1
|
Zhang WQ, Lin Z, Wu D, Wang Y, Hirao H, Gong LZ. Nickel-Catalyzed Enantioconvergent Allenylic Amination of Allenols Activated by Hydrogen-Bonding Interaction with Methanol. Angew Chem Int Ed Engl 2024; 63:e202410743. [PMID: 38963024 DOI: 10.1002/anie.202410743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The ubiquitous nature of amines in drug compounds, bioactive molecules and natural products has fueled intense interest in their synthesis. Herein, we introduce a nickel-catalyzed enantioconvergent allenylic amination of methanol-activated allenols. This protocol affords a diverse array of functionalized allenylic amines in high yields and with excellent enantioselectivities. The synthetic potential of this method is demonstrated by employing bioactive amines as nucleophiles and conducting gram-scale reactions. Furthermore, mechanistic investigations and DFT calculations elucidate the role of methanol as an activator in the nickel-catalyzed reaction, facilitating the oxidative addition of the C-O bond of allenols through hydrogen-bonding interactions. The remarkable outcomes arise from a rapid racemization of allenols enabled by the nickel catalyst and from highly enantioselective dynamic kinetic asymmetric transformation of η3-alkadienylnickel intermediates.
Collapse
Affiliation(s)
- Wen-Qian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zihan Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Danxing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yuhao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Zhang J, Luo Y, Zheng E, Huo X, Ma S, Zhang W. Synergistic Pd/Cu-Catalyzed 1,5-Double Chiral Inductions. J Am Chem Soc 2024; 146:9241-9251. [PMID: 38502927 DOI: 10.1021/jacs.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Much attention has been focused on the catalytic asymmetric creation of single chiral centers or two adjacent stereocenters. However, the asymmetric construction of two nonadjacent stereocenters is of significant importance but is challenging because of the lack of remote chiral induction models. Herein, based on a C═C bond relay strategy, we report a synergistic Pd/Cu-catalyzed 1,5-double chiral induction model. All four stereoisomers of the target products bearing 1,5-nonadjacent stereocenters involving both allenyl axial and central chirality could be obtained divergently by simply changing the combination of two chiral catalysts with different configurations. Control experiments and DFT calculations reveal a novel mechanism involving 1,5-oxidative addition, contra-thermodynamic η3-allyl palladium shift, and conjugate nucleophilic substitution, which play crucial roles in the control of reactivity, regio-, enantio-, and diastereoselectivity. It is expected that this C═C bond relay strategy may provide a general protocol for the asymmetric synthesis of structural motifs bearing two distant stereocenters.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - En Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
3
|
Lin J, Jia M, Song X, Yu H, Ma S. Pd-Catalyzed Enantioselective Creation of All-Carbon Quaternary Center with 2,3-Allenylic Carbonates. Org Lett 2024. [PMID: 38489519 DOI: 10.1021/acs.orglett.2c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Enantioselective construction of all-carbon quaternary centers has been achieved via the palladium-catalyzed highly enantioselective allenylation of oxindoles with 2,3-allenylic carbonates to afford a variety of optically active allene products, which contain oxindole units with different functional groups, in high ee. The corresponding synthetic applications have also been demonstrated.
Collapse
Affiliation(s)
- Jie Lin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Minqiang Jia
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Xu Song
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Hao Yu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
4
|
Liu LX, Bai YQ, Li X, Yu CB, Zhou YG. Palladium-catalyzed asymmetric allenylic alkylation: construction of multiple chiral thiochromanone derivatives. Chem Sci 2023; 14:5477-5482. [PMID: 37234894 PMCID: PMC10208048 DOI: 10.1039/d3sc01060k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The development of a new strategy for the construction of chiral cyclic sulfide-containing multiple stereogenic centers is highly desirable. Herein, by the combination of base-promoted retro-sulfa-Michael addition and palladium-catalyzed asymmetric allenylic alkylation, the streamlined synthesis of chiral thiochromanones containing two central chiralities (including a quaternary stereogenic center) and an axial chirality (allene unit) was successfully realized with up to 98% yield, 49.0 : 1 dr and >99% ee.
Collapse
Affiliation(s)
- Li-Xia Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu-Qing Bai
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiang Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Chang-Bin Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
5
|
Zhao L, Luo Y, Xiao J, Huo X, Ma S, Zhang W. Stereodivergent Synthesis of Allenes with α,β-Adjacent Central Chiralities Empowered by Synergistic Pd/Cu Catalysis. Angew Chem Int Ed Engl 2023; 62:e202218146. [PMID: 36594710 DOI: 10.1002/anie.202218146] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
The stereodivergent synthesis of allene compounds bearing α,β-adjacent central chiralities has been realized via the Pd/Cu-catalyzed dynamic kinetic asymmetric alkylation of racemic allenylic esters. The matched reactivity of bimetallic catalytic system enables the challenging reaction of racemic aryl-substituted allenylic acetates with sterically crowded aldimine esters smoothly under mild reaction conditions. Various chiral non-natural amino acids bearing a terminal allenyl group are easily synthesized in high yields and with excellent diastereo- and enantioselectivities (up to >20 : 1 dr, >99 % ee). Importantly, all four stereoisomers of the product can be readily accessed by switching the configurations of the two chiral metal catalysts. Furthermore, the easy interconversion between the uncommon η3 -butadienyl palladium intermediate featuring a weak C=C/Pd coordination bond and a stable Csp2 -Pd bond is beneficial for the dynamic kinetic asymmetric transformation process (DyKAT).
Collapse
Affiliation(s)
- Ling Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Junzhe Xiao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.,Research Centre for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
6
|
Xu H, Ma S. Palladium-Catalyzed [6+2] Double Allene Annulation for Benzazocines Synthesis. Angew Chem Int Ed Engl 2023; 62:e202213676. [PMID: 36372784 DOI: 10.1002/anie.202213676] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
An efficient double allene protocol for the formation of benzazocines has been developed. The reaction constitutes a highly regioselective palladium-catalyzed formal [6+2] annulation of allenyl benzoxazinanones with terminal allenes forming the challenging 8-membered cycles. Decent yields and excellent regioselectivity have been observed under mild conditions with a remarkable Z-stereoselectivity for the exo-cyclic C=C bonds. The synthetic potentials of benzazocine products have been demonstrated.
Collapse
Affiliation(s)
- Haibo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China
| |
Collapse
|
7
|
Kong WJ, Kessler SN, Wu H, Bäckvall JE. Iron-Catalyzed Cross-Coupling of α-Allenyl Esters with Grignard Reagents for the Synthesis of 1,3-Dienes. Org Lett 2023; 25:120-124. [PMID: 36599130 PMCID: PMC9841610 DOI: 10.1021/acs.orglett.2c03916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Structurally diverse 1,3-dienes are valuable building blocks in organic synthesis. Herein we report the iron-catalyzed coupling between α-allenyl esters and Grignard reagents, which provides a fast and practical approach to a variety of complex substituted 1,3-dienes. The reaction involves an inexpensive iron catalyst, mild reaction conditions, and provides easy scale up.
Collapse
|
8
|
Lin H, Yang X, Ning W, Huang X, Cao X, Ge Y, Mao B, Wang C, Guo H, Yuan C. Palladium-Catalyzed Asymmetric Cascade Intramolecular Cyclization/Intermolecular Michael Addition Reaction of Allenyl Benzoxazinones with 1-Azadienes. Org Lett 2022; 24:9442-9446. [PMID: 36537815 DOI: 10.1021/acs.orglett.2c03842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We herein designed and synthesized allenyl benzoxazinones of a novel type, which were then involved in a Pd-catalyzed asymmetric cascade intramolecular cyclization/intermolecular Michael addition reaction with 1-azadienes. A broad range of chiral C2-functionalized quinoline derivatives were afforded in moderate to good yields (up to 93%) with high enantioselectivities (up to 93% ee) in this reaction.
Collapse
Affiliation(s)
- Huawei Lin
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Xianru Yang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Wenyue Ning
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Xiaofang Huang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Xiaoqun Cao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Yanqing Ge
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Biming Mao
- School of Parmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| | - Chang Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Chunhao Yuan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| |
Collapse
|
9
|
Li L, Wang S, Jakhar A, Shao Z. Pd-catalyzed functionalization of 1,3-enynes via alkylene-π-allylpalladium intermediates. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
10
|
Palladium-catalysed construction of butafulvenes. Nat Chem 2022; 14:1185-1192. [PMID: 35982234 DOI: 10.1038/s41557-022-01017-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/01/2022] [Indexed: 11/08/2022]
Abstract
Butafulvene is a constitutional isomer of benzene, comprising a cyclobutene skeleton bearing two exocyclic conjugated methylene units. As a result of the intrinsic high strain energy and anti-aromaticity, the preparation of butafulvene compounds has been a fundamental issue for the development of butafulvene chemistry. Here an efficient palladium-catalysed coupling protocol involving propargylic compounds has been developed, providing a solid and versatile strategy for the rapid assembly of symmetric butafulvene derivatives. Based on mechanistic studies, two complementary mechanisms, both involving palladium catalysis, have been confirmed. With the mechanism unveiled, the synthesis of non-symmetric butafulvenes has also been achieved. Advantages of this strategy include tolerance to a wide range of propargylic molecules, mild reaction conditions, simple catalytic systems and easy scalability. The synthetic potential of the products as platform molecules for cyclobutene derivatives has also been demonstrated.
Collapse
|
11
|
Tan X, Gu Q, Yang X, Yang Y, Hu B, Mao S, Lin J, Jin Y. Palladium-Catalyzed [2+3] Cycloaddition/Cross-Coupling Reaction: Z/E and Diastereoselective Synthesis of Dendralene-Functionalized Dihydrofurans. Org Lett 2022; 24:4383-4388. [PMID: 35696655 DOI: 10.1021/acs.orglett.2c01605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we describe a Pd-catalyzed [2+3] cycloaddition/cross-coupling reaction of allenyl acetates for the Z/E selective and diastereoselective synthesis of dendralene-functionalized dihydrofurans. Remarkably, mechanistic studies show the formation of an epoxide from a carbonyl bond via cycloaddition, which is practically and mechanistically significant for the construction of other bioactive heterocyclic epoxides. This research also revealed the utility and potential of allenic esters as C2 synthons and 1,2-biselectrophiles in cycloaddition reactions.
Collapse
Affiliation(s)
- Xiangyu Tan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Qianqian Gu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xingjiang Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yingying Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Bingwei Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
12
|
Cera G, Maestri G. Palladium/Brønsted Acid Catalysis for Hydrofunctionalizations of Alkynes: from Tsuji‐Trost Allylations to Stereoselective Methodologies. ChemCatChem 2022. [DOI: 10.1002/cctc.202200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gianpiero Cera
- Universita degli Studi di Parma Dipartimento delle Scienze Chimiche, della Vita e della Sostenibilità Ambientale Parco Area delle Scienze, 17/A 43124 Parma ITALY
| | - Giovanni Maestri
- University of Parma: Universita degli Studi di Parma Dipartimento delle Scienze Chimiche, della Vita e della Sostenibilità Ambientale Parco Area delle Scienze, 17/A 43124 Parma ITALY
| |
Collapse
|
13
|
Chakrabarty A, Mukherjee S. Iridium-Catalyzed Enantioselective and Chemodivergent Allenylic Alkylation of Vinyl Azides for the Synthesis of α-Allenylic Amides and Ketones. Angew Chem Int Ed Engl 2022; 61:e202115821. [PMID: 35044711 DOI: 10.1002/anie.202115821] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 01/14/2023]
Abstract
The first enantioselective synthesis of α-allenylic amides and ketones through allenylic alkylation of vinyl azides is reported. In these chemodivergent reactions, cooperatively catalyzed by a IrI /(phosphoramidite,olefin) complex and Sc(OTf)3 , vinyl azides act as the surrogate for both amide enolates and ketone enolates. The desiccant (molecular sieves) plays a crucial role in controlling the chemodivergency of this enantioconvergent and regioselective reaction: Under otherwise identical reaction conditions, the presence of the desiccant led to α-allenylic amides, while its absence resulted in α-allenylic ketones. Utilizing racemic allenylic alcohols as the alkylating agent, the overall process represents a dynamic kinetic asymmetric transformation (DyKAT), where both the products are formed with the same absolute configuration. To the best of our knowledge, this is the first example of the use of vinyl azide as the ketone enolate surrogate in an enantioselective transformation.
Collapse
Affiliation(s)
- Aditya Chakrabarty
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
14
|
Chakrabarty A, Mukherjee S. Iridium‐Catalyzed Enantioselective and Chemodivergent Allenylic Alkylation of Vinyl Azides for the Synthesis of α‐Allenylic Amides and Ketones**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aditya Chakrabarty
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| | - Santanu Mukherjee
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| |
Collapse
|
15
|
Liu LX, Huang WJ, Xie QX, Wu B, Yu CB, Zhou YG. Dynamic Kinetic Resolution of Flavonoids via Asymmetric Allylic Alkylation: Construction of Two Contiguous Stereogenic Centers on Nucleophiles. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Li-Xia Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Wen-Jun Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Qing-Xian Xie
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Chang-Bin Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
16
|
Lin J, Jia M, Ma S. Pd‐Catalyzed
2,
3‐Allenylation
of Oxindoles with 2,
3‐Allenylic
Carbonates. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Lin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry Fudan University 220 Handan Lu Shanghai 200433 China
| | - Minqiang Jia
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry Fudan University 220 Handan Lu Shanghai 200433 China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry Fudan University 220 Handan Lu Shanghai 200433 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
17
|
Xiao J, Xu H, Huo X, Zhang W, Ma S. One Stone Two Birds—Enantioselective Bimetallic Catalysis for
α‐Amino
Acid Derivatives with an Allene Unit. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junzhe Xiao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haibo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Research Centre for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 China
| |
Collapse
|
18
|
Alonso JM, Almendros P. Deciphering the Chameleonic Chemistry of Allenols: Breaking the Taboo of a Onetime Esoteric Functionality. Chem Rev 2021; 121:4193-4252. [PMID: 33630581 PMCID: PMC8479864 DOI: 10.1021/acs.chemrev.0c00986] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/19/2022]
Abstract
The allene functionality has participated in one of the most exciting voyages in organic chemistry, from chemical curiosities to a recurring building block in modern organic chemistry. In the last decades, a special kind of allene, namely, allenol, has emerged. Allenols, formed by an allene moiety and a hydroxyl functional group with diverse connectivity, have become common building blocks for the synthesis of a wide range of structures and frequent motif in naturally occurring systems. The synergistic effect of the allene and hydroxyl functional groups enables allenols to be considered as a unique and sole functionality exhibiting a special reactivity. This Review summarizes the most significant contributions to the chemistry of allenols that appeared during the past decade, with emphasis on their synthesis, reactivity, and occurrence in natural products.
Collapse
Affiliation(s)
- José M. Alonso
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pedro Almendros
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
19
|
Affiliation(s)
- Shihua Song
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
20
|
Glatz F, Petrone DA, Carreira EM. Ir-Catalyzed Enantioconvergent Synthesis of Diversely Protected Allenylic Amines Employing Ammonia Surrogates. Angew Chem Int Ed Engl 2020; 59:16404-16408. [PMID: 32558158 DOI: 10.1002/anie.202005599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 01/14/2023]
Abstract
The first iridium catalyzed, enantioconvergent amination of allenylic carbonates is reported. This process utilizes various commercially available carbamates and sulfonamides to generate allenylic amines including commonly employed protected groups (Boc, Fmoc, Cbz, Ts, Ns) in 62-82 % yield and 87-98 % ee. The products generated through this scalable procedure serve as effective linchpins for the rapid, enantiospecific synthesis of a wide range of complex structures.
Collapse
Affiliation(s)
- Fabian Glatz
- Laboratorium für Organische Chemie, HCI H335, Eidgenössiche Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - David A Petrone
- Laboratorium für Organische Chemie, HCI H335, Eidgenössiche Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Erick M Carreira
- Laboratorium für Organische Chemie, HCI H335, Eidgenössiche Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
21
|
Glatz F, Petrone DA, Carreira EM. Ir‐Catalyzed Enantioconvergent Synthesis of Diversely Protected Allenylic Amines Employing Ammonia Surrogates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fabian Glatz
- Laboratorium für Organische Chemie, HCI H335Eidgenössiche Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - David A. Petrone
- Laboratorium für Organische Chemie, HCI H335Eidgenössiche Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Erick M. Carreira
- Laboratorium für Organische Chemie, HCI H335Eidgenössiche Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
22
|
Skotnitzki J, Kremsmair A, Keefer D, Schüppel F, Le Cacher de Bonneville B, de Vivie-Riedle R, Knochel P. Regio- and diastereoselective reactions of chiral secondary alkylcopper reagents with propargylic phosphates: preparation of chiral allenes. Chem Sci 2020; 11:5328-5332. [PMID: 34122991 PMCID: PMC8159386 DOI: 10.1039/c9sc05982b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The diastereoselective SN2′-substitution of secondary alkylcopper reagents with propargylic phosphates enables the preparation of stereodefined alkylallenes. By using enantiomerically enriched alkylcopper reagents and enantioenriched propargylic phosphates as electrophiles anti-SN2′-substitutions were performend leading to α-chiral allenes in good yields with excellent regioselectivity and retention of configuration. DFT-calculations were performed to rationalize the structure of these alkylcopper reagents in various solvents, emphasizing their configurational stability in THF. The diastereoselective SN2′-substitution of secondary alkylcopper reagents with propargylic phosphates enables the preparation of stereodefined alkylallenes.![]()
Collapse
Affiliation(s)
- Juri Skotnitzki
- Department of Chemistry
- Ludwig-Maximilians-Universitaet
- 81377 München
- Germany
| | | | - Daniel Keefer
- Department of Chemistry
- Ludwig-Maximilians-Universitaet
- 81377 München
- Germany
| | - Franziska Schüppel
- Department of Chemistry
- Ludwig-Maximilians-Universitaet
- 81377 München
- Germany
| | | | | | - Paul Knochel
- Department of Chemistry
- Ludwig-Maximilians-Universitaet
- 81377 München
- Germany
| |
Collapse
|
23
|
Liu H, Hu Y, Wang Z, Tao H, Wang C. Synergistic Cu/Pd‐Catalyzed Asymmetric Allenylic Alkylation of Azomethine Ylides for the Construction of α‐Allene‐Substituted Nonproteinogenic α‐Amino Acids. Chemistry 2019; 25:8681-8685. [DOI: 10.1002/chem.201901046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Hua‐Chao Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| | - Yuan‐Zheng Hu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| | - Zuo‐Fei Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| | - Hai‐Yan Tao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| | - Chun‐Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
- State Key Laboratory of Elemento-organic ChemistryNankai University Tianjin 300071 P. R. China
| |
Collapse
|
24
|
Adamson NJ, Jeddi H, Malcolmson SJ. Preparation of Chiral Allenes through Pd-Catalyzed Intermolecular Hydroamination of Conjugated Enynes: Enantioselective Synthesis Enabled by Catalyst Design. J Am Chem Soc 2019; 141:8574-8583. [PMID: 31070902 DOI: 10.1021/jacs.9b02637] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, we establish that conjugated enynes undergo selective 1,4-hydroamination under Pd catalysis to deliver chiral allenes with pendant allylic amines. Several primary and secondary aliphatic and aryl-substituted amines couple with a wide range of mono- and disubstituted enynes in a nonenantioselective reaction where DPEphos serves as the ligand for Pd. Benzophenone imine acts as an ammonia surrogate to afford primary amines in a two-step/one-pot process. Examination of chiral catalysts revealed a high degree of reversibility in the C-N bond formation that negatively impacted enantioselectivity. Consequently, an electron-poor ferrocenyl-PHOX ligand was developed to enable efficient and enantioselective enyne hydroamination.
Collapse
Affiliation(s)
- Nathan J Adamson
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Haleh Jeddi
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Steven J Malcolmson
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
25
|
Wang B, Wang X, Yin X, Yu W, Liao Y, Ye J, Wang M, Liao J. Cu-Catalyzed S N2' Substitution of Propargylic Phosphates with Vinylarene-Derived Chiral Nucleophiles: Synthesis of Chiral Allenes. Org Lett 2019; 21:3913-3917. [PMID: 31074282 DOI: 10.1021/acs.orglett.9b00908] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new Cu-catalyzed enantioselective three-component (i.e., styrenes, B2pin2, and propargylic phosphates) allenylation via an SN2' substitution of propargylic electrophiles with vinylarene-derived chiral nucleophiles is presented. This method provides an efficient and enantioselective approach to access a range of optically pure di-(1,1-), tri-, and tetra-substituted allenes with α-central chirality and axial chirality in excellent chemo-, regio-, diastereo-, and enantioselectivities.
Collapse
Affiliation(s)
- Bing Wang
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xihong Wang
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xuemei Yin
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wangzhi Yu
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yang Liao
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jialin Ye
- College of Chemical Engineering , Sichuan University Chengdu 610065 , China
| | - Min Wang
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jian Liao
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China.,College of Chemical Engineering , Sichuan University Chengdu 610065 , China
| |
Collapse
|
26
|
Li L, Luo P, Deng Y, Shao Z. Regioselectivity Switch in Palladium‐Catalyzed Allenylic Cycloadditions of Allenic Esters: [4+1] or [4+3] Cycloaddition/Cross‐Coupling. Angew Chem Int Ed Engl 2019; 58:4710-4713. [DOI: 10.1002/anie.201901511] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Long Li
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| | - Pengfei Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| | - Yuhua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| |
Collapse
|
27
|
Li L, Luo P, Deng Y, Shao Z. Regioselectivity Switch in Palladium‐Catalyzed Allenylic Cycloadditions of Allenic Esters: [4+1] or [4+3] Cycloaddition/Cross‐Coupling. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Long Li
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| | - Pengfei Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| | - Yuhua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| |
Collapse
|
28
|
Zhang Y, Wu W, Fu C, Huang X, Ma S. Benzene construction via Pd-catalyzed cyclization of 2,7-alkadiynylic carbonates in the presence of alkynes. Chem Sci 2019; 10:2228-2235. [PMID: 30881648 PMCID: PMC6385558 DOI: 10.1039/c8sc04681f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
A palladium-catalyzed highly regio- and chemo-selective cyclization of 2,7-alkadiynylic carbonates with functionalized alkynes to construct 1,3-dihydroisobenzofuran and isoindoline derivatives under mild conditions has been developed. Functional groups such as alcohol, sulfonamide, and indoles could be well tolerated. After careful mechanistic studies, a mechanism involving oxidative addition and regioselectivity-defined double alkyne insertions has been proposed.
Collapse
Affiliation(s)
- Yuchen Zhang
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China . ;
| | - Wangteng Wu
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China . ;
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China . ;
| | - Xin Huang
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China . ;
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China . ;
| |
Collapse
|
29
|
Isomura M, Petrone DA, Carreira EM. Coordination-Induced Stereocontrol over Carbocations: Asymmetric Reductive Deoxygenation of Racemic Tertiary Alcohols. J Am Chem Soc 2019; 141:4738-4748. [DOI: 10.1021/jacs.9b00862] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mayuko Isomura
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - David A. Petrone
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | | |
Collapse
|
30
|
Song S, Zhou J, Fu C, Ma S. Catalytic enantioselective construction of axial chirality in 1,3-disubstituted allenes. Nat Commun 2019; 10:507. [PMID: 30705274 PMCID: PMC6355870 DOI: 10.1038/s41467-018-07908-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022] Open
Abstract
Metal-catalyzed enantioselective construction of the loosening axial allene chirality spreading over three carbon atoms using a chiral ligand is still a significant challenge. In the literature, steric effect of the substrates is the major strategy applied for such a purpose. Herein, we present a general palladium-catalyzed asymmetrization of readily available racemic 2,3-allenylic carbonates with different types of non-substituted and 2-substituted malonates using (R)-(−)-DTBM-SEGPHOS as the preferred ligand to afford 1,3-disubstituted chiral allenes with 90~96% ee. This protocol has been applied to the first enantioselective synthesis of natural product, (R)-traumatic lactone. Control experiments showed that in addition to the chiral ligand, conducting this transformation via Procedure C, which excludes the extensive prior coordination of the allene unit in the starting allene with Pd forming a species without the influence of the chiral ligand, is crucial for the observed high enantioselectivity. Highly enantioselective synthesis of allenes has been relying, so far, on the steric hindrance of substrates. Here the authors achieve excellent stereocontrol in the synthesis of chiral allenes with a palladium-DTBM-SEGPHOS catalytic system in a non-substrate-dependent manner.
Collapse
Affiliation(s)
- Shihua Song
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, 310027, Hangzhou, Zhejiang, People's Republic of China
| | - Jing Zhou
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, 310027, Hangzhou, Zhejiang, People's Republic of China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, 310027, Hangzhou, Zhejiang, People's Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, 310027, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
31
|
Han JT, Yun J. Asymmetric synthesis of α-chiral β-hydroxy allenes: copper-catalyzed γ-selective borylative coupling of vinyl arenes and propargyl phosphates. Chem Commun (Camb) 2019; 55:9813-9816. [PMID: 31360939 DOI: 10.1039/c9cc04165f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper-catalyzed enantioselective coupling of vinyl arenes with bis(pinacolato)diboron (B2pin2) and propargylic phosphates is presented.
Collapse
Affiliation(s)
- Jung Tae Han
- Department of Chemistry
- Sungkyunkwan University
- Suwon 16419
- Korea
| | - Jaesook Yun
- Department of Chemistry
- Sungkyunkwan University
- Suwon 16419
- Korea
| |
Collapse
|
32
|
Mao B, Zhang J, Xu Y, Yan Z, Wang W, Wu Y, Sun C, Zheng B, Guo H. Palladium-catalyzed [3+2] annulation of allenyl carbinol acetates with C,N-cyclic azomethine imines. Chem Commun (Camb) 2019; 55:12841-12844. [DOI: 10.1039/c9cc06670e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Palladium-catalyzed [3+2] annulation of allenic esters with azomethine imines affording biologically interesting tetrahydropyrazoloisoquinoline derivatives.
Collapse
Affiliation(s)
- Biming Mao
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Junya Zhang
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Yi Xu
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Zhengyang Yan
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Wei Wang
- College of Public Health
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yongjun Wu
- College of Public Health
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Changqing Sun
- College of Public Health
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Bing Zheng
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Hongchao Guo
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| |
Collapse
|
33
|
Petrone DA, Isomura M, Franzoni I, Rössler SL, Carreira EM. Allenylic Carbonates in Enantioselective Iridium-Catalyzed Alkylations. J Am Chem Soc 2018; 140:4697-4704. [DOI: 10.1021/jacs.8b01416] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- David A. Petrone
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Mayuko Isomura
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Ivan Franzoni
- Department of Chemistry, University of Toronto, Toronto, Canada, M5S 3H6
| | - Simon L. Rössler
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | | |
Collapse
|
34
|
Hu G, Wang J, Li Z, Liu Y, Gong P. Palladium-catalyzed three-component reaction for the synthesis of 3,3-disubstituted allylic alcohols with regio- and stereoselectivity. NEW J CHEM 2018. [DOI: 10.1039/c7nj04342b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel three-component assembly of allenic alcohols, aryl iodides and 1,3-dicarbonyl compounds into 3,3-disubstituted allylic alcohols was promoted in the presence of a palladium source.
Collapse
Affiliation(s)
- Gang Hu
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| | - Jingtao Wang
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| | - Zefei Li
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| | - Yajing Liu
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| | - Ping Gong
- Key Laboratory of Structure-based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| |
Collapse
|
35
|
Zhang W, Ma S. Palladium/H+-cocatalyzed kinetic resolution of tertiary propargylic alcohols. Chem Commun (Camb) 2018; 54:6064-6067. [DOI: 10.1039/c8cc01949e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new concept for the synthesis of optically active tertiary propargylic alcohols with 90–99% ee through palladium/H+-cocatalyzed kinetic resolution was developed.
Collapse
Affiliation(s)
- Wanli Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- College of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
36
|
Tsukamoto H, Ito K, Doi T. Synthesis of multi-substituted dihydrofurans via palladium-catalysed coupling between 2,3-alkadienols and pronucleophiles. Chem Commun (Camb) 2018; 54:5102-5105. [PMID: 29714394 DOI: 10.1039/c8cc02589d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-substituted dihydrofurans were obtained from a palladium-catalysed coupling reaction between 2,3-alkadienols and ketones bearing an electron-withdrawing group at the α-position.
Collapse
Affiliation(s)
- Hirokazu Tsukamoto
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Kazuya Ito
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Takayuki Doi
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| |
Collapse
|
37
|
Zhu T, Ma S. 3,4-Alkadienyl ketones via the palladium-catalyzed decarboxylative allenylation of 3-oxocarboxylic acids. Chem Commun (Camb) 2017; 53:6037-6040. [DOI: 10.1039/c7cc02050c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3,4-Allenyl aryl ketones were prepared via a palladium-catalyzed decarboxylative allenylation of benzyl carbonates or tert-butyl carbonates of 2,3-allenols with 3-oxocarboxylic acids.
Collapse
Affiliation(s)
- Tonghao Zhu
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Shengming Ma
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
38
|
Sieber JD, Angeles-Dunham VV, Chennamadhavuni D, Fandrick DR, Haddad N, Grinberg N, Kurouski D, Lee H, Song JJ, Yee NK, Mattson AE, Senanayake CH. Rhodium-Catalyzed Asymmetric Allenylation of Sulfonylimines and Application to the Stereospecific Allylic Allenylation. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600686] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joshua D. Sieber
- Department of Chemical Development; Boehringer Ingelheim Pharmaceuticals, Inc.; 900 Ridgebury Road/P.O. Box 368 Ridgefield, CT 06877-0368 USA
| | | | | | - Daniel R. Fandrick
- Department of Chemical Development; Boehringer Ingelheim Pharmaceuticals, Inc.; 900 Ridgebury Road/P.O. Box 368 Ridgefield, CT 06877-0368 USA
| | - Nizar Haddad
- Department of Chemical Development; Boehringer Ingelheim Pharmaceuticals, Inc.; 900 Ridgebury Road/P.O. Box 368 Ridgefield, CT 06877-0368 USA
| | - Nelu Grinberg
- Department of Chemical Development; Boehringer Ingelheim Pharmaceuticals, Inc.; 900 Ridgebury Road/P.O. Box 368 Ridgefield, CT 06877-0368 USA
| | - Dimitry Kurouski
- Department of Chemical Development; Boehringer Ingelheim Pharmaceuticals, Inc.; 900 Ridgebury Road/P.O. Box 368 Ridgefield, CT 06877-0368 USA
| | - Heewon Lee
- Department of Chemical Development; Boehringer Ingelheim Pharmaceuticals, Inc.; 900 Ridgebury Road/P.O. Box 368 Ridgefield, CT 06877-0368 USA
| | - Jinhua J. Song
- Department of Chemical Development; Boehringer Ingelheim Pharmaceuticals, Inc.; 900 Ridgebury Road/P.O. Box 368 Ridgefield, CT 06877-0368 USA
| | - Nathan K. Yee
- Department of Chemical Development; Boehringer Ingelheim Pharmaceuticals, Inc.; 900 Ridgebury Road/P.O. Box 368 Ridgefield, CT 06877-0368 USA
| | - Anita E. Mattson
- Department of Chemistry and Biochemistry; The Ohio State University; Columbus OH 43210 USA
| | - Chris H. Senanayake
- Department of Chemical Development; Boehringer Ingelheim Pharmaceuticals, Inc.; 900 Ridgebury Road/P.O. Box 368 Ridgefield, CT 06877-0368 USA
| |
Collapse
|
39
|
Huang X, Wu W, Song S, Fu C, Ma S. Synthesis of Tricyclic Isoquinoline Derivatives via
Palladium- Catalyzed Tandem Reactions of 2,7-Alkadiynylic Carbonates with 2,3-Allenyl Sulfamides. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xin Huang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry; Zhejiang University; Hangzhou 310027, Zhejiang People's Republic of China
| | - Wangteng Wu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry; Zhejiang University; Hangzhou 310027, Zhejiang People's Republic of China
| | - Shihua Song
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry; Zhejiang University; Hangzhou 310027, Zhejiang People's Republic of China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry; Zhejiang University; Hangzhou 310027, Zhejiang People's Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry; Zhejiang University; Hangzhou 310027, Zhejiang People's Republic of China
| |
Collapse
|
40
|
Affiliation(s)
- Liang Hong
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Wangsheng Sun
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, 730000 China
| | - Dongxu Yang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, 730000 China
| | - Guofeng Li
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, 730000 China
| | - Rui Wang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, 730000 China
| |
Collapse
|
41
|
Marques CS, Locati A, Prates Ramalho J, Burke AJ. Palladium catalysed sequential imine arylation/Suzuki–Miyaura coupling: synthesis of α-(biarylyl)benzylamines. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.03.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Liu Z, Liao P, Bi X. Lewis and Brønsted Acid Cocatalyzed Reductive Deoxyallenylation of Propargylic Alcohols with 2-Nitrobenzenesulfonylhydrazide. Chemistry 2014; 20:17277-81. [DOI: 10.1002/chem.201404692] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Indexed: 11/10/2022]
|
43
|
Li Q, Fu C, Ma S. Palladium‐Catalyzed Asymmetric Amination of Allenyl Phosphates: Enantioselective Synthesis of Allenes with an Additional Unsaturated Unit. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiankun Li
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (P.R. China)
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (P.R. China)
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (P.R. China)
| |
Collapse
|
44
|
Palladium‐Catalyzed Asymmetric Amination of Allenyl Phosphates: Enantioselective Synthesis of Allenes with an Additional Unsaturated Unit. Angew Chem Int Ed Engl 2014; 53:6511-4. [DOI: 10.1002/anie.201402647] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Indexed: 11/07/2022]
|
45
|
Affiliation(s)
- Annette D. Allen
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Thomas T. Tidwell
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|