1
|
Santos P, Busta L, Yim WC, Cahoon EB, Kosma DK. Structural diversity, biosynthesis, and function of plant falcarin-type polyacetylenic lipids. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2889-2904. [PMID: 35560192 DOI: 10.1093/jxb/erac006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/10/2022] [Indexed: 06/15/2023]
Abstract
The polyacetylenic lipids falcarinol, falcarindiol, and associated derivatives, termed falcarins, have a widespread taxonomical distribution in the plant kingdom and have received increasing interest for their demonstrated health-promoting properties as anti-cancer and anti-inflammatory agents. These fatty acid-derived compounds are also linked to plant pathogen resistance through their potent antimicrobial properties. Falcarin-type polyacetylenes, which contain two conjugated triple bonds, are derived from structural modifications of the common fatty acid oleic acid. In the past half century, much progress has been made in understanding the structural diversity of falcarins in the plant kingdom, whereas limited progress has been made on elucidating falcarin function in plant-pathogen interactions. More recently, an understanding of the biosynthetic machinery underlying falcarin biosynthesis has emerged. This review provides a concise summary of the current state of knowledge on falcarin structural diversity, biosynthesis, and plant defense properties. We also present major unanswered questions about falcarin biosynthesis and function.
Collapse
Affiliation(s)
- Patrícia Santos
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
2
|
Dodo K, Sato A, Tamura Y, Egoshi S, Fujiwara K, Oonuma K, Nakao S, Terayama N, Sodeoka M. Synthesis of deuterated γ-linolenic acid and application for biological studies: metabolic tuning and Raman imaging. Chem Commun (Camb) 2021; 57:2180-2183. [PMID: 33527102 DOI: 10.1039/d0cc07824g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
γ-Linolenic acid (GLA) is reported to show tumor-selective cytotoxicity through unidentified mechanisms. Here, to assess the involvement of oxidized metabolites of GLA, we synthesized several deuterated GLAs and evaluated their metabolism and cytotoxicity towards normal human fibroblast WI-38 cells and VA-13 tumor cells generated from WI-38 by transformation with SV40 virus. Deuteration of GLA suppressed both metabolism and cytotoxicity towards WI-38 cells and increased the selectivity for VA-13 cells. Fully deuterated GLA was visualized by Raman imaging, which indicated that GLA is accumulated in intracellular lipid droplets of VA-13 cells. Our results suggest the tumor-selective cytotoxicity is due to GLA itself, not its oxidized metabolites.
Collapse
Affiliation(s)
- Kosuke Dodo
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and Sodeoka Live Cell Chemistry Project, ERATO, Japan Sciences and Technology Agency, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and AMED-CREST, Japan Agency for Medical Research and Development, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ayato Sato
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and Sodeoka Live Cell Chemistry Project, ERATO, Japan Sciences and Technology Agency, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuki Tamura
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and Sodeoka Live Cell Chemistry Project, ERATO, Japan Sciences and Technology Agency, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Syusuke Egoshi
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and AMED-CREST, Japan Agency for Medical Research and Development, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Koichi Fujiwara
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and AMED-CREST, Japan Agency for Medical Research and Development, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kana Oonuma
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shuhei Nakao
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and AMED-CREST, Japan Agency for Medical Research and Development, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoki Terayama
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and AMED-CREST, Japan Agency for Medical Research and Development, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and Sodeoka Live Cell Chemistry Project, ERATO, Japan Sciences and Technology Agency, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and AMED-CREST, Japan Agency for Medical Research and Development, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
3
|
Tokunaga T, Watanabe B, Sato S, Kawamoto J, Kurihara T. Synthesis and Functional Assessment of a Novel Fatty Acid Probe, ω-Ethynyl Eicosapentaenoic Acid Analog, to Analyze the in Vivo Behavior of Eicosapentaenoic Acid. Bioconjug Chem 2017; 28:2077-2085. [PMID: 28682621 DOI: 10.1021/acs.bioconjchem.7b00235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Eicosapentaenoic acid (EPA) is an ω-3 polyunsaturated fatty acid that plays various beneficial roles in organisms from bacteria to humans. Although its beneficial physiological functions are well-recognized, a molecular probe that enables the monitoring of its in vivo behavior without abolishing its native functions has not yet been developed. Here, we designed and synthesized an ω-ethynyl EPA analog (eEPA) as a tool for analyzing the in vivo behavior and function of EPA. eEPA has an ω-ethynyl group tag in place of the ω-methyl group of EPA. An ethynyl group has a characteristic Raman signal and can be visualized by Raman scattering microscopy. Moreover, this group can specifically react in situ with azide compounds, such as those with fluorescent group, via click chemistry. In this study, we first synthesized eEPA efficiently based on the following well-known strategies. To introduce four C-C double bonds, a coupling reaction between terminal acetylene and propargylic halide or tosylate was employed, and then, by simultaneous and stereoselective partial hydrogenation with P-2 nickel, the triple bonds were converted to cis double bonds. One double bond and an ω-terminal C-C triple bond were introduced by Wittig reaction with a phosphonium salt harboring an ethynyl group. Then, we evaluated the in vivo function of the resulting probe by using an EPA-producing bacterium, Shewanella livingstonensis Ac10. This cold-adapted bacterium inducibly produces EPA at low temperatures, and the EPA-deficient mutant (ΔEPA) shows growth retardation and abnormal morphology at low temperatures. When eEPA was exogenously supplemented to ΔEPA, eEPA was incorporated into the membrane phospholipids as an acyl chain, and the amount of eEPA was about 5% of the total fatty acids in the membrane, which is comparable to the amount of EPA in the membrane of the parent strain. Notably, by supplementation with eEPA, the growth retardation and abnormal morphology of ΔEPA were almost completely suppressed. These results indicated that eEPA mimics EPA well and is useful for analyzing the in vivo behavior of EPA.
Collapse
Affiliation(s)
- Tomohisa Tokunaga
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Sho Sato
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| |
Collapse
|