 2024; 146:22522-22529. [PMID: 39088245 DOI: 10.1021/jacs.4c06447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Allostery, as seen in extant biology, governs the activity regulation of enzymes through the redistribution of conformational equilibria upon binding an effector. Herein, a minimal design is demonstrated where a dipeptide can exploit dynamic imine linkage to condense with simple aldehydes to access spherical aggregates as catalytically active states, which facilitates an orthogonal reaction due to the closer proximity of catalytic residues (imidazoles). The allosteric site (amine) of the minimal catalyst can concomitantly bind to an inhibitor via a dynamic exchange, which leads to the alternation of the energy landscape of the self-assembled state, resulting in downregulation of catalytic activity. Further, temporal control over allosteric regulation is realized via a feedback-controlled autonomous reaction network that utilizes the hydrolytic activity of the (in)active state as a function of time.
Collapse
Affiliation(s)
- Soumili Roy
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Janmejay Laha
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Antara Reja
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
4
|
Xu H, Qi K, Zong C, Deng J, Zhou P, Hu X, Ma X, Wang D, Wang M, Zhang J, King SM, Rogers SE, Lu JR, Yang J, Wang J. Controlling 1D Nanostructures and Handedness by Polar Residue Chirality of Amphiphilic Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304424. [PMID: 37726235 DOI: 10.1002/smll.202304424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/17/2023] [Indexed: 09/21/2023]
Abstract
Peptide assemblies are promising nanomaterials, with their properties and technological applications being highly hinged on their supramolecular architectures. Here, how changing the chirality of the terminal charged residues of an amphiphilic hexapeptide sequence Ac-I4 K2 -NH2 gives rise to distinct nanostructures and supramolecular handedness is reported. Microscopic imaging and neutron scattering measurements show thin nanofibrils, thick nanofibrils, and wide nanotubes self-assembled from four stereoisomers. Spectroscopic and solid-state nuclear magnetic resonance (NMR) analyses reveal that these isomeric peptides adopt similar anti-parallel β-sheet secondary structures. Further theoretical calculations demonstrate that the chiral alterations of the two C-terminal lysine residues cause the formation of diverse single β-strand conformations, and the final self-assembled nanostructures and handedness are determined by the twisting direction and degree of single β-strands. This work not only lays a useful foundation for the fabrication of diverse peptide nanostructures by manipulating the chirality of specific residues but also provides a framework for predicting the supramolecular structures and handedness of peptide assemblies from single molecule conformations.
Collapse
Affiliation(s)
- Hai Xu
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kai Qi
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Cheng Zong
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jing Deng
- National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Peng Zhou
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, China
| | - Xuzhi Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - Xiaoyue Ma
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Muhan Wang
- Department of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266033, China
| | - Stephen M King
- ISIS Pulsed Neutron & Muon Source, Didcot, Oxon, OX11 0QX, UK
| | - Sarah E Rogers
- ISIS Pulsed Neutron & Muon Source, Didcot, Oxon, OX11 0QX, UK
| | - Jian Ren Lu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
5
|
Reja A, Pal S, Mahato K, Saha B, Delle Piane M, Pavan GM, Das D. Emergence of Photomodulated Protometabolism by Short Peptide-Based Assemblies. J Am Chem Soc 2023; 145:21114-21121. [PMID: 37708200 DOI: 10.1021/jacs.3c08158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
In the early Earth, rudimentary enzymes must have utilized the available light energy source to modulate protometabolic processes. Herein, we report the light-responsive C-C bond manipulation via short peptide-based assemblies bound to the photosensitive molecular cofactor (azo-based photoswitch) where the energy of the light source regulated the binding sites which subsequently modulated the retro-aldolase activity. In the presence of a continual source of high-energy photons, temporal realization of a catalytically more proficient state could be achieved under nonequilibrium conditions. Further, the hydrophobic surface of peptide assemblies facilitated the binding of an orthogonal molecular catalyst that showed augmented activity (promiscuous hydrolytic activity) upon binding. This latent activity was utilized for the in situ generation of light-sensitive cofactor that subsequently modulated the retro-aldolase activity, thus creating a reaction network.
Collapse
Affiliation(s)
- Antara Reja
- Department of Chemical Sciences and CAFM, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Sumit Pal
- Department of Chemical Sciences and CAFM, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Kishalay Mahato
- Department of Chemical Sciences and CAFM, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Baishakhi Saha
- Department of Chemical Sciences and CAFM, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Massimo Delle Piane
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland
| | - Dibyendu Das
- Department of Chemical Sciences and CAFM, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
6
|
Zhou P, Hu X, Li J, Wang Y, Yu H, Chen Z, Wang D, Zhao Y, King SM, Rogers SE, Wang J, Lu JR, Xu H. Peptide Self-Assemblies from Unusual α-Sheet Conformations Based on Alternation of d/ l Amino Acids. J Am Chem Soc 2022; 144:21544-21554. [DOI: 10.1021/jacs.2c08425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xuzhi Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, U.K
| | - Jie Li
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yan Wang
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Henghao Yu
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zhaoyu Chen
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Stephen M. King
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, U.K
| | - Sarah E. Rogers
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, U.K
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jian Ren Lu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, U.K
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
7
|
Zhao Y, Hu X, Zhang L, Wang D, King SM, Rogers SE, Wang J, Lu JR, Xu H. Monolayer wall nanotubes self-assembled from short peptide bolaamphiphiles. J Colloid Interface Sci 2021; 583:553-562. [DOI: 10.1016/j.jcis.2020.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022]
|
8
|
Gordon CK, Luu R, Lynn D. Capturing nested information from disordered peptide phases. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Regina Luu
- Departments of Chemistry and Biology Emory University Atlanta Georgia USA
| | - David Lynn
- Departments of Chemistry and Biology Emory University Atlanta Georgia USA
| |
Collapse
|
9
|
Boback K, Bacchi K, O’Neill S, Brown S, Dorsainvil J, Smith-Carpenter JE. Impact of C-Terminal Chemistry on Self-Assembled Morphology of Guanosine Containing Nucleopeptides. Molecules 2020; 25:E5493. [PMID: 33255230 PMCID: PMC7727710 DOI: 10.3390/molecules25235493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Herein, we report the design and characterization of guanosine-containing self-assembling nucleopeptides that form nanosheets and nanofibers. Through spectroscopy and microscopy analysis, we propose that the peptide component of the nucleopeptide drives the assembly into β-sheet structures with hydrogen-bonded guanosine forming additional secondary structures cooperatively within the peptide framework. Interestingly, the distinct supramolecular morphologies are driven not by metal cation responsiveness common to guanine-based materials, but by the C-terminal peptide chemistry. This work highlights the structural diversity of self-assembling nucleopeptides and will help advance the development of applications for these supramolecular guanosine-containing nucleopeptides.
Collapse
Affiliation(s)
| | | | | | | | | | - Jillian E. Smith-Carpenter
- Department of Chemistry and Biochemistry, Fairfield University, 1073 N. Benson Rd, Fairfield, CT 06824, USA; (K.B.); (K.B.); (S.O.); (S.B.); (J.D.)
| |
Collapse
|
10
|
Fukunaga K, Tsutsumi H, Mihara H. Self-Assembling Peptides as Building Blocks of Functional Materials for Biomedical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180293] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kazuto Fukunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroshi Tsutsumi
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
11
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
12
|
Bai Y, Chotera A, Taran O, Liang C, Ashkenasy G, Lynn DG. Achieving biopolymer synergy in systems chemistry. Chem Soc Rev 2018; 47:5444-5456. [PMID: 29850753 DOI: 10.1039/c8cs00174j] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthetic and materials chemistry initiatives have enabled the translation of the macromolecular functions of biology into synthetic frameworks. These explorations into alternative chemistries of life attempt to capture the versatile functionality and adaptability of biopolymers in new orthogonal scaffolds. Information storage and transfer, however, so beautifully represented in the central dogma of biology, require multiple components functioning synergistically. Over a single decade, the emerging field of systems chemistry has begun to catalyze the construction of mutualistic biopolymer networks, and this review begins with the foundational small-molecule-based dynamic chemical networks and peptide amyloid-based dynamic physical networks on which this effort builds. The approach both contextualizes the versatile approaches that have been developed to enrich chemical information in synthetic networks and highlights the properties of amyloids as potential alternative genetic elements. The successful integration of both chemical and physical networks through β-sheet assisted replication processes further informs the synergistic potential of these networks. Inspired by the cooperative synergies of nucleic acids and proteins in biology, synthetic nucleic-acid-peptide chimeras are now being explored to extend their informational content. With our growing range of synthetic capabilities, structural analyses, and simulation technologies, this foundation is radically extending the structural space that might cross the Darwinian threshold for the origins of life as well as creating an array of alternative systems capable of achieving the progressive growth of novel informational materials.
Collapse
Affiliation(s)
- Yushi Bai
- Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Shimizu T. Self-Assembly of Discrete Organic Nanotubes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170424] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshimi Shimizu
- AIST Fellow, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
14
|
Taran O, Chen C, Omosun TO, Hsieh MC, Rha A, Goodwin JT, Mehta AK, Grover MA, Lynn DG. Expanding the informational chemistries of life: peptide/RNA networks. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0356. [PMID: 29133453 DOI: 10.1098/rsta.2016.0356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
The RNA world hypothesis simplifies the complex biopolymer networks underlining the informational and metabolic needs of living systems to a single biopolymer scaffold. This simplification requires abiotic reaction cascades for the construction of RNA, and this chemistry remains the subject of active research. Here, we explore a complementary approach involving the design of dynamic peptide networks capable of amplifying encoded chemical information and setting the stage for mutualistic associations with RNA. Peptide conformational networks are known to be capable of evolution in disease states and of co-opting metal ions, aromatic heterocycles and lipids to extend their emergent behaviours. The coexistence and association of dynamic peptide and RNA networks appear to have driven the emergence of higher-order informational systems in biology that are not available to either scaffold independently, and such mutualistic interdependence poses critical questions regarding the search for life across our Solar System and beyond.This article is part of the themed issue 'Reconceptualizing the origins of life'.
Collapse
Affiliation(s)
- Olga Taran
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Chenrui Chen
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Tolulope O Omosun
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Ming-Chien Hsieh
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Allisandra Rha
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Jay T Goodwin
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Anil K Mehta
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Martha A Grover
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - David G Lynn
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|
15
|
van der Wel PCA. Insights into protein misfolding and aggregation enabled by solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 88:1-14. [PMID: 29035839 PMCID: PMC5705391 DOI: 10.1016/j.ssnmr.2017.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 05/17/2023]
Abstract
The aggregation of proteins and peptides into a variety of insoluble, and often non-native, aggregated states plays a central role in many devastating diseases. Analogous processes undermine the efficacy of polypeptide-based biological pharmaceuticals, but are also being leveraged in the design of biologically inspired self-assembling materials. This Trends article surveys the essential contributions made by recent solid-state NMR (ssNMR) studies to our understanding of the structural features of polypeptide aggregates, and how such findings are informing our thinking about the molecular mechanisms of misfolding and aggregation. A central focus is on disease-related amyloid fibrils and oligomers involved in neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's disease. SSNMR-enabled structural and dynamics-based findings are surveyed, along with a number of resulting emerging themes that appear common to different amyloidogenic proteins, such as their compact alternating short-β-strand/β-arc amyloid core architecture. Concepts, methods, future prospects and challenges are discussed.
Collapse
Affiliation(s)
- Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
16
|
Abstract
Living systems contain remarkable functional capability built within sophisticated self-organizing frameworks. Defining the assembly codes that coordinate these systems could greatly extend nanobiotechnology. To that end, we have highlighted the self-assembling architecture of the chlorosome antenna arrays and report the emulation and extension of their features for the development of cell-compatible photoredox materials. We specifically review work on amyloid peptide scaffolds able to (1) organize light-harvesting chromophores, (2) break peptide bilayer symmetry for directional energy and electron transfer, and (3) incorporate redox active metal ions at high density for energy storage.
Collapse
Affiliation(s)
- Rolando F Rengifo
- Emory University, Departments of Biology and Chemistry, 1515 Dickey Dr. NE, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
17
|
Sinthuvanich C, Nagy-Smith KJ, Walsh STR, Schneider JP. Triggered Formation of Anionic Hydrogels from Self-Assembling Acidic Peptide Amphiphiles. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chomdao Sinthuvanich
- Chemical Biology Laboratory,
National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Katelyn J. Nagy-Smith
- Chemical Biology Laboratory,
National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Scott T. R. Walsh
- Chemical Biology Laboratory,
National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Joel P. Schneider
- Chemical Biology Laboratory,
National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| |
Collapse
|
18
|
Merg AD, Boatz JC, Mandal A, Zhao G, Mokashi-Punekar S, Liu C, Wang X, Zhang P, van der Wel PCA, Rosi NL. Peptide-Directed Assembly of Single-Helical Gold Nanoparticle Superstructures Exhibiting Intense Chiroptical Activity. J Am Chem Soc 2016; 138:13655-13663. [PMID: 27726354 PMCID: PMC5388601 DOI: 10.1021/jacs.6b07322] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chiral nanoparticle assemblies are an interesting class of materials whose chiroptical properties make them attractive for a variety of applications. Here, C18-(PEPAuM-ox)2 (PEPAuM-ox = AYSSGAPPMoxPPF) is shown to direct the assembly of single-helical gold nanoparticle superstructures that exhibit exceptionally strong chiroptical activity at the plasmon frequency with absolute g-factor values up to 0.04. Transmission electron microscopy (TEM) and cryogenic electron tomography (cryo-ET) results indicate that the single helices have a periodic pitch of approximately 100 nm and consist of oblong gold nanoparticles. The morphology and assembled structure of C18-(PEPAuM-ox)2 are studied using TEM, atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD) spectroscopy, X-ray diffraction (XRD), and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. TEM and AFM reveal that C18-(PEPAuM-ox)2 assembles into linear amyloid-like 1D helical ribbons having structural parameters that correlate to those of the single-helical gold nanoparticle superstructures. FTIR, CD, XRD, and ssNMR indicate the presence of cross-β and polyproline II secondary structures. A molecular assembly model is presented that takes into account all experimental observations and that supports the single-helical nanoparticle assembly architecture. This model provides the basis for the design of future nanoparticle assemblies having programmable structures and properties.
Collapse
Affiliation(s)
- Andrea D. Merg
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Jennifer C. Boatz
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Abhishek Mandal
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Soumitra Mokashi-Punekar
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Chong Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Xianting Wang
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Patrick C. A. van der Wel
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L. Rosi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
19
|
Tobias F, Keiderling TA. Role of Side Chains in β-Sheet Self-Assembly into Peptide Fibrils. IR and VCD Spectroscopic Studies of Glutamic Acid-Containing Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4653-61. [PMID: 27099990 DOI: 10.1021/acs.langmuir.6b00077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Poly(glutamic acid) at low pH self-assembles after incubation at higher temperature into fibrils composed of antiparallel sheets that are stacked in a β2-type structure whose amide carbonyls have bifurcated H-bonds involving the side chains from the next sheet. Oligomers of Glu can also form such structures, and isotope labeling has provided insight into their out-of-register antiparallel structure [ Biomacromolecules 2013 , 14 , 3880 - 3891 ]. In this paper we report IR and VCD spectra and transmission electron micrograph (TEM) images for a series of alternately sequenced oligomers, Lys-(Aaa-Glu)5-Lys-NH2, where Aaa was varied over a variety of polar, aliphatic, or aromatic residues. Their spectral and TEM data show that these oligopeptides self-assemble into different structures, both local and morphological, that are dependent on both the nature of the Aaa side chains and growth conditions employed. Such alternate peptides substituted with small or polar residues, Ala and Thr, do not yield fibrils; but with β-branched aliphatic residues, Val and Ile, that could potentially pack with Glu side chains, these oligopeptides do show evidence of β2-stacking. By contrast, for Leu, with longer side chains, only β1-stacking is seen while with even larger Phe side chains, either β-form can be detected separately, depending on preparation conditions. These structures are dependent on high temperature incubation after reducing the pH and in some cases after sonication of initial fibril forms and reincubation. Some of these fibrillar peptides, but not all, show enhanced VCD, which can offer evidence for formation of long, multistrand, often twisted structures. Substitution of Glu with residues having selected side chains yields a variety of morphologies, leading to both β1- and β2-structures, that overall suggests two different packing modes for the hydrophobic side chains depending on size and type.
Collapse
Affiliation(s)
- Fernando Tobias
- Department of Chemistry, University of Illinois at Chicago , 845 W. Taylor Street (m/c111), Chicago, Illinois 60607-7061, United States
| | - Timothy A Keiderling
- Department of Chemistry, University of Illinois at Chicago , 845 W. Taylor Street (m/c111), Chicago, Illinois 60607-7061, United States
| |
Collapse
|
20
|
Fukunaga K, Tsutsumi H, Mihara H. Self-assembling peptide nanofibers promoting cell adhesion and differentiation. Biopolymers 2016; 100:731-7. [PMID: 23893249 DOI: 10.1002/bip.22309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/12/2013] [Accepted: 06/04/2013] [Indexed: 01/19/2023]
Abstract
There is an increasing need for the development of functional artificial extracellular matrices (ECMs) for tissue engineering. Recently, we have successfully designed a self-assembling peptide, named E1Y9, to construct functional ECMs. We describe here an enhancement of abilities of E1Y9 materials to promote cell adhesion and differentiation, using functional peptide sequences derived from natural extracellular matrix proteins. We designed functionalized self-assembling peptides, RGDS-conjugated E1Y9 (E1Y9-RGDS) and IKVAV-conjugated E1Y9 (E1Y9-IKVAV). E1Y9-RGDS and E1Y9-IKVAV formed peptide nanofibers in a similar manner to E1Y9, with β-sheet secondary structures. Surfaces coated with peptide nanofibers displayed the higher bioactivities of E1Y9-RGDS for cell adhesion and E1Y9-IKVAV for cell differentiation than those of E1Y9, with the activities being dependent on the concentrations of the functional peptides. These functionalized peptides will be useful for the construction of functional ECMs in cell and tissue engineering.
Collapse
Affiliation(s)
- Kazuto Fukunaga
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B40 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | | | | |
Collapse
|
21
|
Li S, Mehta AK, Sidorov AN, Orlando TM, Jiang Z, Anthony NR, Lynn DG. Design of Asymmetric Peptide Bilayer Membranes. J Am Chem Soc 2016; 138:3579-86. [DOI: 10.1021/jacs.6b00977] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sha Li
- Departments
of Biology and Chemistry, ‡Emory NMR Center, ⊥Emory Integrated Cellular Imaging
Core, Emory University, Atlanta, Georgia 30322, United States
- School of Chemistry and Biochemistry and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anil K. Mehta
- Departments
of Biology and Chemistry, ‡Emory NMR Center, ⊥Emory Integrated Cellular Imaging
Core, Emory University, Atlanta, Georgia 30322, United States
- School of Chemistry and Biochemistry and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anton N. Sidorov
- Departments
of Biology and Chemistry, ‡Emory NMR Center, ⊥Emory Integrated Cellular Imaging
Core, Emory University, Atlanta, Georgia 30322, United States
- School of Chemistry and Biochemistry and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Thomas M. Orlando
- Departments
of Biology and Chemistry, ‡Emory NMR Center, ⊥Emory Integrated Cellular Imaging
Core, Emory University, Atlanta, Georgia 30322, United States
- School of Chemistry and Biochemistry and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhigang Jiang
- Departments
of Biology and Chemistry, ‡Emory NMR Center, ⊥Emory Integrated Cellular Imaging
Core, Emory University, Atlanta, Georgia 30322, United States
- School of Chemistry and Biochemistry and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Neil R. Anthony
- Departments
of Biology and Chemistry, ‡Emory NMR Center, ⊥Emory Integrated Cellular Imaging
Core, Emory University, Atlanta, Georgia 30322, United States
- School of Chemistry and Biochemistry and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David G. Lynn
- Departments
of Biology and Chemistry, ‡Emory NMR Center, ⊥Emory Integrated Cellular Imaging
Core, Emory University, Atlanta, Georgia 30322, United States
- School of Chemistry and Biochemistry and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
22
|
Moore JK, Sakwa-Novak MA, Chaikittisilp W, Mehta AK, Conradi MS, Jones CW, Hayes SE. Characterization of a Mixture of CO2 Adsorption Products in Hyperbranched Aminosilica Adsorbents by (13)C Solid-State NMR. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13684-91. [PMID: 26477882 DOI: 10.1021/acs.est.5b02930] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Hyperbranched amine polymers (HAS) grown from the mesoporous silica SBA-15 (hereafter "SBA-15-HAS") exhibit large capacities for CO2 adsorption. We have used static in situ and magic-angle spinning (MAS) ex situ (13)C nuclear magnetic resonance (NMR) to examine the adsorption of CO2 by SBA-15-HAS. (13)C NMR distinguishes the signal of gas-phase (13)CO2 from that of the chemisorbed species. HAS polymers possess primary, secondary, and tertiary amines, leading to multiple chemisorption reaction outcomes, including carbamate (RnNCOO(-)), carbamic acid (RnNCOOH), and bicarbonate (HCO3(-)) moieties. Carbamates and bicarbonate fall within a small (13)C chemical shift range (162-166 ppm), and a mixture was observed including carbamic acid and carbamate, the former disappearing upon evacuation of the sample. By examining the (13)C-(14)N dipolar coupling through low-field (B0 = 3 T) (13)C{(1)H} cross-polarization MAS NMR, carbamate is confirmed through splitting of the (13)C resonance. A third species that is either bicarbonate or a second carbamate is evident from bimodal T2 decay times of the ∼163 ppm peak, indicating the presence of two species comprising that single resonance. The mixture of products suggests that (1) the presence of amines and water leads to bicarbonate being present and/or (2) the multiple types of amine sites in HAS permit formation of chemically distinct carbamates.
Collapse
Affiliation(s)
| | - Miles A Sakwa-Novak
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Watcharop Chaikittisilp
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Anil K Mehta
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | | | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | | |
Collapse
|
23
|
Smith JE, Liang C, Tseng M, Li N, Li S, Mowles AK, Mehta AK, Lynn DG. Defining the Dynamic Conformational Networks of Cross-β Peptide Assembly. Isr J Chem 2015. [DOI: 10.1002/ijch.201500012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Abstract
A synthetic mimic of viral structure has been constructed by the synergistic co-assembly of a 16-amino acid peptide and plasmid DNA. The rational design of this short peptide, including segments for binding DNA and forming β-sheet, is inspired by viral capsid protein. The resulting nanostructures, which we term nanococoons, appear as ellipsoids of virus-like dimension (65 × 47 nm) and display repeating stripes of ∼4 nm wide. We propose that the co-assembly process involves DNA as a template to assist the organization of peptide strands by electrostatic interaction, while the bilayer β-sheets and their lateral association stabilize the peptide "capsid" and organize the DNA within. The hierarchy affords an extremely stable structure, protecting peptide and DNA against enzymatic digestion. It opens a new and facile avenue to fabricate viral alternatives with diverse functions.
Collapse
Affiliation(s)
- Rong Ni
- Department of Chemical and Biomolecular Engineering and ‡Division of Biomedical Engineering, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | | |
Collapse
|
25
|
|
26
|
Abstract
The self-assembly of different classes of peptide, including cyclic peptides, amyloid peptides and surfactant-like peptides into nanotube structures is reviewed. The modes of self-assembly are discussed. Additionally, applications in bionanotechnology and synthetic materials science are summarized.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD (UK).
| |
Collapse
|
27
|
Fabrication of poly(vinyl alcohol)s (PVAs) nanotubes through the fusion of nanocapsules composed of PVAs multilayer films. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.04.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Maity I, Parmar HS, Rasale DB, Das AK. Self-programmed nanovesicle to nanofiber transformation of a dipeptide appended bolaamphiphile and its dose dependent cytotoxic behaviour. J Mater Chem B 2014; 2:5272-5279. [DOI: 10.1039/c4tb00365a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A fluorescent nanostructured peptide bolaamphiphile hydrogel shows dose-dependent behaviour towards cytotoxicity and cell-proliferation.
Collapse
Affiliation(s)
- Indrajit Maity
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore, India
| | | | | | - Apurba K. Das
- Department of Chemistry
- Indian Institute of Technology Indore
- Indore, India
| |
Collapse
|
29
|
Nagoya-Goldmedaille: B. L. Feringa / Nagoya-Silbermedaille: N. Chatani / MacArthur Fellowship: Phil S. Baran / Ehrendoktorwürde: R. Kniep / Herty Medal: D. G. Lynn / Premio de la Real Academia de Ciencias: V. Gotor / Akademiepreis für Chemie: M. Alcarazo. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Nagoya Gold Medal: B. L. Feringa / Nagoya Silver Medal: N. Chatani / MacArthur Fellowship: Phil S. Baran / Honorary Doctorate: R. Kniep / Herty Medal: D. G. Lynn / Premio de la Real Academia de Ciencias: V. Gotor / Akademiepreis für Chemie: M. Alcarazo /. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/anie.201307536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Mehta AK, Rosen RF, Childers WS, Gehman JD, Walker LC, Lynn DG. Context dependence of protein misfolding and structural strains in neurodegenerative diseases. Biopolymers 2013; 100:722-30. [PMID: 23893572 PMCID: PMC3979318 DOI: 10.1002/bip.22283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 04/19/2013] [Accepted: 05/07/2013] [Indexed: 01/28/2023]
Abstract
Vast arrays of structural forms are accessible to simple amyloid peptides and environmental conditions can direct assembly into single phases. These insights are now being applied to the aggregation of the Aβ peptide of Alzheimer's disease and the identification of causative phases. We extend use of the imaging agent Pittsburgh compound B to discriminate among Aβ phases and begin to define conditions of relevance to the disease state. Also, we specifically highlight the development of methods for defining the structures of these more complex phases.
Collapse
Affiliation(s)
- Anil K. Mehta
- Departments of Chemistry and Biology, Alzheimer’s Disease Research Center, Emory University, Atlanta, Georgia 30322, USA
| | - Rebecca F. Rosen
- Yerkes National Primate Research Center, Center for Neurodegenerative Disease, Emory University, Atlanta, Georgia 30322, USA
| | - W. Seth Childers
- Departments of Chemistry and Biology, Alzheimer’s Disease Research Center, Emory University, Atlanta, Georgia 30322, USA
| | - John D. Gehman
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Vic. 3010, Australia
| | - Lary C. Walker
- Yerkes National Primate Research Center, Center for Neurodegenerative Disease, Emory University, Atlanta, Georgia 30322, USA
- Department of Neurology, Emory University, Atlanta, Georgia 30322, USA
| | - David G. Lynn
- Departments of Chemistry and Biology, Alzheimer’s Disease Research Center, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
32
|
Chi H, Welch WRW, Kubelka J, Keiderling TA. Insight into the Packing Pattern of β2 Fibrils: A Model Study of Glutamic Acid Rich Oligomers with 13C Isotopic Edited Vibrational Spectroscopy. Biomacromolecules 2013; 14:3880-91. [DOI: 10.1021/bm401015f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heng Chi
- Department
of Chemistry, University of Illinois at Chicago, 845 West Taylor
Street (m/c111), Chicago, Illinois 60607-7061, United States
| | - William R. W. Welch
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jan Kubelka
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Timothy A. Keiderling
- Department
of Chemistry, University of Illinois at Chicago, 845 West Taylor
Street (m/c111), Chicago, Illinois 60607-7061, United States
| |
Collapse
|
33
|
Xu C, Liu R, Mehta AK, Guerrero-Ferreira RC, Wright ER, Dunin-Horkawicz S, Morris K, Serpell LC, Zuo X, Wall JS, Conticello VP. Rational Design of Helical Nanotubes from Self-Assembly of Coiled-Coil Lock Washers. J Am Chem Soc 2013; 135:15565-78. [DOI: 10.1021/ja4074529] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chunfu Xu
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Rui Liu
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Anil K. Mehta
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Ricardo C. Guerrero-Ferreira
- Division
of Pediatric Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Suite 500, Atlanta, Georgia 30322, United States
| | - Elizabeth R. Wright
- Division
of Pediatric Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Suite 500, Atlanta, Georgia 30322, United States
| | - Stanislaw Dunin-Horkawicz
- Laboratory
of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Kyle Morris
- School
of Life Sciences, University of Sussex, Lewes Road, Falmer, East Sussex BN1
9QG, United Kingdom
| | - Louise C. Serpell
- School
of Life Sciences, University of Sussex, Lewes Road, Falmer, East Sussex BN1
9QG, United Kingdom
| | - Xiaobing Zuo
- X-ray
Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Joseph S. Wall
- Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973, United States
| | - Vincent P. Conticello
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
34
|
Middleton DA, Madine J, Castelletto V, Hamley IW. Insights into the molecular architecture of a peptide nanotube using FTIR and solid-state NMR spectroscopic measurements on an aligned sample. Angew Chem Int Ed Engl 2013; 52:10537-40. [PMID: 23955926 PMCID: PMC4672711 DOI: 10.1002/anie.201301960] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Indexed: 11/05/2022]
Abstract
Queuing up: Molecular orientation within macroscopically aligned nanotubes of the peptide AAAAAAK can be studied by solid-state NMR and IR spectroscopy. Line shape analysis of the NMR spectra indicates that the peptide N-H bonds are tilted 65-70° relative to the nanotube long axis. Re-evaluation of earlier X-ray fiber diffraction data suggests that the peptide molecules are hydrogen-bonded in a helical arrangement along the nanotube axis.
Collapse
Affiliation(s)
- David A Middleton
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB (UK).
| | | | | | | |
Collapse
|
35
|
Middleton DA, Madine J, Castelletto V, Hamley IW. Insights into the Molecular Architecture of a Peptide Nanotube Using FTIR and Solid-State NMR Spectroscopic Measurements on an Aligned Sample. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301960] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Li W, Li J, Lee M. Fabrication of artificial toroid nanostructures by modified β-sheet peptides. Chem Commun (Camb) 2013; 49:8238-40. [DOI: 10.1039/c3cc44238a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Li L, Wu R, Guang S, Su X, Xu H. The investigation of the hydrogen bond saturation effect during the dipole–dipole induced azobenzene supramolecular self-assembly. Phys Chem Chem Phys 2013; 15:20753-63. [DOI: 10.1039/c3cp52864b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
38
|
Abstract
Living matter is the most elaborate, elegant, and complex hierarchical material known and is consequently the natural target for an ever-expanding scientific and technological effort to unlock and deconvolute its marvelous forms and functions. Our current understanding suggests that biological materials are derived from a bottom-up process, a spontaneous emergence of molecular networks in the course of chemical evolution. Polymer cooperation, so beautifully manifested in the ribosome, appeared in these dynamic networks, and the special physicochemical properties of the nucleic and amino acid polymers made possible the critical threshold for the emergence of extant cellular life. These properties include the precise and geometrically discrete hydrogen bonding patterns that dominate the complementary interactions of nucleic acid base-pairing that guide replication and ensure replication fidelity. In contrast, complex and highly context-dependent sets of intra- and intermolecular interactions guide protein folding. These diverse interactions allow the more analog environmental chemical potential fluctuations to dictate conformational template-directed propagation. When these two different strategies converged in the remarkable synergistic ribonucleoprotein that is the ribosome, this resulting molecular digital-to-analog converter achieved the capacity for both persistent information storage and adaptive responses to an ever-changing environment. The ancestral chemical networks that preceded the Central Dogma of Earth's biology must reflect the dynamic chemical evolutionary landscapes that allowed for selection, propagation, and diversification and ultimately the demarcation and specialization of function that modern biopolymers manifest. Not only should modern biopolymers contain molecular fossils of this earlier age, but it should be possible to use this information to reinvent these dynamic functional networks. In this Account, we review the first dynamic network created by modification of a nucleic acid backbone and show how it has exploited the digital-like base pairing for reversible polymer construction and information transfer. We further review how these lessons have been extended to the complex folding landscapes of templated peptide assembly. These insights have allowed for the construction of molecular hybrids of each biopolymer class and made possible the reimagining of chemical evolution. Such elaboration of biopolymer chimeras has already led to applications in therapeutics and diagnostics, to the construction of novel nanostructured materials, and toward orthogonal biochemical pathways that expand the evolution of existing biochemical systems. The ability to look beyond the primordial emergence of the ribosome may allow us to better define the origins of chemical evolution, to extend its horizons beyond the biology of today and ask whether evolution is an inherent property of matter unbounded by physical limitations imposed by our planet's diverse environments.
Collapse
Affiliation(s)
- Jay T. Goodwin
- Center for Fundamental and Applied Molecular Evolution, NSF/NASA Center for Chemical Evolution, Departments of Chemistry and Biology, Emory University, Atlanta, Georgia, United States
| | - Anil K. Mehta
- Center for Fundamental and Applied Molecular Evolution, NSF/NASA Center for Chemical Evolution, Departments of Chemistry and Biology, Emory University, Atlanta, Georgia, United States
| | - David G. Lynn
- Center for Fundamental and Applied Molecular Evolution, NSF/NASA Center for Chemical Evolution, Departments of Chemistry and Biology, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
39
|
Han S, Kim D, Han SH, Kim NH, Kim SH, Lim YB. Structural and Conformational Dynamics of Self-Assembling Bioactive β-Sheet Peptide Nanostructures Decorated with Multivalent RNA-Binding Peptides. J Am Chem Soc 2012; 134:16047-53. [DOI: 10.1021/ja307493t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sanghun Han
- Translational Research Center for Protein Function Control and Department of Materials Science & Engineering, Yonsei University, Seoul 120-749, Korea
| | - Donghun Kim
- Division of Materials
Science, Korea Basic Science Institute (KBSI), Daejeon 305-333,
Korea
| | - So-hee Han
- Translational Research Center for Protein Function Control and Department of Materials Science & Engineering, Yonsei University, Seoul 120-749, Korea
| | - Nam Hee Kim
- Division of Materials
Science, Korea Basic Science Institute (KBSI), Daejeon 305-333,
Korea
| | - Sun Hee Kim
- Division of Materials
Science, Korea Basic Science Institute (KBSI), Daejeon 305-333,
Korea
| | - Yong-beom Lim
- Translational Research Center for Protein Function Control and Department of Materials Science & Engineering, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|