1
|
Wu YJ, Ma C, Bilal M, Liang YF. Nickel-Catalyzed Reductive Cyanation of Aryl Halides and Epoxides with Cyanogen Bromide. Molecules 2024; 29:6016. [PMID: 39770100 PMCID: PMC11678332 DOI: 10.3390/molecules29246016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Nitriles are valuable compounds because they have widespread applications in organic chemistry. This report details the nickel-catalyzed reductive cyanation of aryl halides and epoxides with cyanogen bromide for the synthesis of nitriles. This robust protocol underscores the practicality of using a commercially available and cost-effective cyanation reagent. A variety of aryl halides and epoxides featuring diverse functional groups, such as -TMS, -Bpin, -OH, -NH2, -CN, and -CHO, were successfully converted into nitriles in moderate-to-good yields. Moreover, the syntheses at gram-scale and application in late-stage cyanation of natural products and drugs reinforces its potentiality.
Collapse
Affiliation(s)
| | | | | | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; (Y.-J.W.); (C.M.); (M.B.)
| |
Collapse
|
2
|
Xu L, Zhu J, Shen X, Chai J, Shi L, Wu B, Li W, Ma D. 6-Hydroxy Picolinohydrazides Promoted Cu(I)-Catalyzed Hydroxylation Reaction in Water: Machine-Learning Accelerated Ligands Design and Reaction Optimization. Angew Chem Int Ed Engl 2024; 63:e202412552. [PMID: 39189301 DOI: 10.1002/anie.202412552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 08/28/2024]
Abstract
Hydroxylated (hetero)arenes are privileged motifs in natural products, materials, small-molecule pharmaceuticals and serve as versatile intermediates in synthetic organic chemistry. Herein, we report an efficient Cu(I)/6-hydroxy picolinohydrazide-catalyzed hydroxylation reaction of (hetero)aryl halides (Br, Cl) in water. By establishing machine learning (ML) models, the design of ligands and optimization of reaction conditions were effectively accelerated. The N-(1,3-dimethyl-9H- carbazol-9-yl)-6-hydroxypicolinamide (L32, 6-HPA-DMCA) demonstrated high efficiency for (hetero)aryl bromides, promoting hydroxylation reactions with a minimal catalyst loading of 0.01 mol % (100 ppm) at 80 °C to reach 10000 TON; for substrates containing sensitive functional groups, the catalyst loading needs to be increased to 3.0 mol % under near-room temperature conditions. N-(2,7-Di-tert-butyl-9H-carbazol-9-yl)-6-hydroxypicolinamide (L42, 6-HPA-DTBCA) displayed superior reaction activity for chloride substrates, enabling hydroxylation reactions at 100 °C with 2-3 mol % catalyst loading. These represent the state of art for both lowest catalyst loading and temperature in the copper-catalyzed hydroxylation reactions. Furthermore, this method features a sustainable and environmentally friendly solvent system, accommodates a wide range of substrates, and shows potential for developing robust and scalable synthesis processes for key pharmaceutical intermediates.
Collapse
Affiliation(s)
- Lanting Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Jiazhou Zhu
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Xiaodong Shen
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Jiashuang Chai
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuang Lu, Shanghai, 200062, China
| | - Lei Shi
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Bin Wu
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Wei Li
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Dawei Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
3
|
Zhou B, Huang Z, Gao Z, Hu Y. Formal 1,1-Hydrocyanation Reaction of Alkynyl Halides with Isocyanides Enabled by Dual Nickel/Base Catalysis Relay. Org Lett 2024; 26:10511-10516. [PMID: 39630112 DOI: 10.1021/acs.orglett.4c03901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
We herein describe a formal 1,1-hydrocyanation reaction of alkynyl halides with isocyanides enabled by a dual nickel/base catalysis relay. tert-Butyl isocyanide serves as a "HCN" precursor that is introduced to the α-position of alkynyl halides, and the halogen atom is moved to the β-position. As a result, a series of (Z)-3-bromo/iodo acrylonitrile derivatives could be obtained in moderate yields. Mechanistic experiments were carried out, and the collective data could support our proposal of the mechanism details.
Collapse
Affiliation(s)
- Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengzhe Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhao Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Malik A, Antil K, Singh N, Sharma PR, Sharma RK. Scalable organocatalytic one pot asymmetric Strecker reaction via camphor sulfonyl functionalized crown-ether-tethered calix[4]arene. Chem Commun (Camb) 2024; 60:8561-8564. [PMID: 39041355 DOI: 10.1039/d4cc02674h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In this communication, we designed a highly selective camphor sulfonyl functionalized crown-ether-tethered calix[4]arene-derived organocatalyst for asymmetric Strecker reaction to provide the desired cyano adducts in high yields (∼99.9% yield) and enantioselectivities (up to 99.3% ee). Furthermore, 2 step facile syntheses of the antiplatelet drug (S)-clopidogrel exemplify the potential of this method for the preparation of commercial compounds.
Collapse
Affiliation(s)
- Apoorva Malik
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| | - Kirti Antil
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| | - Nikhil Singh
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| | - Pragati R Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| | - Rakesh K Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| |
Collapse
|
5
|
Wang Z, He Y, Wang F, Wang Y, Luo H, Wu J, Yang J. Green and efficient synthesis of dibenzyl cyanamides and ureas with cyanamide as a block. RSC Adv 2024; 14:23693-23698. [PMID: 39077314 PMCID: PMC11284761 DOI: 10.1039/d4ra04286g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
A method for the two-step synthesis of dibenzyl cyanamide and dibenzyl urea via cyanamide is presented. This approach is both efficient and environmentally friendly. Various N,N-dibenzyl ureas could be obtained by reactions of N,N-dibenzyl cyanamides and N,N-dibenzyl cyanamides as intermediates formed from cyanamide. In the absence of metal, ligand and hydrogen peroxide as the oxidant, products with moderate yields have been obtained under mild conditions. Key features include the use of widely available and easily handled cyanamide sources as starting materials.
Collapse
Affiliation(s)
- Zhongjie Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yu He
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Fang Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yan Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Hui Luo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Jianglong Wu
- School of Chemistry and Chemical Engineering, Ningxia Normal University Guyuan 756000 China
| | - Jinhui Yang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| |
Collapse
|
6
|
Chen C, Ikemoto S, Yokota GI, Higuchi K, Muratsugu S, Tada M. Low-temperature redox activity and alcohol ammoxidation performance on Cu- and Ru-incorporated ceria catalysts. Phys Chem Chem Phys 2024; 26:17979-17990. [PMID: 38814159 DOI: 10.1039/d4cp01432d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Transition-metal-incorporated cerium oxides with Cu and a small amount of Ru (Cu0.18Ru0.05CeOz) were prepared, and their low-temperature redox performance (<423 K) and catalytic alcohol ammoxidation performance were investigated. Temperature-programmed reduction/oxidation under H2/O2 and in situ X-ray absorption fine structure revealed the reversible redox behavior of the three metals, Cu, Ru, and Ce, in the low-temperature redox processes. The initially reduced Ru species decreased the reduction temperature of Cu oxides and promoted the activation of Ce species. Cu0.18Ru0.05CeOz selectively catalyzed the production of benzonitrile in the ammoxidation of benzyl alcohol. H2-treated Cu0.18Ru0.05CeOz showed a slightly larger initial conversion of benzyl alcohol than O2-treated Cu0.18Ru0.05CeOz, suggesting that the reduced structure of Cu0.18Ru0.05CeOz was active for the ammoxidation. The integration of both Cu and Ru resulted in the efficient promotion of ammoxidation, in which the Ru species were involved in the conversion of benzyl alcohol and Cu species were required for selective production of benzonitrile.
Collapse
Affiliation(s)
- Chaoqi Chen
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Satoru Ikemoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Gen-Ichi Yokota
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Kimitaka Higuchi
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Satoshi Muratsugu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science (RCMS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
7
|
Kubo M, Yamaguchi J. Divergent Transformations of Aromatic Esters: Decarbonylative Coupling, Ester Dance, Aryl Exchange, and Deoxygenative Coupling. Acc Chem Res 2024; 57:1747-1760. [PMID: 38819671 PMCID: PMC11191398 DOI: 10.1021/acs.accounts.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
ConspectusAromatic esters are cost-effective, versatile, and commonly used scaffolds that are readily synthesized or encountered as synthetic intermediates. While most conventional reactions involving these esters are nucleophilic acyl substitutions or 1,2-nucleophilic additions─where a nucleophile attacks the carbonyl group, decarbonylative transformations offer an alternative pathway by using the carbonyl group as a leaving group. This transition-metal-catalyzed process typically begins with oxidative addition of the C(acyl)-O bond to the metal. Subsequently, the reaction involves the migration of CO to the metal center, the reaction with a nucleophile, and reductive elimination to yield the final product. Pioneering work by Yamamoto on nickel complexes and the development of decarbonylative reactions (such as Mizoroki-Heck-type olefination) using aromatic carboxylic anhydrides catalyzed by palladium were conducted by de Vries and Stephan. Furthermore, reports have surfaced of decarbonylative hydrogenation of pyridyl methyl esters by Murai using ruthenium catalysts as well as Mizoroki-Heck-type reactions of nitro phenyl esters by Gooßen under palladium catalysis. Our group has been at the forefront of developing decarbonylative C-H arylations of phenyl esters with 1,3-azoles and aryl boronic acids using nickel catalysts. The key to this reaction is the use of phenyl esters, which are easy to synthesize, stabilize, and handle, allowing oxidative addition of the C(acyl)-O bond; nickel, which facilitates oxidative addition of the C(acyl)-O bond; and suitable bidentate phosphine ligands that can stabilize the intermediate. By modification of the nucleophiles, esters have been effectively utilized as electrophiles in cross-coupling reactions, encouraging the development of these nucleophiles among researchers. This Account summarizes our advancements in nucleophile development for decarbonylative coupling reactions, particularly highlighting the utilization of aromatic esters in diverse reactions such as alkenylation, intramolecular etherification, α-arylation of ketones, C-H arylation, methylation, and intramolecular C-H arylation for dibenzofuran synthesis, along with cyanation and reductive coupling. We also delve into reaction types that are distinct from typical decarbonylative reactions, including ester dance reactions, aromatic ring exchanges, and deoxygenative transformations, by focusing on the oxidative addition of the C(acyl)-O bond of the aromatic esters to the metal complex. For example, the ester dance reaction is hypothesized to undergo 1,2-translocation starting with oxidative addition to a palladium complex, leading to a sequence of ortho-deprotonation/decarbonylation, followed by protonation, carbonylation, and reductive elimination. The aromatic exchange reaction likely involves oxidative addition of complexes of different aryl electrophiles with a nickel complex. In deoxygenative coupling, an oxidative addition complex with palladium engages with a nucleophile, forming an acyl intermediate that undergoes reductive elimination in the presence of an appropriate reducing agent. These methodologies are poised to captivate the interest of synthetic chemists by offering unconventional and emerging approaches for transforming aromatic esters. Moreover, we demonstrated the potential to transform readily available basic chemicals into new compounds through organic synthesis.
Collapse
Affiliation(s)
- Masayuki Kubo
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
8
|
Zheng K, Liang C, Chen H, Zhao Y, Wang Z, Cheng J. I 2 Catalyzed and TBHP/Ammonium-Promoted Conversion of Arylethanone to Nitriles via β-Scission of Iminyl Radicals. Org Lett 2024; 26:3935-3939. [PMID: 38668726 DOI: 10.1021/acs.orglett.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Herein, we report a general I2-catalyzed and TBHP/ammonium-promoted conversion of arylethanone to aromatic nitriles under air. This procedure proceeded with the β-scission of iminyl radical, which was facilitated via quenching the released alkyl radical by tert-butyl peroxyl radical leading to peroxide followed with Kornblum-DeLaMare rearrangement. A series of aryl methyl ketone and alkyl aryl ketone worked well with good functional group tolerance in high yields. As such, this metal-free procedure represents a facile, safe, green, and practical procedure in conversion of arylethanone to aromatic nitriles.
Collapse
Affiliation(s)
- Kui Zheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Chen Liang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Hailong Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yang Zhao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Zhenlian Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Jiang Cheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
9
|
Iizumi K, Tanaka H, Muto K, Yamaguchi J. Palladium-Catalyzed Denitrative Synthesis of Aryl Nitriles from Nitroarenes and Organocyanides. Org Lett 2024; 26:3977-3981. [PMID: 38683691 DOI: 10.1021/acs.orglett.4c01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A denitrative cyanation of nitroarenes using organocyanides and a palladium catalyst was developed. The key for this reaction was the utilization of an aminoacetonitrile as a cyano source to avoid the generation of stoichiometric metal- and halogen-containing chemical waste. A wide range of nitroarenes, including heteroarenes and pharmaceutical molecules, can be converted into aryl nitriles.
Collapse
Affiliation(s)
- Keiichiro Iizumi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Hiroki Tanaka
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Kei Muto
- Waseda Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
10
|
Tian H, Ding CY, Liao RZ, Li M, Tang C. Cobalt-Catalyzed Acceptorless Dehydrogenation of Primary Amines to Nitriles. J Am Chem Soc 2024; 146:11801-11810. [PMID: 38626455 DOI: 10.1021/jacs.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The direct double dehydrogenation from primary amines to nitriles without an oxidant or hydrogen acceptor is both intriguing and challenging. In this paper, we describe a non-noble metal catalyst capable of realizing such a transformation with high efficiency. A cobalt-centered N,N-bidentate complex was designed and employed as a metal-ligand cooperative dehydrogenation catalyst. Detailed kinetic studies, control experiments, and DFT calculations revealed the crucial hydride transfer, proton transfer, and hydrogen evolution processes. Finally, a tandem outer-sphere/inner-sphere mechanism was proposed for the dehydrogenation of amines to nitriles through an imine intermediate.
Collapse
Affiliation(s)
- Haitao Tian
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Cai-Yun Ding
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Man Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Conghui Tang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
11
|
Tan L, Pan Y, Zeng QY, Wang ZY, Xu H, Dai HX. Palladium-Catalyzed Directed Carbon-Carbon Bond Activation of Aryl Nitriles for Cyano Transfer. Org Lett 2024; 26:2260-2265. [PMID: 38452482 DOI: 10.1021/acs.orglett.4c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Herein, we report the C-H cyanation of indoles via a palladium-catalyzed directed C-CN activation reaction using aryl nitrile as a cyano source. The employment of the phenoxy-oriented group is the key to the cleavage of the C-CN bond. This protocol features a broad substrate scope, good efficiency, and high regioselectivity. Furthermore, the practical application of this protocol was showcased in the late-stage functionalization and synthesis of indole derivatives, which were derived from drugs and natural products, through the process of cyanation.
Collapse
Affiliation(s)
- Lin Tan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, Hangzhou, Zhejiang 310024, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yang Pan
- School of Chinese Materia Media, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, People's Republic of China
| | - Qing-Ying Zeng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, Hangzhou, Zhejiang 310024, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhen-Yu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Hui Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Hui-Xiong Dai
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, Hangzhou, Zhejiang 310024, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Chinese Materia Media, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
12
|
Yan Y, Wang P, Wang Y, Dong J, Li G, Wang C, Xue D. Light-Triggered, Ni-Catalyzed Cyanation of Aryl Triflates with 1,4-Dicyanobenzene as the CN Source. Org Lett 2024; 26:1370-1375. [PMID: 38358108 DOI: 10.1021/acs.orglett.3c04294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A light-triggered, Ni-catalyzed cyanation of aryl triflates was herein reported, which provides a benign photochemical synthesis of aryl nitriles using 1,4-dicyanobenzene as the CN source instead of HCN or a metallic CN source. This mild method uses a readily available bisphosphine ligand and a soluble organosilicon reagent as the reductant and is carried out under purple light without an external photocatalyst. This cyanation was effective for aryl triflates derived from phenols and bisphenols as well as lignin-derived phenolic compounds, demonstrating its potential utility for the synthesis of aryl nitriles from biomass.
Collapse
Affiliation(s)
- Yonggang Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Pengpeng Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuying Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianyang Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
13
|
Shim SY. Late-Stage C-H Activation of Drug (Derivative) Molecules with Pd(ll) Catalysis. Chemistry 2023; 29:e202302620. [PMID: 37846586 DOI: 10.1002/chem.202302620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
This review comprehensively analyses representative examples of Pd(II)-catalyzed late-stage C-H activation reactions and demonstrates their efficacy in converting C-H bonds at multiple positions within drug (derivative) molecules into diverse functional groups. These transformative reactions hold immense potential in medicinal chemistry, enabling the efficient and selective functionalization of specific sites within drug molecules, thereby enhancing their pharmacological activity and expanding the scope of potential drug candidates. Although notable articles have focused on late-stage C-H functionalization reactions of drug-like molecules using transition-metal catalysts, reviews specifically focusing on late-stage C-H functionalization reactions of drug (derivative) molecules using Pd(II) catalysts are required owing to their prominence as the most widely utilized metal catalysts for C-H activation and their ability to introduce a myriad of functional groups at specific C-H bonds. The utilization of Pd-catalyzed C-H activation methodologies demonstrates impressive success in introducing various functional groups, such as cyano (CN), fluorine (F), chlorine (Cl), aromatic rings, olefin, alkyl, alkyne, and hydroxyl groups, to drug (derivative) molecules with high regioselectivity and functional-group tolerance. These breakthroughs in late-stage C-H activation reactions serve as invaluable tools for drug discovery and development, thereby offering strategic options to optimize drug candidates and drive the exploration of innovative therapeutic solutions.
Collapse
Affiliation(s)
- Su Yong Shim
- Infectious Diseases Therapeutic Research Center Division of Medicinal Chemistry and Pharmacology Korea Research Institute of Chemical Technology (KRICT) KRICT School, University of Science and Technology, Daejeon, 34114, Republic of Korea
| |
Collapse
|
14
|
Wang C, Li J, Shao T, Zhang D, Mai Y, Li Y, Besenbacher F, Niemantsverdriet H, Rosei F, Zhong J, Su R. Electric Field Enhanced Ammoxidation of Aldehydes Using Supported Fe Clusters Under Ambient Oxygen Pressure. Angew Chem Int Ed Engl 2023:e202313313. [PMID: 37930876 DOI: 10.1002/anie.202313313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Heterogeneous catalytic ammoxidation provides an eco-friendly route for the cyanide-free synthesis of nitrile compounds, which are important precursors for synthetic chemistry and pharmaceutical applications. However, in general such a process requires high pressures of molecular oxygen at elevated temperatures to accelerate the oxygen reduction and imine dehydrogenation steps, which is highly risky in practical applications. Here, we report an electric field enhanced ammoxidation system using a supported Fe clusters catalyst (Fe/NC), which enables efficient synthesis of nitriles from the corresponding aldehydes under ambient air pressure at room temperature (RT). A synergistic effect between the external electric field and the Fe/NC catalyst promotes the ammonia activation and the dehydrogenation of the generated imine intermediates and avoids the unwanted backwards reaction to aldehydes. This electric field enhanced ammoxidation system presents high efficiency and selectivity for the conversion of a series of aldehydes under mild conditions with high durability, rendering it an attractive process for the green synthesis of nitriles with fragile functional groups.
Collapse
Affiliation(s)
- Chao Wang
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| | - Jialu Li
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| | - Tianyu Shao
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| | - Dongsheng Zhang
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| | - Yuanqiang Mai
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| | - Yongwang Li
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, CAS, Taiyuan, 030001, China
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Hans Niemantsverdriet
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
- Syngaschem BV, Valeriaanlaan 16, 5672 XD, Nuenen (The, Netherlands
| | - Federico Rosei
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Ren Su
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| |
Collapse
|
15
|
Fan L, Wang C, Wang J, Zhang X, Li Q, Wang H, Zhao YH. Photolysis and photo-enhanced toxicity of three novel designed neonicotinoids: Impact of novel modifying groups. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132132. [PMID: 37494794 DOI: 10.1016/j.jhazmat.2023.132132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Three novel neonicotinoids (cycloxaprid, flupyradifurone and sulfoxaflor) were designed to reduce the biotoxicity for non-target organisms. These neonicotinoids were photolyzed under light radiation, but it was unclear for the photo-enhanced toxicity and influences of the novel modifying group of the three neonicotinoids. The photolysis and photo-enhanced toxicity experiments were performed for the three neonicotinoids, coupled with quantum chemistry calculation, the mechanisms of photolysis, photo-enhanced toxicity and the influences of novel modifying groups were analyzed. The results showed the photolysis pathways were enriched as compared with previous neonicotinoids due to the composition of modifying groups, singlet oxygen and hydroxyl participated the photolysis of cycloxaprid and flupyradifurone. All tested neonicotinoids exhibited photo-enhanced toxicity to Vibrio fischeri. Due to the difference of photolysis mechanism and toxicity to V. fischeri, the photo-enhanced toxicity curves showed diverse variation when histidine, tert-butanol or dissolved organic matters was in presence of the test solutions. The impact of novel modifying groups over photolysis and photo-enhanced toxicity were analyzed based on the comparison with previous neonicotinoids, theoretically predicted UV-Vis spectra and photo-physical/chemical property descriptors. The data showed the composition of novel modifying group increased the light absorption and photo-chemical activities for the three neonicotinoids.
Collapse
Affiliation(s)
- Lingyun Fan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China; Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China
| | - Chen Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jia Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xujia Zhang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China
| | - Qi Li
- School of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Hanxi Wang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China.
| | - Yuan Hui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
16
|
Boron Lewis Acid Catalysis Enables the Direct Cyanation of Benzyl Alcohols by Means of Isonitrile as Cyanide Source. Molecules 2023; 28:molecules28052174. [PMID: 36903420 PMCID: PMC10004367 DOI: 10.3390/molecules28052174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The development of an efficient and straightforward method for cyanation of alcohols is of great value. However, the cyanation of alcohols always requires toxic cyanide sources. Herein, an unprecedented synthetic application of an isonitrile as a safer cyanide source in B(C6F5)3-catalyzed direct cyanation of alcohols is reported. With this approach, a wide range of valuable α-aryl nitriles was synthesized in good to excellent yields (up to 98%). The reaction can be scaled up and the practicability of this approach is further manifested in the synthesis of an anti-inflammatory drug, naproxen. Moreover, experimental studies were performed to illustrate the reaction mechanism.
Collapse
|
17
|
Zhang G, Zhang C, Tian Y, Chen F. Fe-Catalyzed Direct Synthesis of Nitriles from Carboxylic Acids with Electron-Deficient N-Cyano- N-aryl-arylsulfonamide. Org Lett 2023; 25:917-922. [PMID: 36730786 DOI: 10.1021/acs.orglett.2c04185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Established carboxylic acids to nitriles conversion methods suffer from expensive catalysts, tedious steps, high temperatures (>200 °C), high pressure, or a narrow substrate range. Herein, we demonstrate a concise and efficient access to diverse nitrile compounds from ubiquitous carboxylic acids with electron-deficient N-cyano-N-aryl-arylsulfonamide (NCAS) in moderate to excellent yields. This strategy is promoted by an inexpensive iron catalyst and is generally compatible with primary, secondary, tertiary, and aryl carboxylic acids, as well as a variety of functional groups.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, China
| | - Chengyu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, China
| | - Ye Tian
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, China
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, China
| |
Collapse
|
18
|
Chen Z, Shen Z. Nickel-catalyzed asymmetric reductive arylcyanation of alkenes with acetonitrile as the cyano source. Org Chem Front 2023. [DOI: 10.1039/d2qo01727j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chiral 3-cyanomethyl oxindoles were synthesized in high enantioselectivities and yields. The employment of acetonitrile as a cyano source via Zn(OTf)2-assisted β-carbon elimination is distinct from the common cyanation reaction modes.
Collapse
Affiliation(s)
- Zhenbang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zengming Shen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
19
|
Xu Z, Liang X, Li H. Oxidative Radical Transnitrilation of Arylboronic Acids with Trityl Isocyanide. Org Lett 2022; 24:9403-9407. [PMID: 36519782 DOI: 10.1021/acs.orglett.2c03778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a radical transnitrilation of arylboronic acids with trityl isocyanide in the presence of manganese(III) acetate. Many functional groups can be tolerated in this transformation, and a special positive effect of benzoic acid in this reaction has been observed.
Collapse
Affiliation(s)
- Zhiyuan Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xiaojuan Liang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Huan Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
20
|
Yan F, Bai JF, Dong Y, Liu S, Li C, Du CX, Li Y. Catalytic Cyanation of C-N Bonds with CO 2/NH 3. JACS AU 2022; 2:2522-2528. [PMID: 36465537 PMCID: PMC9709945 DOI: 10.1021/jacsau.2c00392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Cyanation of benzylic C-N bonds is useful in the preparation of important α-aryl nitriles. The first general catalytic cyanation of α-(hetero)aryl amines, analogous to the Sandmeyer reaction of anilines, was developed using reductive cyanation with CO2/NH3. A broad array of α-aryl nitriles was obtained in high yields and regioselectivity by C-N cleavage of intermediates as ammonium salts. Good tolerance of functional groups such as ethers, CF3, F, Cl, esters, indoles, and benzothiophenes was achieved. Using 13CO2, a 13C-labeled tryptamine homologue (five steps, 31% yield) and Cysmethynil (six steps, 37% yield) were synthesized. Both electronic and steric effects of ligands influence the reactivity of alkyl nickel species with electrophilic silyl isocyanates and thus determine the reactivity and selectivity of the cyanation reaction. This work contributes to the understanding of the controllable activation of CO2/NH3 and provides the promising potential of the amine cyanation reaction in the synthesis of bio-relevant molecules.
Collapse
Affiliation(s)
- Fachao Yan
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Jian-Fei Bai
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yanan Dong
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
| | - Shaoli Liu
- College
of Chemistry and Chemical Engineering, Yantai
University, Yantai 264005, P. R. China
| | - Chen Li
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
| | - Chen-Xia Du
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yuehui Li
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
21
|
Qin J, Han B, Liu X, Dai W, Wang Y, Luo H, Lu X, Nie J, Xian C, Zhang Z. An enzyme-mimic single Fe-N 3 atom catalyst for the oxidative synthesis of nitriles via C─C bond cleavage strategy. SCIENCE ADVANCES 2022; 8:eadd1267. [PMID: 36206338 PMCID: PMC9544340 DOI: 10.1126/sciadv.add1267] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/23/2022] [Indexed: 05/31/2023]
Abstract
The cleavage and functionalization of recalcitrant carbon─carbon bonds is highly challenging but represents a very powerful tool for value-added transformation of feedstock chemicals. Here, an enzyme-mimic iron single-atom catalyst (SAC) bearing iron (III) nitride (FeN3) motifs was prepared and found to be robust for cleavage and cyanation of carbon-carbon bonds in secondary alcohols and ketones. High nitrile yields are obtained with a wide variety of functional groups. The prepared FeN3-SAC exhibits high enzyme-like activity and is capable of generating a dioxygen-to-superoxide radical at room temperature, while the commonly reported FeN4-SAC bearing FeN4 motifs was inactive. Density functional theory (DFT) calculation reveals that the activation energy of dioxygen activation and the activation energy of the rate-determining step of nitrile formation are lower over FeN3-SAC than FeN4-SAC. In addition, DFT calculation also explains the catalyst's high selectivity for nitriles.
Collapse
Affiliation(s)
- Jingzhong Qin
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Bo Han
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xixi Liu
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Wen Dai
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yanxin Wang
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Huihui Luo
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaomei Lu
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Jiabao Nie
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Chensheng Xian
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| |
Collapse
|
22
|
Zhang G, Miao H, Guan C, Ding C. Palladium-Catalyzed Direct Decarbonylative Cyanation of Aryl Carboxylic Acids. J Org Chem 2022; 87:12791-12798. [PMID: 36094820 DOI: 10.1021/acs.joc.2c01401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct transformation of aryl carboxylic acids to aryl nitrile compounds is an interesting topic because carboxylic acids are not only abundant in nature but are also inexpensive and stable. Here, the synthesis of a series of aryl nitriles by palladium-catalyzed decarbonylative cyanation of carboxylic acids without base has been achieved. The successful decarbonylative cyanation of drug molecules and Gram-scale reaction to verify the practicality and operability of this method are analyzed.
Collapse
Affiliation(s)
- Guofu Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Huzhou 313299, People's Republic of China
| | - Huihui Miao
- College of Chemical Engineering, Zhejiang University of Technology, Huzhou 313299, People's Republic of China
| | - Chenfei Guan
- College of Chemical Engineering, Zhejiang University of Technology, Huzhou 313299, People's Republic of China
| | - Chengrong Ding
- College of Chemical Engineering, Zhejiang University of Technology, Huzhou 313299, People's Republic of China
| |
Collapse
|
23
|
Xu F, Zhang F, Wang W, Yao M, Lin X, Yang F, Qian Y, Chen Z. Iron(III)-catalyzed α-cyanation and carbonylation with 2-pyridylacetonitrile: divergent synthesis of α-amino nitriles and tetrahydroisoquinolinones. Org Biomol Chem 2022; 20:7031-7035. [PMID: 36018561 DOI: 10.1039/d2ob01199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron-catalyzed oxidative synthesis of N-aryl-substituted tetrahydroisoquinolines (THIQs) toward tetrahydroisoquinoline-based derivatives is reported. A wide range of α-amino nitriles and tetrahydroisoquinolinones are synthesized in moderate to good yields. This approach involves a new organic nitrile source, a cheap iron catalyst under an oxygen atmosphere, and temperature-controlled divergent synthesis and features complete selectivity and operational simplicity.
Collapse
Affiliation(s)
- Fan Xu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Fanglian Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Wenjia Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Mingxu Yao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Xing Lin
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Fang Yang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Yiping Qian
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
24
|
Xu T, Li W, Zhang K, Han Y, Liu L, Huang T, Li C, Tang Z, Chen T. Palladium-Catalyzed Decarbonylative Cyanation of Carboxylic Acids with TMSCN. J Org Chem 2022; 87:11871-11879. [PMID: 35951542 DOI: 10.1021/acs.joc.2c01375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The direct decarbonylative cyanation of benzoic acids with TMSCN was achieved through palladium catalysis. By this strategy, a wide range of nitriles including those with functional groups was synthesized in good to high yields. Moreover, this reaction applied to modifying bioactive molecules such as adapalene, probenecid, telmisartan, and 3-methylflavone-8-carboxylic acid. These results demonstrate that this new reaction has potential synthetic value in organic synthesis.
Collapse
Affiliation(s)
- Tianhao Xu
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Wenhui Li
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Kang Zhang
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Yuhui Han
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Long Liu
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianzeng Huang
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Chunya Li
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Zhi Tang
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tieqiao Chen
- Key Laboratory of the Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
25
|
Wang K, Wang J, Yuan W, Tang XY, Wang L. Divergent Synthesis of 2-Cyanoaryl Carbamate and 2-Cyanoaryl Urea Derivatives via Hypervalent Iodine-Induced C-C Bond Cleavage. J Org Chem 2022; 87:10208-10215. [PMID: 35861605 DOI: 10.1021/acs.joc.2c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Divergent synthetic methods for transforming isatins to 2-cyanoaryl carbamate and 2-cyanoaryl urea derivatives were developed using ammonium carbamate as the nitrogen source and iodobenzene diacetate as the oxidant. This reaction features mild conditions, broad substrate scope, and moreover, the use of toxic cyano-containing compounds is avoided.
Collapse
Affiliation(s)
- Kai Wang
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P.R. China
| | - Jiahua Wang
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P.R. China
| | - Wenkai Yuan
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P.R. China
| | - Xiang-Ying Tang
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P.R. China
| | - Long Wang
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
26
|
Babin V, Taran F, Audisio D. Late-Stage Carbon-14 Labeling and Isotope Exchange: Emerging Opportunities and Future Challenges. JACS AU 2022; 2:1234-1251. [PMID: 35783167 PMCID: PMC9241029 DOI: 10.1021/jacsau.2c00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 05/04/2023]
Abstract
Carbon-14 (14C) is a gold standard technology routinely utilized in pharmaceutical and agrochemical industries for tracking synthetic organic molecules and providing their metabolic and safety profiles. While the state of the art has been dominated for decades by traditional multistep synthetic approaches, the recent emergence of late-stage carbon isotope labeling has provided new avenues to rapidly access carbon-14-labeled biologically relevant compounds. In particular, the development of carbon isotope exchange has represented a fundamental paradigm change, opening the way to unexplored synthetic transformations. In this Perspective, we discuss the recent developments in the field with a critical assessment of the literature. We subsequently discuss research directions and future challenges within this rapidly evolving field.
Collapse
|
27
|
Deng LF, Cheng J, Chen JJ, Yang L. Ni‐Catalyzed Cyanation of Allylic Alcohols with Formamide as the Cyano Source. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Luo Yang
- Xiangtan University Chemistry Yuhu 411105 Xiangtan CHINA
| |
Collapse
|
28
|
Dhara HN, Rakshit A, Alam T, Patel BK. Metal-catalyzed reactions of organic nitriles and boronic acids to access diverse functionality. Org Biomol Chem 2022; 20:4243-4277. [PMID: 35552581 DOI: 10.1039/d2ob00288d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nitrile or cyano (-CN) group is one of the most appreciated and effective functional groups in organic synthesis, having a polar unsaturated C-N triple bond. Despite sufficient stability and being intrinsically inert, the nitrile group can be easily transformed into many other functional groups, such as amines, carboxylic acids, ketones, etc. which makes it a vital group in organic synthesis. On the other hand, despite several boronic acids having a low level of genotoxicity, they have found wide applicability in the field of organic synthesis, especially in transition metal-catalyzed cross-coupling reactions. Recently, transition-metal-catalyzed cascade additions or addition/cyclization processes of boronic acids to the nitrile group open up exciting and useful strategies to prepare a variety of functional molecules through the formation of C-C, C-N and CO bonds. Boronic acids can be added to the cyano functionality through catalytic carbometallation or through a radical cascade process to provide newer pathways for the rapid construction of various important acyclic ketones or amides, carbamidines, carbocycles and N,O-heterocycles. The present review focuses on various transition-metal-catalyzed additions of boronic acids via carbometallation or radical cascade processes using the cyano group as an acceptor.
Collapse
Affiliation(s)
- Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
29
|
Rodrigues RM, Thadathil DA, Ponmudi K, George A, Varghese A. Recent Advances in Electrochemical Synthesis of Nitriles: A Sustainable Approach. ChemistrySelect 2022. [DOI: 10.1002/slct.202200081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Roopa Margaret Rodrigues
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru Karnataka 560029 India
| | - Ditto Abraham Thadathil
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru Karnataka 560029 India
| | - Keerthana Ponmudi
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru Karnataka 560029 India
| | - Ashlay George
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru Karnataka 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru Karnataka 560029 India
| |
Collapse
|
30
|
Yan Y, Sun J, Li G, Yang L, Zhang W, Cao R, Wang C, Xiao J, Xue D. Photochemically Enabled, Ni-Catalyzed Cyanation of Aryl Halides. Org Lett 2022; 24:2271-2275. [PMID: 35316067 DOI: 10.1021/acs.orglett.2c00203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A light-promoted Ni-catalyzed cyanation of aryl halides employing 1,4-dicyanobenzene as a cyanating agent is reported. A broad array of aryl bromides, chlorides, and druglike molecules could be converted into their corresponding nitriles (65 examples). Mechanistic studies suggest that upon irradiation, the oxidative addition product Ni(II)(dtbbpy)(p-C6H4CN)(CN) undergoes homolytic cleavage of the Ni-aryl bond to generate an aryl radical and a Ni(I)-CN species, the latter of which initiates subsequent cyanation reactions.
Collapse
Affiliation(s)
- Yonggang Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jinjin Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Liu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
31
|
Ano Y, Higashino M, Yamada Y, Chatani N. Palladium-catalyzed synthesis of nitriles from N-phthaloyl hydrazones. Chem Commun (Camb) 2022; 58:3799-3802. [PMID: 35229860 DOI: 10.1039/d2cc00342b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Pd-catalyzed transformation of N-phthaloyl hydrazones into nitriles involving the cleavage of an N-N bond is reported. The use of N-heterocyclic carbene as a ligand is essential for the success of the reaction. N-Phthaloyl hydrazones prepared from aromatic aldehydes or cyclobutanones are applicable to this transformation, which gives aryl or alkenyl nitriles, respectively.
Collapse
Affiliation(s)
- Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan. .,Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masaya Higashino
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Yuki Yamada
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
32
|
Lu C, Ye M, Long L, Zheng Y, Liu J, Zhang Y, Chen Z. Synthesis of Unsymmetrical Diarylfumaronitriles via Tandem Michael Addition and Oxidation under K 3Fe(CN) 6/O 2 System. J Org Chem 2022; 87:1545-1553. [PMID: 35014849 DOI: 10.1021/acs.joc.1c02498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An efficient formal alkenyl C-H cyanation reaction has been developed for the general synthesis of unsymmetrical diarylfumaronitriles in good to excellent yields. The reaction was achieved through tandem Michael addition and an oxidative process. The merits of this transformation include the use of K3Fe(CN)6 as a safe and nontoxic cyanide source, without an external noble metal catalyst, oxygen-involved reactions, easily available raw materials, good functional group tolerance, high stereoselectivity, and potential further application of the products.
Collapse
Affiliation(s)
- Chongjiu Lu
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi province, Gannan Normal University, Ganzhou 341000, China
| | - Min Ye
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi province, Gannan Normal University, Ganzhou 341000, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Lipeng Long
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi province, Gannan Normal University, Ganzhou 341000, China
| | - Yue Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi province, Gannan Normal University, Ganzhou 341000, China
| | - Jiameng Liu
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi province, Gannan Normal University, Ganzhou 341000, China
| | - Yue Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi province, Gannan Normal University, Ganzhou 341000, China
| | - Zhengwang Chen
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
33
|
Liu H, Yang Z, Huang G, Yu JT, Pan C. Cyanomethylative cyclization of unactivated alkenes with nitriles for the synthesis of cyano-containing ring-fused quinazolin-4(3 H)-ones. NEW J CHEM 2022. [DOI: 10.1039/d1nj05001j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of cyano-containing pyrrolo- and piperidino-quinazolinones was developed using alkyl nitriles through radical cascade addition/cyclization under metal-free conditions.
Collapse
Affiliation(s)
- Han Liu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Zixian Yang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Gao Huang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Changduo Pan
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
34
|
Transition-metal-switchable divergent synthesis of nitrile-containing pyrazolo[1,5-a]pyridines and indolizines. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Mao Q, Zhao Q, Li MZ, Qin R, Luo ML, Xue J, Chen BH, Leng HJ, Peng C, Zhan G, Han B. Construction of CF 3-Functionalized Fully Substituted Benzonitriles through Rauhut-Currier Reaction Initiated [3 + 3] Benzannulation. J Org Chem 2021; 86:14844-14854. [PMID: 34596408 DOI: 10.1021/acs.joc.1c01631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Though numerous cyanation reactions have been developed for the synthesis of benzonitriles, the construction of valuable fully substituted benzonitriles is still a challenging task. Herein, we reported a tertiary amine-catalyzed [3 + 3]-benzannulation for the green synthesis of CF3-functionalized fully substituted benzonitriles. This strategy features exclusive chemoselectivity, high atom-economy, and good step-economy with environment-friendly reagents and mild conditions. Unique triphenyl-substituted dicyanobenzoate products could be rapidly constructed using this method. The practicality and reliability of this reaction were proved by the successful scale-up synthesis. A mechanistic study indicates that the [3 + 3]-benzannulation was initiated by an intermolecular Rauhut-Currier reaction.
Collapse
Affiliation(s)
- Qing Mao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Mu-Ze Li
- Department of Chemistry, University of British Columbia, Vabcouver, British Columbia V6T 1Z1, Canada
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Meng-Lan Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Jing Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Ben-Hong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Hai-Jun Leng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| |
Collapse
|
36
|
De Jesus Silva J, Bartalucci N, Jelier B, Grosslight S, Gensch T, Schünemann C, Müller B, Kamer PCJ, Copéret C, Sigman MS, Togni A. Development and Molecular Understanding of a Pd‐Catalyzed Cyanation of Aryl Boronic Acids Enabled by High‐Throughput Experimentation and Data Analysis. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jordan De Jesus Silva
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 CH-8093 Zürich Switzerland
| | - Niccolò Bartalucci
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 CH-8093 Zürich Switzerland
| | - Benson Jelier
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 CH-8093 Zürich Switzerland
| | - Samantha Grosslight
- Department of Chemistry University of Utah 315 South 1400 East Salt Lake City Utah 84112 United States
| | - Tobias Gensch
- Department of Chemistry University of Utah 315 South 1400 East Salt Lake City Utah 84112 United States
- Department of Chemistry TU Berlin Straße des 17. Juni 135 DE-10623 Berlin Germany
| | - Claas Schünemann
- Leibniz-Institute for Catalysis e. V. Albert-Einstein-Straße 29a DE-18059 Rostock Germany
| | - Bernd Müller
- Leibniz-Institute for Catalysis e. V. Albert-Einstein-Straße 29a DE-18059 Rostock Germany
| | - Paul C. J. Kamer
- Leibniz-Institute for Catalysis e. V. Albert-Einstein-Straße 29a DE-18059 Rostock Germany
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 CH-8093 Zürich Switzerland
| | - Matthew S. Sigman
- Department of Chemistry University of Utah 315 South 1400 East Salt Lake City Utah 84112 United States
| | - Antonio Togni
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 CH-8093 Zürich Switzerland
| |
Collapse
|
37
|
Cyanide-Free Cyanation of Aryl Iodides with Nitromethane by Using an Amphiphilic Polymer-Supported Palladium Catalyst. Synlett 2021. [DOI: 10.1055/a-1675-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractA cyanide-free aromatic cyanation was developed that uses nitromethane as a cyanide source in water with an amphiphilic polystyrene–poly(ethylene glycol) resin-supported palladium catalyst and an alkyl halide (1-iodobutane). The cyanation proceeds through the palladium-catalyzed cross-coupling of an aryl halide with nitromethane, followed by transformation of the resultant (nitromethyl)arene intermediate into a nitrile by 1-iodobutane.
Collapse
|
38
|
Wang L, Shao Y, Cheng J. Application of combined cyanide sources in cyanation reactions. Org Biomol Chem 2021; 19:8646-8655. [PMID: 34586135 DOI: 10.1039/d1ob01520f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cyanation reaction is a key transformation due to the wide-ranging applications of nitrile compounds in organic chemistry. Traditionally, the cyanation reaction employs metal cyanides as cyanide sources, which are toxic and environmentally unfriendly. Very recently, many excellent examples of using combined cyanide sources as cyanating agents have been reported. This review summarizes the applications of combined cyano-group sources in a variety of cyanation reactions.
Collapse
Affiliation(s)
- Lu Wang
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Ying Shao
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Jiang Cheng
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.,Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| |
Collapse
|
39
|
Kajiwara R, Hirano K, Miura M. Copper-mediated Regioselective C–H Cyanation of Phenols with Assistance of Bipyridine-type Bidentate Auxiliary. CHEM LETT 2021. [DOI: 10.1246/cl.210439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rikuo Kajiwara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
40
|
Hua M, Song J, Huang X, Liu H, Fan H, Wang W, He Z, Liu Z, Han B. Highly Efficient Oxidative Cyanation of Aldehydes to Nitriles over Se,S,N‐
tri
‐Doped Hierarchically Porous Carbon Nanosheets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manli Hua
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Jinliang Song
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xin Huang
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Honglei Fan
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Weitao Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry College of Chemistry & Chemical Engineering Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China
| | - Zhenhong He
- Shaanxi Key Laboratory of Chemical Additives for Industry College of Chemistry & Chemical Engineering Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China
| | - Zhaotie Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry College of Chemistry & Chemical Engineering Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
41
|
Hua M, Song J, Huang X, Liu H, Fan H, Wang W, He Z, Liu Z, Han B. Highly Efficient Oxidative Cyanation of Aldehydes to Nitriles over Se,S,N-tri-Doped Hierarchically Porous Carbon Nanosheets. Angew Chem Int Ed Engl 2021; 60:21479-21485. [PMID: 34318968 DOI: 10.1002/anie.202107996] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 12/17/2022]
Abstract
Oxidative cyanation of aldehydes provides a promising strategy for the cyanide-free synthesis of organic nitriles. Design of robust and cost-effective catalysts is the key for this route. Herein, we designed a series of Se,S,N-tri-doped carbon nanosheets with a hierarchical porous structure (denoted as Se,S,N-CNs-x, x represents the pyrolysis temperature). It was found that the obtained Se,S,N-CNs-1000 was very selective and efficient for oxidative cyanation of various aldehydes including those containing other oxidizable groups into the corresponding nitriles using ammonia as the nitrogen resource below 100 °C. Detailed investigations revealed that the excellent performance of Se,S,N-CNs-1000 originated mainly from the graphitic-N species with lower electron density and synergistic effect between the Se, S, N, and C in the catalyst. Besides, the hierarchically porous structure could also promote the reaction. Notably, the unique feature of this metal-free catalyst is that it tolerated other oxidizable groups, and showed no activity on further reaction of the products, thereby resulting in high selectivity. As far as we know, this is the first work for the synthesis of nitriles via oxidative cyanation of aldehydes over heterogeneous metal-free catalysts.
Collapse
Affiliation(s)
- Manli Hua
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinliang Song
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xin Huang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Honglei Fan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weitao Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Zhenhong He
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Zhaotie Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
42
|
Abstract
We disclose a Ni-catalyzed reductive arylcyanation of alkene using environmentally benign and nontoxic organo cyanating reagent N-cyano-N-phenyl-p-toluenesulfonamide. This reaction provides a new method for the rapid synthesis of cyano-substituted oxindoles and isoquinoline-1,3-diones and features high functional group tolerance. In addition, an enantioselective version was developed for the construction of enantiomerically enriched 3-cyanomethyl oxindole. This method has also been applied to the synthesis of natural alkaloids (+)-esermethole and (+)-physostigmine.
Collapse
|
43
|
Xia YY, Lv QY, Yuan H, Wang JY. Selective oxidation of alcohols to nitriles with high-efficient Co-[Bmim]Br/C catalyst system. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01593-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Chandra P, Choudhary N, Lahiri GK, Maiti D, Mobin SM. Copper Mediated Chemo‐ and Stereoselective Cyanation Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Prakash Chandra
- School of Technology Pandit Deendayal Petroleum University Gandhinagar Gujarat 382007 India
| | - Neha Choudhary
- Department of Chemistry Indian Institute of Technology, Indore Khandwa Road Indore Simrol 453552 India
| | - Goutam K. Lahiri
- Department of Chemistry Indian Institute of Technology Bombay Mumbai Powai 400076 India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Mumbai Powai 400076 India
| | - Shaikh M. Mobin
- Department of Chemistry Indian Institute of Technology, Indore Khandwa Road Indore Simrol 453552 India
- Department of Metallurgy Engineering and Materials Science (MEMS) Indian Institute of Technology Indore Khandwa Road Indore Simrol 453552 India
- Department of Biosciences and Bio-Medical Engineering (BSBE) Indian Institute of Technology, Indore Khandwa Road Indore Simrol 453552 India
| |
Collapse
|
45
|
Billa BR, Lin CH. Tuning the LUMO Levels of Z-Shaped Perylene Diimide via Stepwise Cyanation. J Org Chem 2021; 86:9820-9827. [PMID: 34210139 DOI: 10.1021/acs.joc.1c00399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The central dogma in constructing organic electron acceptors is to attach electron-withdrawing groups to polycyclic aromatic hydrocarbons. Yet, the full potentials of many organic acceptors were never realized due to synthetic obstacles. By combining the Wittig-Knoevenagel benzannulation, the Pd(0)-catalyzed cyanation, and nucleophilic addition/oxidation cyanation, six polynitrile Z-shaped perylene diimide were synthesized. These stable and soluble electron acceptors possess LUMO energy levels comparable with those of benchmark compounds. Electrochemical investigation reveals that each additional nitrile group reduces the LUMO energy by 0.2 eV.
Collapse
Affiliation(s)
- Bhargava Rao Billa
- Institute of Chemistry, Academia Sinica, No 127, Second Sec, Academia Road, Taipei, Taiwan 115, Republic of China
| | - Chih-Hsiu Lin
- Institute of Chemistry, Academia Sinica, No 127, Second Sec, Academia Road, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
46
|
Zhu X, Huang Y, Xu X, Qing F. Iron-catalyzed cyanoalkylation of difluoroenol silyl ethers with cyclobutanone oxime esters. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Chatterjee B, Jena S, Chugh V, Weyhermüller T, Werlé C. A Molecular Iron-Based System for Divergent Bond Activation: Controlling the Reactivity of Aldehydes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00733] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Basujit Chatterjee
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Soumyashree Jena
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Vishal Chugh
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
48
|
Song J, Liao Q, Hong X, Jin L, Mézailles N. Conversion of Dinitrogen into Nitrile: Cross-Metathesis of N 2 -Derived Molybdenum Nitride with Alkynes. Angew Chem Int Ed Engl 2021; 60:12242-12247. [PMID: 33608987 DOI: 10.1002/anie.202015183] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/11/2022]
Abstract
The direct synthesis of nitrile from N2 under mild conditions is of great importance and has attracted much interest. Herein, we report a direct conversion of N2 into nitrile via a nitrile-alkyne cross-metathesis (NACM) process involving a N2 -derived Mo nitride. Treatment of the Mo nitride with alkyne in the presence of KOTf afforded an alkyne-coordinated nitride, which was then transformed into MoV carbyne and the corresponding nitrile upon 1 e- oxidation. Both aryl- and alkyl-substituted alkynes underwent this process smoothly. Experiments and DFT calculations have proved that the oxidation state of the Mo center plays a crucial role. This method does not rely on the nucleophilicity of the N2 -derived metal nitride, offering a novel strategy for N2 fixation chemistry.
Collapse
Affiliation(s)
- Jinyi Song
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Rd., 116024, Dalian, Liaoning, China
| | - Qian Liao
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Rd., 116024, Dalian, Liaoning, China
| | - Xin Hong
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Rd., 116024, Dalian, Liaoning, China
| | - Li Jin
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Rd., 116024, Dalian, Liaoning, China
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
49
|
Zhang Y, Liu X, Wang Y, Zhang Y, Wang J, Hu L. KSeCN as an efficient cyanide source for the one-step synthesis of imino-1-oxoisoindolines via copper-promoted C–H activation. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Song J, Liao Q, Hong X, Jin L, Mézailles N. Conversion of Dinitrogen into Nitrile: Cross‐Metathesis of N
2
‐Derived Molybdenum Nitride with Alkynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jinyi Song
- Zhang Dayu School of Chemistry Dalian University of Technology No. 2 Linggong Rd. 116024 Dalian Liaoning China
| | - Qian Liao
- Zhang Dayu School of Chemistry Dalian University of Technology No. 2 Linggong Rd. 116024 Dalian Liaoning China
| | - Xin Hong
- Zhang Dayu School of Chemistry Dalian University of Technology No. 2 Linggong Rd. 116024 Dalian Liaoning China
| | - Li Jin
- Zhang Dayu School of Chemistry Dalian University of Technology No. 2 Linggong Rd. 116024 Dalian Liaoning China
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée Université Paul Sabatier CNRS 118 Route de Narbonne 31062 Toulouse France
| |
Collapse
|