1
|
Camacho IS, Wall E, Sazanovich IV, Gozzard E, Towrie M, Hunt NT, Hay S, Jones AR. Tuning of B 12 photochemistry in the CarH photoreceptor to avoid radical photoproducts. Chem Commun (Camb) 2023; 59:13014-13017. [PMID: 37831010 DOI: 10.1039/d3cc03900e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Time-resolved infrared spectroscopy reveals the flow of electron density through coenzyme B12 in the light-activated, bacterial transcriptional regulator, CarH. The protein stabilises a series of charge transfer states that result in a photoresponse that avoids reactive, and potentially damaging, radical photoproducts.
Collapse
Affiliation(s)
- Ines S Camacho
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, Middlesex, UK.
| | - Emma Wall
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, UK
| | - Igor V Sazanovich
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Emma Gozzard
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Mike Towrie
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, UK
| | - Sam Hay
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, UK
| | - Alex R Jones
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, Middlesex, UK.
| |
Collapse
|
2
|
Abstract
This Perspective presents a review of our work and that of others in the highly controversial topic of the coupling of protein dynamics to reaction in enzymes. We have been involved in studying this topic for many years. Thus, this perspective will naturally present our own views, but it also is designed to present an overview of the variety of viewpoints of this topic, both experimental and theoretical. This is obviously a large and contentious topic.
Collapse
Affiliation(s)
- Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
3
|
Sun Q, Zhai Y, Wang W, Gan N, Zhang S, Suo Z, Li H. Molecular recognition patterns between vitamin B12 and human serum albumin explored through STD-NMR and spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119828. [PMID: 33930850 DOI: 10.1016/j.saa.2021.119828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Ligand-receptor molecular recognitionis the basis of biological process. The Saturation Transfer Difference-NMR (STD-NMR) technique has been recently used to gain qualitative and quantitative information about physiological interactions at atomic-resolution. The molecular recognition patterns between Vitamin B12 (VB12) and human serum albumin (HSA) were investigated by STD-NMR supplemented by other spectroscopies and molecular docking. STD-NMR delivered a complete picture that the substituent groups on the tetrapyrrole ring of VB12 interacted with site III of HSA through binding epitope mapping and competitive probe experiments. STD-NMR and fluorescence results proved the moderate binding capability of VB12 and clarified a static, spontaneous, and temperature-sensitive binding mechanism. 3D-fluorencence, FT-IR and circular dichroism spectra showed a compact protein structure by interacting with VB12. Size distribution and surface hydrophobicity showed the surface properties changes of HSA caused by the binding of VB12. Computer simulation confirmed the recognition mode in theory and was compared with experiments. This work is beneficial for understanding the safety and biological action of VB12, and will attract researchers interested in NMR technology.
Collapse
Affiliation(s)
- Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuanming Zhai
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China.
| | - Wenjing Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Na Gan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shuangshuang Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zili Suo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Lukinović V, Woodward JR, Marrafa TC, Shanmugam M, Heyes DJ, Hardman SJO, Scrutton NS, Hay S, Fielding AJ, Jones AR. Photochemical Spin Dynamics of the Vitamin B 12 Derivative, Methylcobalamin. J Phys Chem B 2019; 123:4663-4672. [PMID: 31081330 DOI: 10.1021/acs.jpcb.9b01969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Derivatives of vitamin B12 are six-coordinate cobalt corrinoids found in humans, other animals, and microorganisms. By acting as enzymatic cofactors and photoreceptor chromophores, they serve vital metabolic and photoprotective functions. Depending on the context, the chemical mechanisms of the biologically active derivatives of B12-methylcobalamin (MeCbl) and 5'-deoxyadenosylcobalamin (AdoCbl)-can be very different from one another. The extent to which this chemistry is tuned by the upper axial ligand, however, is not yet clear. Here, we have used a combination of time-resolved Fourier transform-electron paramagnetic resonance (FT-EPR), magnetic field effect experiments, and spin dynamic simulations to reveal that the upper axial ligand alone only results in relatively minor changes to the photochemical spin dynamics of B12. By studying the photolysis of MeCbl, we find that, similar to AdoCbl, the initial (or "geminate") radical pairs (RPs) are born predominantly in the singlet spin state and thus originate from singlet excited-state precursors. This is in contrast to the triplet RPs and precursors proposed previously. Unlike AdoCbl, the extent of geminate recombination is limited following MeCbl photolysis, resulting in significant distortions to the FT-EPR signal caused by polarization from spin-correlated methyl-methyl radical "f-pairs" formed following rapid diffusion. Despite the photophysical mechanism that precedes photolysis of MeCbl showing wavelength dependence, the subsequent spin dynamics appear to be largely independent of excitation wavelength, again similar to AdoCbl. Our data finally provide clarity to what in the literature to date has been a confused and contradictory picture. We conclude that, although the upper axial position of MeCbl and AdoCbl does impact their reactivity to some extent, the remarkable biochemical diversity of these fascinating molecules is most likely a result of tuning by their protein environment.
Collapse
Affiliation(s)
- Valentina Lukinović
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Jonathan R Woodward
- Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902 , Japan
| | - Teresa C Marrafa
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Derren J Heyes
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Sam Hay
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | | | - Alex R Jones
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| |
Collapse
|
5
|
Toda MJ, Lodowski P, Mamun AA, Jaworska M, Kozlowski PM. Photolytic properties of the biologically active forms of vitamin B12. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Mamun AA, Toda MJ, Kozlowski PM. Can photolysis of the Co C bond in coenzyme B12-dependent enzymes be used to mimic the native reaction? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 191:175-184. [DOI: 10.1016/j.jphotobiol.2018.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
|
7
|
Mamun AA, Toda MJ, Lodowski P, Jaworska M, Kozlowski PM. Mechanism of Light Induced Radical Pair Formation in Coenzyme B12-Dependent Ethanolamine Ammonia-Lyase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Abdullah Al Mamun
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Megan J. Toda
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Piotr Lodowski
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Maria Jaworska
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
- Department of Food Sciences, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
8
|
Boehr DD, D'Amico RN, O'Rourke KF. Engineered control of enzyme structural dynamics and function. Protein Sci 2018; 27:825-838. [PMID: 29380452 DOI: 10.1002/pro.3379] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
Enzymes undergo a range of internal motions from local, active site fluctuations to large-scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post-translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus-responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
9
|
Stare J. Complete sampling of an enzyme reaction pathway: a lesson from gas phase simulations. RSC Adv 2017. [DOI: 10.1039/c6ra27894a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
With proper sampling strategy, convergence of free energy profiles of biomolecular reactions in the gas phase can be achieved in microseconds of simulation.
Collapse
Affiliation(s)
- Jernej Stare
- Department of Computational Biochemistry and Drug Design
- National Institute of Chemistry
- SI-1000 Ljubljana
- Slovenia
| |
Collapse
|
10
|
Abstract
This Perspective provides the first detailed overview of the photoresponse of vitamin B12 and its derivatives, from the early, photophysical events to the burgeoning area of B12-dependent photobiology.
Collapse
Affiliation(s)
- Alex R. Jones
- School of Chemistry
- Photon Science Institute and Manchester Institute of Biotechnology
- The University of Manchester
- Manchester
- UK
| |
Collapse
|
11
|
Garabato BD, Lodowski P, Jaworska M, Kozlowski PM. Mechanism of Co-C photodissociation in adenosylcobalamin. Phys Chem Chem Phys 2016; 18:19070-82. [PMID: 27356617 DOI: 10.1039/c6cp02136k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A mechanism of Co-C bond photodissociation in the base-on form of adenosylcobalamin (AdoCbl) was investigated by time-dependent density functional theory (TD-DFT). The key mechanistic step involves singlet radical pair (RP) generation from the first electronically excited state (S1). To connect TD-DFT calculations with ultra-fast excited state dynamics, the potential energy surface (PES) of the S1 state was constructed using Co-C and Co-NIm axial coordinates. The S1 PES can be characterized by two minima separated by a seam resulting from the crossing of two surfaces, of metal-to-ligand charge transfer (MLCT) character near the minimum, and a shallow ligand field (LF) surface at elongated axial bond distances. Only one possible pathway for photolysis (path A) was identified based on energetic grounds. This pathway is characterized by the first elongation of the Co-C bond, followed by photolysis from an LF state where the axial base is partially detached. A new perspective on the photolysis of AdoCbl is then gained by connecting TD-DFT results with available experimental observations.
Collapse
Affiliation(s)
- Brady D Garabato
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40202, USA.
| | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Alex R. Jones
- School of Chemistry, Photon Science Institute and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| |
Collapse
|
13
|
Kozlowski PM, Garabato BD, Lodowski P, Jaworska M. Photolytic properties of cobalamins: a theoretical perspective. Dalton Trans 2016; 45:4457-70. [PMID: 26865262 DOI: 10.1039/c5dt04286k] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This Perspective Article highlights recent theoretical developments, and summarizes the current understanding of the photolytic properties of cobalamins from a computational point of view. The primary focus is on two alkyl cobalamins, methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), as well as two non-alkyl cobalamins, cyanocobalamin (CNCbl) and hydroxocobalamin (HOCbl). Photolysis of alkyl cobalamins involves low-lying singlet excited states where photodissociation of the Co-C bond leads to formation of singlet-born alkyl/cob(ii)alamin radical pairs (RPs). Potential energy surfaces (PESs) associated with cobalamin low-lying excited states as functions of both axial bonds, provide the most reliable tool for initial analysis of their photochemical and photophysical properties. Due to the complexity, and size limitations associated with the cobalamins, the primary method for calculating ground state properties is density functional theory (DFT), while time-dependent DFT (TD-DFT) is used for electronically excited states. For alkyl cobalamins, energy pathways on the lowest singlet surface, connecting metal-to-ligand charge transfer (MLCT) and ligand field (LF) minima, can be associated with photo-homolysis of the Co-C bond observed experimentally. Additionally, energy pathways between minima and seams associated with crossing of S1/S0 surfaces, are the most efficient for internal conversion (IC) to the ground state. Depending on the specific cobalamin, such IC may involve simultaneous elongation of both axial bonds (CNCbl), or detachment of axial base followed by corrin ring distortion (MeCbl). The possibility of intersystem crossing, and the formation of triplet RPs is also discussed based on Landau-Zener theory.
Collapse
Affiliation(s)
- Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | | | |
Collapse
|
14
|
Lo HH, Lin HH, Maity AN, Ke SC. The molecular mechanism of the open–closed protein conformational cycle transitions and coupled substrate binding, activation and product release events in lysine 5,6-aminomutase. Chem Commun (Camb) 2016; 52:6399-402. [DOI: 10.1039/c6cc01888b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The contributions of Lys370α and Asp298α to the critical Co–C bond cleavage trigger and open–closed cycle transitions of lysine 5,6-aminomutase.
Collapse
Affiliation(s)
- Hsin-Hsi Lo
- Physics Department
- National Dong Hwa University
- Hualien
- Taiwan 97401
| | - Hsin-Hua Lin
- Physics Department
- National Dong Hwa University
- Hualien
- Taiwan 97401
| | | | - Shyue-Chu Ke
- Physics Department
- National Dong Hwa University
- Hualien
- Taiwan 97401
| |
Collapse
|
15
|
Jones AR, Rentergent J, Scrutton NS, Hay S. Probing reversible chemistry in coenzyme B12 -dependent ethanolamine ammonia lyase with kinetic isotope effects. Chemistry 2015; 21:8826-31. [PMID: 25950663 PMCID: PMC4497352 DOI: 10.1002/chem.201500958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Indexed: 01/20/2023]
Abstract
Coenzyme B12-dependent enzymes such as ethanolamine ammonia lyase have remarkable catalytic power and some unique properties that enable detailed analysis of the reaction chemistry and associated dynamics. By selectively deuterating the substrate (ethanolamine) and/or the β-carbon of the 5′-deoxyadenosyl moiety of the intrinsic coenzyme B12, it was possible to experimentally probe both the forward and reverse hydrogen atom transfers between the 5′-deoxyadenosyl radical and substrate during single-turnover stopped-flow measurements. These data are interpreted within the context of a kinetic model where the 5′-deoxyadenosyl radical intermediate may be quasi-stable and rearrangement of the substrate radical is essentially irreversible. Global fitting of these data allows estimation of the intrinsic rate constants associated with CoC homolysis and initial H-abstraction steps. In contrast to previous stopped-flow studies, the apparent kinetic isotope effects are found to be relatively small.
Collapse
Affiliation(s)
- Alex R Jones
- School of Chemistry, Manchester Institute of Biotechnology and Photon Science Institute, The University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL (UK).
| | - Julius Rentergent
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN (UK)
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN (UK)
| | - Sam Hay
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN (UK).
| |
Collapse
|
16
|
Menon BRK, Menon N, Fisher K, Rigby SEJ, Leys D, Scrutton NS. Glutamate 338 is an electrostatic facilitator of C-Co bond breakage in a dynamic/electrostatic model of catalysis by ornithine aminomutase. FEBS J 2015; 282:1242-55. [PMID: 25627283 PMCID: PMC4413051 DOI: 10.1111/febs.13215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/16/2015] [Accepted: 01/23/2015] [Indexed: 01/04/2023]
Abstract
How cobalamin-dependent enzymes promote C–Co homolysis to initiate radical catalysis has been debated extensively. For the pyridoxal 5′-phosphate and cobalamin-dependent enzymes lysine 5,6-aminomutase and ornithine 4,5-aminomutase (OAM), large-scale re-orientation of the cobalamin-binding domain linked to C–Co bond breakage has been proposed. In these models, substrate binding triggers dynamic sampling of the B12-binding Rossmann domain to achieve a catalytically competent ‘closed’ conformational state. In ‘closed’ conformations of OAM, Glu338 is thought to facilitate C–Co bond breakage by close association with the cobalamin adenosyl group. We investigated this using stopped-flow continuous-wave photolysis, viscosity dependence kinetic measurements, and electron paramagnetic resonance spectroscopy of a series of Glu338 variants. We found that substrate-induced C–Co bond homolysis is compromised in Glu388 variant forms of OAM, although photolysis of the C–Co bond is not affected by the identity of residue 338. Electrostatic interactions of Glu338 with the 5′-deoxyadenosyl group of B12 potentiate C–Co bond homolysis in ‘closed’ conformations only; these conformations are unlocked by substrate binding. Our studies extend earlier models that identified a requirement for large-scale motion of the cobalamin domain. Our findings indicate that large-scale motion is required to pre-organize the active site by enabling transient formation of ‘closed’ conformations of OAM. In ‘closed’ conformations, Glu338 interacts with the 5′-deoxyadenosyl group of cobalamin. This interaction is required to potentiate C–Co homolysis, and is a crucial component of the approximately 1012 rate enhancement achieved by cobalamin-dependent enzymes for C–Co bond homolysis.
Collapse
Affiliation(s)
- Binuraj R K Menon
- Biotechnology and Biological Sciences Research Council/Engineering and Physical Sciences Research Council Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, Faculty of Life Sciences, The University of Manchester, UK
| | | | | | | | | | | |
Collapse
|
17
|
Mori K, Oiwa T, Kawaguchi S, Kondo K, Takahashi Y, Toraya T. Catalytic Roles of Substrate-Binding Residues in Coenzyme B12-Dependent Ethanolamine Ammonia-Lyase. Biochemistry 2014; 53:2661-71. [DOI: 10.1021/bi500223k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Koichi Mori
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Toshihiro Oiwa
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Satoshi Kawaguchi
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kyosuke Kondo
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yusuke Takahashi
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Tetsuo Toraya
- Department
of Bioscience
and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
18
|
Cobalamin-dependent dehydratases and a deaminase: Radical catalysis and reactivating chaperones. Arch Biochem Biophys 2014; 544:40-57. [DOI: 10.1016/j.abb.2013.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 01/12/2023]
|
19
|
Wang M, Warncke K. Entropic origin of cobalt-carbon bond cleavage catalysis in adenosylcobalamin-dependent ethanolamine ammonia-lyase. J Am Chem Soc 2013; 135:15077-84. [PMID: 24028405 PMCID: PMC3839591 DOI: 10.1021/ja404467d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adenosylcobalamin-dependent enzymes accelerate the cleavage of the cobalt-carbon (Co-C) bond of the bound coenzyme by >10(10)-fold. The cleavage-generated 5'-deoxyadenosyl radical initiates the catalytic cycle by abstracting a hydrogen atom from substrate. Kinetic coupling of the Co-C bond cleavage and hydrogen-atom-transfer steps at ambient temperatures has interfered with past experimental attempts to directly address the factors that govern Co-C bond cleavage catalysis. Here, we use time-resolved, full-spectrum electron paramagnetic resonance spectroscopy, with temperature-step reaction initiation, starting from the enzyme-coenzyme-substrate ternary complex and (2)H-labeled substrate, to study radical pair generation in ethanolamine ammonia-lyase from Salmonella typhimurium at 234-248 K in a dimethylsulfoxide/water cryosolvent system. The monoexponential kinetics of formation of the (2)H- and (1)H-substituted substrate radicals are the same, indicating that Co-C bond cleavage rate-limits radical pair formation. Analysis of the kinetics by using a linear, three-state model allows extraction of the microscopic rate constant for Co-C bond cleavage. Eyring analysis reveals that the activation enthalpy for Co-C bond cleavage is 32 ± 1 kcal/mol, which is the same as for the cleavage reaction in solution. The origin of Co-C bond cleavage catalysis in the enzyme is, therefore, the large, favorable activation entropy of 61 ± 6 cal/(mol·K) (relative to 7 ± 1 cal/(mol·K) in solution). This represents a paradigm shift from traditional, enthalpy-based mechanisms that have been proposed for Co-C bond-breaking in B12 enzymes. The catalysis is proposed to arise from an increase in protein configurational entropy along the reaction coordinate.
Collapse
Affiliation(s)
- Miao Wang
- Department of Physics, Emory University, Atlanta, GA 30322, United States
- Current Address: Wilmad-LabGlass, 1172 NW Boulevard, Vineland, NJ 08360
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, GA 30322, United States
| |
Collapse
|
20
|
|
21
|
Chen ZG, Ziętek MA, Russell HJ, Tait S, Hay S, Jones AR, Scrutton NS. Dynamic, electrostatic model for the generation and control of high-energy radical intermediates by a coenzyme B₁₂-dependent enzyme. Chembiochem 2013; 14:1529-33. [PMID: 23959797 PMCID: PMC4155860 DOI: 10.1002/cbic.201300420] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Zhi-Gang Chen
- College of Food and Science Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095 (P.R. China)
| | | | | | | | | | | | | |
Collapse
|
22
|
Liu CT, Wang L, Goodey NM, Hanoian P, Benkovic SJ. Temporally overlapped but uncoupled motions in dihydrofolate reductase catalysis. Biochemistry 2013; 52:5332-4. [PMID: 23883151 DOI: 10.1021/bi400858m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Temporal correlations between protein motions and enzymatic reactions are often interpreted as evidence for catalytically important motions. Using dihydrofolate reductase as a model system, we show that there are many protein motions that temporally overlapped with the chemical reaction, and yet they do not exhibit the same kinetic behaviors (KIE and pH dependence) as the catalyzed chemical reaction. Thus, despite the temporal correlation, these motions are not directly coupled to the chemical transformation, and they might represent a different part of the catalytic cycle or simply be the product of the intrinsic flexibility of the protein.
Collapse
Affiliation(s)
- C Tony Liu
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
23
|
Jones AR, Levy C, Hay S, Scrutton NS. Relating localized protein motions to the reaction coordinate in coenzyme B12-dependent enzymes. FEBS J 2013; 280:2997-3008. [DOI: 10.1111/febs.12223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 01/27/2023]
Affiliation(s)
| | - Colin Levy
- Manchester Institute of Biotechnology and Faculty of Life Sciences; The University of Manchester; Manchester; UK
| | - Sam Hay
- Manchester Institute of Biotechnology and Faculty of Life Sciences; The University of Manchester; Manchester; UK
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology and Faculty of Life Sciences; The University of Manchester; Manchester; UK
| |
Collapse
|
24
|
Pudney CR, Guerriero A, Baxter NJ, Johannissen LO, Waltho JP, Hay S, Scrutton NS. Fast protein motions are coupled to enzyme H-transfer reactions. J Am Chem Soc 2013; 135:2512-7. [PMID: 23373704 DOI: 10.1021/ja311277k] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coupling of fast protein dynamics to enzyme chemistry is controversial and has ignited considerable debate, especially over the past 15 years in relation to enzyme-catalyzed H-transfer. H-transfer can occur by quantum tunneling, and the temperature dependence of kinetic isotope effects (KIEs) has emerged as the "gold standard" descriptor of these reactions. The anomalous temperature dependence of KIEs is often rationalized by invoking fast motions to facilitate H-transfer, yet crucially, direct evidence for coupled motions is lacking. The fast motions hypothesis underpinning the temperature dependence of KIEs is based on inference. Here, we have perturbed vibrational motions in pentaerythritol tetranitrate reductase (PETNR) by isotopic substitution where all non-exchangeable atoms were replaced with the corresponding heavy isotope ((13)C, (15)N, and (2)H). The KIE temperature dependence is perturbed by heavy isotope labeling, demonstrating a direct link between (promoting) vibrations in the protein and the observed KIE. Further we show that temperature-independent KIEs do not necessarily rule out a role for fast dynamics coupled to reaction chemistry. We show causality between fast motions and enzyme chemistry and demonstrate how this impacts on experimental KIEs for enzyme reactions.
Collapse
Affiliation(s)
- Christopher R Pudney
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Bailey MJ, Bright NJ, Croxton RS, Francese S, Ferguson LS, Hinder S, Jickells S, Jones BJ, Jones BN, Kazarian SG, Ojeda JJ, Webb RP, Wolstenholme R, Bleay S. Chemical Characterization of Latent Fingerprints by Matrix-Assisted Laser Desorption Ionization, Time-of-Flight Secondary Ion Mass Spectrometry, Mega Electron Volt Secondary Mass Spectrometry, Gas Chromatography/Mass Spectrometry, X-ray Photoelectron Spectroscopy, and Attenuated Total Reflection Fourier Transform Infrared Spectroscopic Imaging: An Intercomparison. Anal Chem 2012; 84:8514-23. [DOI: 10.1021/ac302441y] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Melanie. J. Bailey
- Department of Chemical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
- University of Surrey Ion Beam Centre, Guildford GU2 7XH, United Kingdom
| | | | - Ruth S. Croxton
- School of Life Sciences, University of Lincoln, Brayford Pool LN6 7TS, United
Kingdom
| | - Simona Francese
- Biomedical Research
Centre, Sheffield Hallam University, Sheffield
S11 9BW, United
Kingdom
| | - Leesa S. Ferguson
- Biomedical Research
Centre, Sheffield Hallam University, Sheffield
S11 9BW, United
Kingdom
| | - Stephen Hinder
- University of Surrey Ion Beam Centre, Guildford GU2 7XH, United Kingdom
| | - Sue Jickells
- University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Benjamin J. Jones
- Experimental Techniques Centre, Brunel University, Uxbridge, Middlesex UB8 3PH, United
Kingdom
| | - Brian N. Jones
- University of Surrey Ion Beam Centre, Guildford GU2 7XH, United Kingdom
| | - Sergei G. Kazarian
- Department of Chemical
Engineering, Imperial College London, London
SW7 2AZ, United Kingdom
| | - Jesus J. Ojeda
- Experimental Techniques Centre, Brunel University, Uxbridge, Middlesex UB8 3PH, United
Kingdom
| | - Roger P. Webb
- University of Surrey Ion Beam Centre, Guildford GU2 7XH, United Kingdom
| | - Rosalind Wolstenholme
- Biomedical Research
Centre, Sheffield Hallam University, Sheffield
S11 9BW, United
Kingdom
| | - Stephen Bleay
- Home Office Centre for Applied Science and Technology, Woodcock Hill, Sandridge,
Herts AL4 9HQ, United Kingdom
| |
Collapse
|