1
|
Sakurai R, Iwata H, Gotoh M, Ogino H, Takeuchi I, Makino K, Itoh F, Saitoh A. Application of PLGA-PEG-PLGA Nanoparticles to Percutaneous Immunotherapy for Food Allergy. Molecules 2024; 29:4123. [PMID: 39274971 PMCID: PMC11397245 DOI: 10.3390/molecules29174123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 09/16/2024] Open
Abstract
Compared with oral or injection administration, percutaneous immunotherapy presents a promising treatment modality for food allergies, providing low invasiveness and safety. This study investigated the efficacy of percutaneous immunotherapy using hen egg lysozyme (HEL)-loaded PLGA-PEG-PLGA nanoparticles (NPs), as an antigen model protein derived from egg white, compared with that of HEL-loaded chitosan hydroxypropyltrimonium chloride (CS)-modified PLGA NPs used in previous research. The intradermal retention of HEL in excised mouse skin was measured using Franz cells, which revealed a 2.1-fold higher retention with PLGA-PEG-PLGA NPs than that with CS-modified PLGA NPs. Observation of skin penetration pathways using fluorescein-4-isothiocyanate (FITC)-labeled HEL demonstrated successful delivery of HEL deep into the hair follicles with PLGA-PEG-PLGA NPs. These findings suggest that after NPs delivery into the skin, PEG prevents protein adhesion and NPs aggregation, facilitating stable delivery deep into the skin. Subsequently, in vivo percutaneous administration experiments in mice, with concurrent iontophoresis, demonstrated a significant increase in serum IgG1 antibody production with PLGA-PEG-PLGA NPs compared with that with CS-PLGA NPs after eight weeks of administration. Furthermore, serum IgE production in each NP administration group significantly decreased compared with that by subcutaneous administration of HEL solution. These results suggest that the combination of PLGA-PEG-PLGA NPs and iontophoresis is an effective percutaneous immunotherapy for food allergies.
Collapse
Affiliation(s)
- Ryuse Sakurai
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan
| | - Hanae Iwata
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan
| | - Masaki Gotoh
- Modality Research Group, BioPharma Research Institute, Kaneka Corporation Inc., 1-8 Miyamae-cho, Takasago-cho, Takasago-shi 676-8688, Hyogo, Japan
| | - Hiroyuki Ogino
- Modality Research Group, BioPharma Research Institute, Kaneka Corporation Inc., 1-8 Miyamae-cho, Takasago-cho, Takasago-shi 676-8688, Hyogo, Japan
| | - Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan
| | - Fumio Itoh
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan
- Department of Gastroenterology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku 216-8511, Kawasaki, Japan
| | - Akiyoshi Saitoh
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan
| |
Collapse
|
2
|
Ketkar RN, Dey P, Sodnawar T, Sharma S, M M, Dutta Choudhury S, Sadhukhan N. Dual Functional Microcapsule based on Monodisperse Short PEG Amphiphile for Drug Encapsulation and Protein Affinity Controlled Release. Chem Asian J 2024; 19:e202400144. [PMID: 38487959 DOI: 10.1002/asia.202400144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/09/2024] [Indexed: 04/12/2024]
Abstract
A short monodisperse poly(ethylene glycol) (PEG) and a neutral organic rotamer conjugate TEG-BTA-2 amphiphile was designed for the construction of a stimuli-responsive switchable self-assembled structure for drug encapsulation by noncovalent interaction and targeted controlled delivery. A short PEG, tetraethylene glycol (TEG) was covalently attached with a neutral organic rotamer benzothiazole dye (BTA-2) affording the neutral TEG-BTA-2 (<500 D). The TEG-BTA-2 is self-assembled into a microsphere in an aqueous medium, but remarkably undergoes morphology change switching to a rice-like microcapsule for curcumin encapsulation. Curcumin-loaded microcapsules were stable in an aqueous solution, however, were noticed disintegrating upon the addition of BSA protein. This is possibly due to an interaction with BSA protein leading to a protein affinity-controlled curcumin release in a neutral PBS buffer. Moreover, cell internalization of the neutral amphiphile TEG-BTA-2 into A549 cells was observed by fluorescence microscopy, providing an opportunity for application as a molecular vehicle for targeted drug delivery and monitoring.
Collapse
Affiliation(s)
- Rohit N Ketkar
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga (E), Mumbai, Maharashtra, 400019, India
| | - Paritosh Dey
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga (E), Mumbai, Maharashtra, 400019, India
| | - Triveni Sodnawar
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkind Road, Pune, Maharashtra, 411007, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkind Road, Pune, Maharashtra, 411007, India
| | - Manikandan M
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
| | - Sharmistha Dutta Choudhury
- Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute Anushaktinagar, Mumbai, 400094, India
| | - Nabanita Sadhukhan
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga (E), Mumbai, Maharashtra, 400019, India
| |
Collapse
|
3
|
Muraoka T, Okumura M, Saio T. Enzymatic and synthetic regulation of polypeptide folding. Chem Sci 2024; 15:2282-2299. [PMID: 38362427 PMCID: PMC10866363 DOI: 10.1039/d3sc05781j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Proper folding is essential for the biological functions of all proteins. The folding process is intrinsically error-prone, and the misfolding of a polypeptide chain can cause the formation of toxic aggregates related to pathological outcomes such as neurodegenerative disease and diabetes. Chaperones and some enzymes are involved in the cellular proteostasis systems that assist polypeptide folding to diminish the risk of aggregation. Elucidating the molecular mechanisms of chaperones and related enzymes is important for understanding proteostasis systems and protein misfolding- and aggregation-related pathophysiology. Furthermore, mechanistic studies of chaperones and related enzymes provide important clues to designing chemical mimics, or chemical chaperones, that are potentially useful for recovering proteostasis activities as therapeutic approaches for treating and preventing protein misfolding-related diseases. In this Perspective, we provide a comprehensive overview of the latest understanding of the folding-promotion mechanisms by chaperones and oxidoreductases and recent progress in the development of chemical mimics that possess activities comparable to enzymes, followed by a discussion of future directions.
Collapse
Affiliation(s)
- Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC) Kanagawa 243-0435 Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University Tokushima 770-8503 Japan
| |
Collapse
|
4
|
Dai X, Zhao D, Matsumura K, Rajan R. Polyampholytes and Their Hydrophobic Derivatives as Excipients for Suppressing Protein Aggregation. ACS APPLIED BIO MATERIALS 2023. [PMID: 37314858 DOI: 10.1021/acsabm.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein aggregation, which occurs under various physiological conditions, can affect cell function and is a major issue in the field of protein therapeutics. In this study, we developed a polyampholyte composed of ε-poly-l-lysine and succinic anhydride and evaluated its protein protection efficacy. This polymer was able to protect different proteins from thermal stress and its performance significantly exceeded that of previously reported zwitterionic polymers. In addition, we synthesized derivatives with varying degrees of hydrophobicity, which exhibited remarkably enhanced efficiency; thus, the polymer concentration required for protein protection was very low. By facilitating the retention of protein enzymatic activity and stabilizing the higher-order structure, these polymers enabled the protein to maintain its native state, even after being subjected to extreme thermal stress. Thus, such polyampholytes are extremely effective in protecting proteins from extreme stress and may find applications in protein biopharmaceuticals and drug delivery systems.
Collapse
Affiliation(s)
- Xianda Dai
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Dandan Zhao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
5
|
Rajan R, Matsumura K. Design of self-assembled glycopolymeric zwitterionic micelles as removable protein stabilizing agents. NANOSCALE ADVANCES 2023; 5:1767-1775. [PMID: 36926568 PMCID: PMC10012880 DOI: 10.1039/d3na00002h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 06/15/2023]
Abstract
Developing stabilizers that protect proteins from denaturation under stress, and are easy to remove from solutions, is a challenge in protein therapeutics. In this study, micelles made of trehalose, a zwitterionic polymer (poly-sulfobetaine; poly-SPB), and polycaprolactone (PCL) were synthesized by a one-pot reversible addition-fragmentation chain-transfer (RAFT) polymerization reaction. The micelles protect lactate dehydrogenase (LDH) and human insulin from denaturation due to stresses like thermal incubation and freezing, and help them retain higher-order structures. Importantly, the protected proteins are readily isolated from the micelles by ultracentrifugation, with over 90% recovery, and almost all enzymatic activity is retained. This suggests the great potential of poly-SPB-based micelles for use in applications requiring protection and removal as required. The micelles may also be used to effectively stabilize protein-based vaccines and drugs.
Collapse
Affiliation(s)
- Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology 1-1 Asahidai Nomi Ishikawa 923-1292 Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology 1-1 Asahidai Nomi Ishikawa 923-1292 Japan
| |
Collapse
|
6
|
Rajan R, Kumar N, Zhao D, Dai X, Kawamoto K, Matsumura K. Polyampholyte-Based Polymer Hydrogels for the Long-Term Storage, Protection and Delivery of Therapeutic Proteins. Adv Healthc Mater 2023:e2203253. [PMID: 36815203 DOI: 10.1002/adhm.202203253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Indexed: 02/24/2023]
Abstract
Protein storage and delivery are crucial for biomedical applications such as protein therapeutics and recombinant proteins. Lack of proper protocols results in the denaturation of proteins, rendering them inactive and manifesting undesired side effects. In this study, polyampholyte-based (succinylated ε-poly-l-lysine) hydrogels containing polyvinyl alcohol and polyethylene glycol polymer matrices to stabilize proteins are developed. These hydrogels facilitated the loading and release of therapeutic amounts of proteins and withstood thermal and freezing stress (15 freeze-thaw cycles and temperatures of -80 °C and 37 °C), without resulting in protein denaturation and aggregation. To the best of our knowledge, this strategy has not been applied to the design of hydrogels constituting polymers, (in particular, polyampholyte-based polymers) which have inherent efficiency to stabilize proteins and protect them from denaturation. Our findings can open up new avenues in protein biopharmaceutics for the design of materials that can store therapeutic proteins long-term under severe stress and safely deliver them.
Collapse
Affiliation(s)
- Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
| | - Nishant Kumar
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
| | - Dandan Zhao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
| | - Xianda Dai
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
| | - Keiko Kawamoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
| |
Collapse
|
7
|
Automated stepwise PEG synthesis using a base-labile protecting group. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Oziri OJ, Maeki M, Tokeshi M, Isono T, Tajima K, Satoh T, Sato SI, Yamamoto T. Topology-Dependent Interaction of Cyclic Poly(ethylene glycol) Complexed with Gold Nanoparticles against Bovine Serum Albumin for a Colorimetric Change. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5286-5295. [PMID: 34878285 DOI: 10.1021/acs.langmuir.1c03027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Unique physical and chemical properties arising from a polymer topology recently draw significant attention. In this study, cyclic poly(ethylene glycol) (c-PEG) was found to significantly interact with bovine serum albumin (BSA), suggested by nuclear magnetic resonance, dynamic light scattering, and fluorescence spectroscopy. On the other hand, linear HO-PEG-OH and MeO-PEG-OMe showed no affinity. Furthermore, a complex of gold nanoparticles and c-PEG (AuNPs/c-PEG) attracted BSA to form aggregates, and the red color of the AuNPs dispersion evidently disappeared, whereas ones with linear PEG or without PEG did not demonstrate such a phenomenon. The interactions among BSA, AuNPs, and PEG were investigated by changing the incubation time and concentration of the components by using UV-Vis and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Onyinyechukwu Justina Oziri
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Kenji Tajima
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Shin-Ichiro Sato
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
9
|
Gao G, Liu X, Gu Z, Mu Q, Zhu G, Zhang T, Zhang C, Zhou L, Shen L, Sun T. Engineering Nanointerfaces of Au 25 Clusters for Chaperone-Mediated Peptide Amyloidosis. NANO LETTERS 2022; 22:2964-2970. [PMID: 35297644 DOI: 10.1021/acs.nanolett.2c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthetic nanomaterials possessing biomolecular-chaperone functions are good candidates for modulating physicochemical interactions in many bioapplications. Despite extensive research, no general principle to engineer nanomaterial surfaces is available to precisely manipulate biomolecular conformations and behaviors, greatly limiting attempts to develop high-performance nanochaperone materials. Here, we demonstrate that, by quantifying the length (-SCxR±, x = 3-11) and charges (R- = -COO-, R+ = -NH3+) of ligands on Au25 gold nanochaperones (AuNCs), simulating binding sites and affinities of amyloid-like peptides with AuNCs, and probing peptide folding and fibrillation in the presence of AuNCs, it is possible to precisely manipulate the peptides' conformations and, thus, their amyloidosis via customizing AuNCs nanointerfaces. We show that intermediate-length liganded AuNCs with a specific charge chaperone peptides' native conformations and thus inhibit their fibrillation, while other types of AuNCs destabilize peptides and promote their fibrillation. We offer a microscopic molecular insight into peptide identity on AuNCs and provide a guideline in customizing nanochaperones via manipulating their nanointerfaces.
Collapse
Affiliation(s)
- Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xinglin Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhenhua Gu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Qingxue Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Guowei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Ting Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Cheng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Lin Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Lei Shen
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
10
|
Mikesell L, Eriyagama DNAM, Yin Y, Lu BY, Fang S. Stepwise PEG synthesis featuring deprotection and coupling in one pot. Beilstein J Org Chem 2021; 17:2976-2982. [PMID: 35079293 PMCID: PMC8722398 DOI: 10.3762/bjoc.17.207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022] Open
Abstract
The stepwise synthesis of monodisperse polyethylene glycols (PEGs) and their derivatives usually involves using an acid-labile protecting group such as DMTr and coupling the two PEG moieties together under basic Williamson ether formation conditions. Using this approach, each elongation of PEG is achieved in three steps - deprotection, deprotonation and coupling - in two pots. Here, we report a more convenient approach for PEG synthesis featuring the use of a base-labile protecting group such as the phenethyl group. Using this approach, each elongation of PEG can be achieved in two steps - deprotection and coupling - in only one pot. The deprotonation step, and the isolation and purification of the intermediate product after deprotection using existing approaches are no longer needed when the one-pot approach is used. Because the stepwise PEG synthesis usually requires multiple PEG elongation cycles, the new PEG synthesis method is expected to significantly lower PEG synthesis cost.
Collapse
Affiliation(s)
- Logan Mikesell
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Dhananjani N A M Eriyagama
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Yipeng Yin
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Bao-Yuan Lu
- ChampionX, 11177 South Stadium Drive, Sugar Land, TX 77478, USA
| | - Shiyue Fang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| |
Collapse
|
11
|
Nishimura S, Murakami Y. Facile preparation of porous polymeric sheets with different sizes of pores on both sides using spontaneous emulsification. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Nishimura S, Murakami Y. Precise Control of the Surface and Internal Morphologies of Porous Particles Prepared Using a Spontaneous Emulsification Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3075-3085. [PMID: 33657324 DOI: 10.1021/acs.langmuir.0c03311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous particles with controllable surface and internal morphologies were successfully prepared by a "one-step mechanical emulsification" technique via the control of spontaneous emulsification where self-emulsification is followed by mechanical emulsification. The morphological changes in the porous particles were determined not by the preparation conditions of the water-in-oil-in-water (w/o/w) emulsion but by the proportion of solvents that favors the stabilization of the spontaneously prepared water-in-oil (w/o) emulsion droplets acting as porogens. The proposed method for controlling the morphology of the porous particles could be applied to all particle-preparation systems based on emulsion-solvent evaporation using organic solvents. The methodology for the morphological control of porous particles independent of the concentration or composition of the polymer is considered valuable for future investigations into the aerodynamic performance and drug-release behavior of biomedical porous particles with complex shapes.
Collapse
Affiliation(s)
- Shinnosuke Nishimura
- Department of Organic and Polymer Materials Chemistry, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yoshihiko Murakami
- Department of Organic and Polymer Materials Chemistry, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
13
|
Kameta N, Ding W. Stacking of nanorings to generate nanotubes for acceleration of protein refolding. NANOSCALE 2021; 13:1629-1638. [PMID: 33331384 DOI: 10.1039/d0nr07660k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly and photoisomerization of azobenzene-based amphiphilic molecules produced nanorings with an inner diameter of 25 nm and lengths of <40 nm. The nanorings, which consisted of a single bilayer membrane of the amphiphiles, retained their morphology in the presence of a stacking inhibitor; whereas in the absence of the inhibitor, the nanorings stacked into short nanotubes (<500 nm). When subjected to mild heat treatment, these nanotubes joined end-to-end to form nanotubes with lengths of several tens of micrometers. The nanorings and the short and long nanotubes were able to encapsulate proteins and thereby suppress aggregation induced by thermal denaturation. In addition, the nanotubes accelerated refolding of denatured proteins by encapsulating them and then releasing them into the bulk solution; refolding occurred simultaneously with release. In contrast, the nanorings did not accelerate protein refolding. Refolding efficiency increased with increasing nanotube length, indicating that the re-aggregation of the proteins was strictly inhibited by lowering the concentration of the proteins in the bulk solution as the result of the slow release from the longer nanotubes. The migration of the proteins through the long, narrow nanochannels during the release process will also contribute to refolding.
Collapse
Affiliation(s)
- N Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | |
Collapse
|
14
|
Omoto K, Nakae T, Nishio M, Yamanoi Y, Kasai H, Nishibori E, Mashimo T, Seki T, Ito H, Nakamura K, Kobayashi N, Nakayama N, Goto H, Nishihara H. Thermosalience in Macrocycle-Based Soft Crystals via Anisotropic Deformation of Disilanyl Architecture. J Am Chem Soc 2020; 142:12651-12657. [DOI: 10.1021/jacs.0c03643] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kenichiro Omoto
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Toyotaka Nakae
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaki Nishio
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshinori Yamanoi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidetaka Kasai
- Division of Physics, Faculty of Pure and Applied Sciences, Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Eiji Nishibori
- Division of Physics, Faculty of Pure and Applied Sciences, Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takaki Mashimo
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Tomohiro Seki
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Kazuki Nakamura
- Department of Image and Materials Science, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Norihisa Kobayashi
- Department of Image and Materials Science, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Naofumi Nakayama
- CONFLEX Corporation, 3-23-17 Takanawa, Minato-ku, Tokyo 108-0074, Japan
| | - Hitoshi Goto
- Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Hiroshi Nishihara
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Nishimura T, Akiyoshi K. Artificial Molecular Chaperone Systems for Proteins, Nucleic Acids, and Synthetic Molecules. Bioconjug Chem 2020; 31:1259-1267. [DOI: 10.1021/acs.bioconjchem.0c00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoki Nishimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
16
|
Shimizu T, Ding W, Kameta N. Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chem Rev 2020; 120:2347-2407. [PMID: 32013405 DOI: 10.1021/acs.chemrev.9b00509] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-assembled organic nanotubes made of single or multiple molecular components can be classified into soft-matter nanotubes (SMNTs) by contrast with hard-matter nanotubes, such as carbon and other inorganic nanotubes. To date, diverse self-assembly processes and elaborate template procedures using rationally designed organic molecules have produced suitable tubular architectures with definite dimensions, structural complexity, and hierarchy for expected functions and applications. Herein, we comprehensively discuss every functions and possible applications of a wide range of SMNTs as bulk materials or single components. This Review highlights valuable contributions mainly in the past decade. Fifteen different families of SMNTs are discussed from the viewpoints of chemical, physical, biological, and medical applications, as well as action fields (e.g., interior, wall, exterior, whole structure, and ensemble of nanotubes). Chemical applications of the SMNTs are associated with encapsulating materials and sensors. SMNTs also behave, while sometimes undergoing morphological transformation, as a catalyst, template, liquid crystal, hydro-/organogel, superhydrophobic surface, and micron size engine. Physical functions pertain to ferro-/piezoelectricity and energy migration/storage, leading to the applications to electrodes or supercapacitors, and mechanical reinforcement. Biological functions involve artificial chaperone, transmembrane transport, nanochannels, and channel reactors. Finally, medical functions range over drug delivery, nonviral gene transfer vector, and virus trap.
Collapse
Affiliation(s)
- Toshimi Shimizu
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
17
|
Muraoka T. Biofunctional Molecules Inspired by Protein Mimicry and Manipulation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
18
|
Muraoka T, Honda H, Nabeya K, Kinbara K. Reversible formation of multiple stimuli-responsive polymeric materials through processing control of trifunctional amphiphilic molecules. Chem Commun (Camb) 2020; 56:7881-7884. [DOI: 10.1039/d0cc02716b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A trifunctional amphiphile consisting of thermo-responsive, redox-responsive, and photo-responsive units achieved reversible formation of multiple stimuli-responsive polymeric materials.
Collapse
Affiliation(s)
- Takahiro Muraoka
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
- PRESTO
| | - Hidetaka Honda
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Aoba-ku
- Japan
| | - Kota Nabeya
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Kazushi Kinbara
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
- Institute of Multidisciplinary Research for Advanced Materials
| |
Collapse
|
19
|
Li R, Muraoka T, Kinbara K. Thermo-driven self-assembly of a PEG-containing amphiphile in a bilayer membrane. RSC Adv 2020; 10:25758-25762. [PMID: 35518572 PMCID: PMC9055338 DOI: 10.1039/d0ra03920a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022] Open
Abstract
Self-assembly of lipid molecules in a plasma membrane, namely lipid raft formation, is involved in various dynamic functions of cells. Inspired by the raft formation observed in the cells, here we studied thermally induced self-assembly of a synthetic amphiphile, bola-AkDPA, in a bilayer membrane. The synthetic amphiphile consists of a hydrophobic unit including fluorescent aromatic and aliphatic components and hydrophilic tetraethylene glycol chains attached at both ends of the hydrophobic unit. In a polar solvent, bola-AkDPA formed aggregates to show excimer emission. In a lipid bilayer membrane, bola-AkDPA showed intensified excimer emission upon increase of its concentration or elevation of the temperature; bola-type amphiphiles containing oligoethylene glycol chains likely tend to form self-assemblies in a bilayer membrane triggered by thermal stimuli. A synthetic multi-block amphiphile containing oligoethylene glycol chains formed a self-assembly in a bilayer membrane triggered by thermal stimuli.![]()
Collapse
Affiliation(s)
- Rui Li
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai
- Japan
| | - Takahiro Muraoka
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Kazushi Kinbara
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai
- Japan
- Department of Life Science and Technology
| |
Collapse
|
20
|
Zhao D, Rajan R, Matsumura K. Dual Thermo- and pH-Responsive Behavior of Double Zwitterionic Graft Copolymers for Suppression of Protein Aggregation and Protein Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39459-39469. [PMID: 31592638 DOI: 10.1021/acsami.9b12723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graft copolymers consisting of two different zwitterionic blocks were synthesized via reversible addition fragmentation chain transfer polymerization. These polymers showed dual properties of thermo- and pH-responsiveness in an aqueous solution. Ultraviolet-visible spectroscopy and dynamic light scattering were employed to study the phase behavior under varying temperatures and pH values. Unlike the phase transition temperatures of other graft copolymers containing nonionic blocks, the phase transition temperature of these polymers was easily tuned by changing the polymer concentration. Owing to the biocompatible and stimuli-responsive nature of the polymers, this system was shown to effectively release proteins (lysozyme) while simultaneously protecting them against denaturation. The positively charged lysozyme was shown to bind with the negatively charged polymer at the physiological pH (pH 7.4). However, it was subsequently released at pH 3, at which the polymer exhibits a positive charge. Protein aggregation studies using a residual enzymatic activity assay, circular dichroism, and a Thioflavin T assay revealed that the secondary structure of the lysozyme was retained even after harsh thermal treatment. The addition of these polymers helped the lysozyme retain its enzymatic activity and suppressed its fibrillation. Both polymers showed excellent protein protection properties, with the negatively charged polymer exhibiting slightly superior protein protection properties to those of the neutral polymer. To the best of the authors' knowledge, this is the first study to develop a graft copolymer system consisting of two different zwitterionic blocks that shows dual thermo- and pH-responsive properties. The presence of the polyampholyte structure enables these polymers to act as protein release agents, while simultaneously protecting the proteins from severe stress.
Collapse
Affiliation(s)
- Dandan Zhao
- School of Materials Science , Japan Advanced Institute of Science and, Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Robin Rajan
- School of Materials Science , Japan Advanced Institute of Science and, Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Kazuaki Matsumura
- School of Materials Science , Japan Advanced Institute of Science and, Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| |
Collapse
|
21
|
Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules. Nat Commun 2019; 10:4546. [PMID: 31586046 PMCID: PMC6778136 DOI: 10.1038/s41467-019-12462-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/28/2019] [Indexed: 02/03/2023] Open
Abstract
Fluorosurfactant-stabilized microfluidic droplets are widely used as pico- to nanoliter volume reactors in chemistry and biology. However, current surfactants cannot completely prevent inter-droplet transfer of small organic molecules encapsulated or produced inside the droplets. In addition, the microdroplets typically coalesce at temperatures higher than 80 °C. Therefore, the use of droplet-based platforms for ultrahigh-throughput combination drug screening and polymerase chain reaction (PCR)-based rare mutation detection has been limited. Here, we provide insights into designing surfactants that form robust microdroplets with improved stability and resistance to inter-droplet transfer. We used a panel of dendritic oligo-glycerol-based surfactants to demonstrate that a high degree of inter- and intramolecular hydrogen bonding, as well as the dendritic architecture, contribute to high droplet stability in PCR thermal cycling and minimize inter-droplet transfer of the water-soluble fluorescent dye sodium fluorescein salt and the drug doxycycline. Microdroplets are used as chemical and biological reactors; however, stability and inter-droplet transfer are major issues. Here, the authors report on the development of dendritic glycerol-based surfactants for the creation of stable microdroplets and demonstrate application for PCR, minimal emulsion, and cell encapsulation.
Collapse
|
22
|
Lv X, Zheng X, Yang Z, Jiang ZX. One-pot synthesis of monodisperse dual-functionalized polyethylene glycols through macrocyclic sulfates. Org Biomol Chem 2018; 16:8537-8545. [PMID: 30357237 DOI: 10.1039/c8ob02392a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dual-functionalization of monodisperse oligoethylene glycols, especially hetero-functionalization, provides a series of highly valuable intermediates for life and materials sciences. However, the existing methods for the preparation of these compounds suffer excessive protecting and activating group manipulation as well as tedious purification. Here, a one-pot dual-substitution strategy with macrocyclic sulfates of polyethylene glycols as the key intermediates was developed for the convenient and scalable preparation of a series of homo-functionalized and hetero-functionalized oligoethylene glycols in just 1 step. A high synthetic efficacy was achieved by avoiding the protecting and activating group manipulation and the intermediate purification.
Collapse
Affiliation(s)
- Xiaoyan Lv
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | | | | | | |
Collapse
|
23
|
Yilmaz E, Bier D, Guillory X, Briels J, Ruiz-Blanco YB, Sanchez-Garcia E, Ottmann C, Kaiser M. Mono- and Bivalent 14-3-3 Inhibitors for Characterizing Supramolecular "Lysine Wrapping" of Oligoethylene Glycol (OEG) Moieties in Proteins. Chemistry 2018; 24:13807-13814. [PMID: 29924885 DOI: 10.1002/chem.201801074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/15/2018] [Indexed: 12/26/2022]
Abstract
Previous studies have indicated the presence of defined interactions between oligo or poly(ethylene glycol) (OEG or PEG) and lysine residues. In these interactions, the OEG or PEG residues "wrap around" the lysine amino group, thereby enabling complexation of the amino group by the ether oxygen residues. The resulting biochemical binding affinity and thus biological relevance of this supramolecular interaction however remains unclear so far. Here, we report that OEG-containing phosphophenol ether inhibitors of 14-3-3 proteins also display such a "lysine-wrapping" binding mode. For better investigating the biochemical relevance of this binding mode, we made use of the dimeric nature of 14-3-3 proteins and designed as well as synthesized a set of bivalent 14-3-3 inhibitors for biochemical and X-ray crystallography-based structural studies. We found that all synthesized derivatives adapted the "lysine-wrapping" binding mode in the crystal structures; in solution, a different binding mode is however observed, most probably as the "lysine-wrapping" binding mode turned out to be a rather weak interaction. Accordingly, our studies demonstrate that structural studies of OEG-lysine interactions are difficult to interpret and their presence in structural studies may not automatically be correlated with a relevant interaction also in solution but requires further biochemical studies.
Collapse
Affiliation(s)
- Elvan Yilmaz
- Chemical Biology, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - David Bier
- Department of Chemistry, University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany.,Laboratory of Chemical Biology and Institute of, Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612, AZ, Eindhoven, The Netherlands
| | - Xavier Guillory
- Department of Chemistry, University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany.,Laboratory of Chemical Biology and Institute of, Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612, AZ, Eindhoven, The Netherlands
| | - Jeroen Briels
- Laboratory of Chemical Biology and Institute of, Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612, AZ, Eindhoven, The Netherlands
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Christian Ottmann
- Department of Chemistry, University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany.,Laboratory of Chemical Biology and Institute of, Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612, AZ, Eindhoven, The Netherlands
| | - Markus Kaiser
- Chemical Biology, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| |
Collapse
|
24
|
Ishiwari F, Sakamoto M, Matsumura S, Fukushima T. Topology Effect of AIEgen-Appended Poly(acrylic acid) with Biocompatible Segments on Ca 2+-Sensing and Protein-Adsorption-Resistance Properties. ACS Macro Lett 2018; 7:711-715. [PMID: 35632952 DOI: 10.1021/acsmacrolett.8b00291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We recently reported that tetraphenylethene-appended poly(acrylic acid) derivatives (e.g., PAA-TPE0.02) can serve as fluorescent Ca2+ sensors in the presence of physiological concentrations of biologically relevant ions, amino acids, and sugars. However, in the presence of basic proteins such as albumins, the Ca2+-sensing property of the polymer is significantly impaired due to the nonspecific adsorption of protein molecules, which competes with binding to Ca2+. To solve this problem, we explored new designs by focusing on the polymer-chain topology of PAA-TPE0.02 with biocompatible segments. Here, we report the Ca2+-sensing and protein-adsorption-resistance properties of various types of PAA-TPE0.02 copolymers with a poly(oligoethylene glycol acrylate) (polyOEGA) segment, featuring a random, diblock, triblock, or 4-armed-star-block structure. Through this study, we show an interesting topology effect; i.e., a branch-shaped PAA-TPE0.02-co-polyOEGA with biocompatible segments at every terminal (i.e., 4-armed-star-block copolymer) exhibits both good Ca2+-sensing and protein-adsorption-resistance properties.
Collapse
Affiliation(s)
- Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Minami Sakamoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Satoko Matsumura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
25
|
|
26
|
Kameta N, Dong J, Yui H. Thermoresponsive PEG-Coated Nanotubes as Chiral Selectors of Amino Acids and Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800030. [PMID: 29532990 DOI: 10.1002/smll.201800030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/13/2018] [Indexed: 08/23/2024]
Abstract
A series of nanotubes with a dense layer of short poly(ethylene glycol) (PEG) chains on the inner surface are prepared by means of a coassembly process using glycolipids and PEG derivatives. Dehydration of the PEG chains by heating increases the hydrophobicity of the nanotube channel and fluorescent-dye-labeled amino acids are extracted from bulk solution. Rehydration of the PEG chains by cooling results in back-extraction of the amino acids into the bulk solution. Because of the supramolecular chirality of the nanotubes, amino acid enantiomers can be separated in the back-extraction procedure, which is detectable with the naked eye as a change in fluorescence as the amino acids are released from the nanotubes. The efficiency and selectivity of the chiral separation are enhanced by tuning the chemical features and inner diameter of the nanotube channels. For example, compared with wide nanotube channels (8 nm), narrow nanotube channels (4 nm) provide more effective electrostatic attraction and hydrogen bond interaction environments for the transporting amino acids. Introduction of branched alkyl chains to the inner surface of the nanotubes enables chiral separation of peptides containing hydrophobic amino acids. The system described here provides a simple, quick, and on-site chiral separation in biological and medical fields.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Jiuchao Dong
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hiroharu Yui
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Water Frontier Science and Technology Research Center, Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
27
|
Tao Y, Ma X, Cai Y, Liu L, Zhao H. Coassembly of Lysozyme and Amphiphilic Biomolecules Driven by Unimer–Aggregate Equilibrium. J Phys Chem B 2018; 122:3900-3907. [DOI: 10.1021/acs.jpcb.8b01447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yuanyuan Tao
- Key Laboratory of Functional Polymer Materials Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoteng Ma
- Key Laboratory of Functional Polymer Materials Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yaqian Cai
- Key Laboratory of Functional Polymer Materials Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Khanal A, Fang S. Solid Phase Stepwise Synthesis of Polyethylene Glycols. Chemistry 2017; 23:15133-15142. [PMID: 28834652 PMCID: PMC5658237 DOI: 10.1002/chem.201703004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 01/20/2023]
Abstract
Polyethylene glycol (PEG) and derivatives with eight and twelve ethylene glycol units were synthesized by stepwise addition of tetraethylene glycol monomers on a polystyrene solid support. The monomer contains a tosyl group at one end and a dimethoxytrityl group at the other. The Wang resin, which contains the 4-benzyloxy benzyl alcohol function, was used as the support. The synthetic cycle consists of deprotonation, Williamson ether formation (coupling), and detritylation. Cleavage of PEGs from solid support was achieved with trifluoroacetic acid. The synthesis including monomer synthesis was entirely chromatography-free. PEG products including those with different functionalities at the two termini were obtained in high yields. The products were analyzed with ESI and MALDI-TOF MS and were found close to monodispersity.
Collapse
Affiliation(s)
- Ashok Khanal
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Shiyue Fang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
29
|
Li R, Muraoka T, Kinbara K. Thermally-induced lateral assembly of a PEG-containing amphiphile triggering vesicle budding. Chem Commun (Camb) 2017; 53:11662-11665. [PMID: 29018844 DOI: 10.1039/c7cc06489f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A macrocyclic amphiphile consisting of a thermo-responsive octaethylene glycol chain with hydrophobic aromatic and aliphatic units undergoes lateral self-assembly in a liquid-disordered-state phospholipid bilayer membrane upon heating, which further leads to vesicle budding.
Collapse
Affiliation(s)
- Rui Li
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | | | | |
Collapse
|
30
|
Kameta N, Ding W, Dong J. Soft Nanotubes Derivatized with Short PEG Chains for Thermally Controllable Extraction and Separation of Peptides. ACS OMEGA 2017; 2:6143-6150. [PMID: 30023764 PMCID: PMC6044993 DOI: 10.1021/acsomega.7b00838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/13/2017] [Indexed: 06/08/2023]
Abstract
By means of a two-step self-assembly process involving three components, including short poly(ethylene glycol) (PEG) chains, we produced two different types of molecular monolayer nanotubes: nanotubes densely functionalized with PEG chains on the outer surface and nanotubes densely functionalized with PEG chains in the nanochannel. Turbidity measurements and fluorescence spectroscopy with an environmentally responsive probe suggested that the PEG chains underwent dehydration when the nanotubes were heated above 44-57 °C and rehydration when they were cooled back to 25 °C. Dehydration of the exterior or interior PEG chains rendered them hydrophobic and thus able to effectively extract hydrophobic amino acids from the bulk solution. Rehydration of the PEG chains restored their hydrophilicity, thus allowing the extracted amino acids to be squeezed out into the bulk solutions. The nanotubes with exterior PEG chains exhibited selectivity for all of the hydrophobic amino acids, whereas the interior PEG chains were selective for hydrophobic amino acids with an aliphatic side chain over hydrophobic amino acids with an aromatic side chain. The higher selectivity of the latter system is attributable that the extraction and back-extraction processes involve encapsulation and transportation of the amino acids in the nanotube channel. As the result, the latter system was useful for separation of peptides that differed by only a single amino acid, whereas the former system showed no such separation ability.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Jiuchao Dong
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
31
|
Rajan R, Matsumura K. Inhibition of protein aggregation by zwitterionic polymer-based core-shell nanogels. Sci Rep 2017; 7:45777. [PMID: 28374820 PMCID: PMC5379557 DOI: 10.1038/srep45777] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/02/2017] [Indexed: 01/27/2023] Open
Abstract
Protein aggregation is a process by which misfolded proteins polymerizes into aggregates and forms fibrous structures with a β-sheet conformation, known as amyloids. It is an undesired outcome, as it not only causes numerous neurodegenerative diseases, but is also a major deterrent in the development of protein biopharmaceuticals. Here, we report a rational design for the synthesis of novel zwitterionic polymer-based core-shell nanogels via controlled radical polymerization. Nanogels with different sizes and functionalities in the core and shell were prepared. The nanogels exhibit remarkable efficiency in the protection of lysozyme against aggregation. Addition of nanogels suppresses the formation of toxic fibrils and also enables lysozyme to retain its enzymatic activity. Increasing the molecular weight and degree of hydrophobicity markedly increases its overall efficiency. Investigation of higher order structures revealed that lysozyme when heated without any additive loses its secondary structure and transforms into a random coil conformation. In contrast, presence of nanogels facilitates the retention of higher order structures by acting as molecular chaperones, thereby reducing molecular collisions. The present study is the first to show that it is possible to design zwitterionic nanogels using appropriate polymerization techniques that will protect proteins under conditions of extreme stress and inhibit aggregation.
Collapse
Affiliation(s)
- Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|
32
|
Ghosh R, Dey J. Vesicle-to-Micelle Transition in Aqueous Solutions of l-Cysteine-Derived Carboxylate Surfactants Containing Both Hydrocarbon and Poly(ethylene glycol) Tails. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:543-552. [PMID: 27989124 DOI: 10.1021/acs.langmuir.6b03845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In our recent reports, we have shown that when a poly(ethylene glycol) (PEG) chain is covalently linked to any ionic group, the resultant molecule behaves like an amphiphile. Depending upon the nature of ionic head groups, they self-assemble to form micelles or vesicles, in which the PEG chain constitutes the micellar core or vesicle bilayer. In this study, we intend to examine what happens when both hydrocarbon (HC) and PEG chains are attached to a carboxylate head group. Therefore, we have synthesized two novel amphiphiles in which a PEG and a HC chain is covalently linked to l-cysteine. The surface activities and the solution behavior of the sodium salts of these amphiphiles were investigated at neutral pH. The amphiphiles self-organize to form large unilamellar vesicles in dilute solutions, which transformed into small micelles at higher concentrations. The HC chains of the molecules have been shown to constitute the bilayer membrane of the vesicles and core of micelles. In acidic pH, the amphiphiles were found to form large disklike micelles. The thermodynamic parameters of self-assembly formation were also measured by isothermal titration calorimetry. The vesicle and micelle formation was found to be spontaneous and thermodynamically favorable. The thermal stability of the micelles at neutral and acidic pH was studied. The addition of cholesterol was observed to increase the physical stability of vesicles.
Collapse
Affiliation(s)
- Rita Ghosh
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721 302, India
| | - Joykrishna Dey
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721 302, India
| |
Collapse
|
33
|
Aroua S, Tiu EGV, Ishikawa T, Yamakoshi Y. Well‐Defined Amphiphilic C
60
‐
PEG
Conjugates: Water‐Soluble and Thermoresponsive Materials. Helv Chim Acta 2016. [DOI: 10.1002/hlca.201600171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Safwan Aroua
- Laboratorium für Organische Chemie ETH Zürich Vladimir‐Prelog‐Weg 3 CH‐8093, Zurich
| | | | | | - Yoko Yamakoshi
- Laboratorium für Organische Chemie ETH Zürich Vladimir‐Prelog‐Weg 3 CH‐8093, Zurich
| |
Collapse
|
34
|
Hirose Y, Taira T, Sakai K, Sakai H, Endo A, Imura T. Structures and Surface Properties of "Cyclic" Polyoxyethylene Alkyl Ethers: Unusual Behavior of Cyclic Surfactants in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8374-8382. [PMID: 27462805 DOI: 10.1021/acs.langmuir.6b01553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The cyclization of amphiphiles has emerged as an attractive strategy for inducing remarkable properties in these materials without changing their chemical composition. In this study, we successfully synthesized three cyclic polyoxyethylene dodecyl ethers (c-POEC12's) with different ring sizes and explored the effects of their topology on their surface and self-assembly properties related to their function, comparing them with those of their linear counterparts (l-POEC12's). The surface activity of the c-POEC12's remained almost constant despite the change in their hydrophobic and hydrophilic balance (HLB) value, while that of the l-POEC12's decreased with an increase in the HLB value as general surfactants. In contrast to the normal micelles seen in the case of the l-POEC12's (3.4-9.7 nm), the cyclization of the POEC12's resulted in the formation of large spherical structures 72.8-256.8 nm in size. It also led to a dramatic decrease of 28 °C in the cloud point temperature. Furthermore, the cyclization of the POEC12's markedly suppressed the rate of protease hydrolysis caused by the surfactants. The initial rate of reduction of a detergent enzyme from Bacillus licheniformis was increased by more than 40% in the case of c-POE600C12 and c-POE1000C12, even though they exhibited surface activities almost equal to or higher than those of their linear counterparts. These results suggest that cyclization induces unusual aqueous behaviors in POEC12, making the surfactant milder with respect to detergent enzymes while ensuring it exhibits increased surface activity.
Collapse
Affiliation(s)
- Yuki Hirose
- Faculty of Science and Technology, Tokyo University of Science , 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Toshiaki Taira
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST) , Central 5-2, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kenichi Sakai
- Faculty of Science and Technology, Tokyo University of Science , 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideki Sakai
- Faculty of Science and Technology, Tokyo University of Science , 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akira Endo
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST) , Central 5-2, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Tomohiro Imura
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST) , Central 5-2, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
35
|
Martin N, Li M, Mann S. Selective Uptake and Refolding of Globular Proteins in Coacervate Microdroplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5881-9. [PMID: 27268140 DOI: 10.1021/acs.langmuir.6b01271] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Intrinsic differences in the molecular sequestration of folded and unfolded proteins within poly(diallyldimethylammonium) (PDDA)/poly(acrylate) (PAA) coacervate microdroplets are exploited to establish membrane-free microcompartments that support protein refolding, facilitate the recovery of secondary structure and enzyme activity, and enable the selective uptake and exclusion of folded and unfolded biomolecules, respectively. Native bovine serum albumin, carbonic anhydrase, and α-chymotrypsin are preferentially sequestered within positively charged coacervate microdroplets, and the unfolding of these proteins in the presence of increasing amounts of urea results in an exponential decrease in the equilibrium partition constants as well as the kinetic release of unfolded molecules from the droplets into the surrounding continuous phase. Slow refolding in the presence of positively charged microdroplets leads to the resequestration of functional proteins and the restoration of enzymatic activity; however, fast refolding results in protein aggregation at the droplet surface. In contrast, slow and fast refolding in the presence of negatively charged PDDA/PAA droplets gives rise to reduced protein aggregation and misfolding by interactions at the droplet surface to give increased levels of protein renaturation. Together, our observations provide new insights into the bottom-up design and construction of self-assembling microcompartments capable of supporting the selective uptake and refolding of globular proteins.
Collapse
Affiliation(s)
- Nicolas Martin
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| |
Collapse
|
36
|
Pereira MM, Cruz RAP, Almeida MR, Lima ÁS, Coutinho JAP, Freire MG. Single-Step Purification of Ovalbumin from Egg White Using Aqueous Biphasic Systems. Process Biochem 2016; 51:781-791. [PMID: 27642253 DOI: 10.1016/j.procbio.2016.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of aqueous biphasic systems (ABS) composed of polyethylene glycols of different molecular weights (PEG 400, 600 and 1000) and buffered aqueous solutions of potassium citrate/citric acid (pH = 5.0 - 8.0) to selectively extract ovalbumin from egg white was here investigated. Phase diagrams, tie-lines and tie-line lengths were determined at 25ºC and the partitioning of ovalbumin in these systems was then evaluated. Aiming at optimizing the selective extraction of ovalbumin in the studied ABS, factors such as pH, PEG molecular weight and amount of the phase-forming components were initially investigated with pure commercial ovalbumin. In almost all ABS, it was observed a preferential partitioning of ovalbumin to the polymer-rich phase, with extraction efficiencies higher than 90%. The best ABS were then applied in the purification of ovalbumin from the real egg white matrix. In order to ascertain on the ovalbumin purity and yield, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion high performance liquid chromatography (SE-HPLC) analyses were conducted, confirming that the isolation/purification of ovalbumin from egg white was completely achieved in a single-step with a recovery yield of 65%. The results obtained show that polymer-salt-based ABS allow the selective extraction of ovalbumin from egg white with a simpler approach and better performance than previously reported. Finally, it is shown that ovalbumin can be completely recovered from the PEG-rich phase by an induced precipitation using an inexpensive and sustainable separation platform which can be easily applied on an industrial scale.
Collapse
Affiliation(s)
- Matheus M Pereira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rafaela A P Cruz
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mafalda R Almeida
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Álvaro S Lima
- Programa de Pós-Graduação em Engenharia de Processos, Universidade Tiradentes, Farolândia, CEP 49032-490 Aracaju, SE, Brazil
| | - João A P Coutinho
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
37
|
Li R, Muraoka T, Kinbara K. Contrasting Topological Effect of PEG-Containing Amphiphiles to Natural Lipids on Stability of Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4546-4553. [PMID: 27093474 DOI: 10.1021/acs.langmuir.6b00713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Topology of amphiphiles is important to control physicochemical properties of supramolecular assemblies. Nature demonstrates higher stability of membrane composed of lipids with a macrocyclic aliphatic tail than those with linear tails, which likely results from the restricted molecular structures of the macrocyclic lipids, allowing for closer molecular packing. In contrast, here we report that a PEG-containing macrocyclic amphiphile shows lower stability of vesicles than the corresponding acyclic one. The macrocyclic amphiphile consists of an aromatic hydrophobic part with chirality in which both ends are strapped by octaethylene glycol via phosphoric ester groups, while the acyclic amphiphile bears tetraethylene glycol chains attached to both ends of the hydrophobic part. Because of the thermoresponsive property of PEG to change its conformation, the hydrophobic part of the macrocyclic amphiphile undergoes a larger thermal conformational change than that of the acyclic one. In addition, the cyclic amphiphile has a larger molecular area, which likely reduces the vesicular stability compared with the acyclic one. Such a contrasting topological effect caused by macrocyclization at the aliphatic part seen in the natural system and at the hydrophilic part demonstrated in this study leads to expand the molecular design of amphiphiles for both increasing and decreasing the stability of vesicles by molecular topology.
Collapse
Affiliation(s)
- Rui Li
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Takahiro Muraoka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kazushi Kinbara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
38
|
Nakamoto M, Nonaka T, Shea KJ, Miura Y, Hoshino Y. Design of Synthetic Polymer Nanoparticles That Facilitate Resolubilization and Refolding of Aggregated Positively Charged Lysozyme. J Am Chem Soc 2016; 138:4282-5. [DOI: 10.1021/jacs.5b12600] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masahiko Nakamoto
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tadashi Nonaka
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenneth J. Shea
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Yoshiko Miura
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
39
|
Kawasaki S, Muraoka T, Hamada T, Shigyou K, Nagatsugi F, Kinbara K. Synthesis and Thermal Responses of Polygonal Poly(ethylene glycol) Analogues. Chem Asian J 2016; 11:1028-35. [DOI: 10.1002/asia.201501381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Shunichi Kawasaki
- Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology; 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
- Institute of Multidisciplinary Research for Advanced Materials; Tohoku University; 2-1-1 Katahira Aoba-ku Sendai 980-8577 Japan
| | - Takahiro Muraoka
- Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology; 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
- Precursory Research for Embryonic Science and Technology; Japan Science and Technology Agency; 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Tsutomu Hamada
- School of Materials Science; Japan Advanced Institute of Science and Technology; 1-1, Asahidai Nomi Ishikawa 923-1292 Japan
| | - Kazuki Shigyou
- School of Materials Science; Japan Advanced Institute of Science and Technology; 1-1, Asahidai Nomi Ishikawa 923-1292 Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials; Tohoku University; 2-1-1 Katahira Aoba-ku Sendai 980-8577 Japan
| | - Kazushi Kinbara
- Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology; 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
- Institute of Multidisciplinary Research for Advanced Materials; Tohoku University; 2-1-1 Katahira Aoba-ku Sendai 980-8577 Japan
| |
Collapse
|
40
|
Saito N, Kobayashi H, Yamaguchi M. "Inverse" thermoresponse: heat-induced double-helix formation of an ethynylhelicene oligomer with tri(ethylene glycol) termini. Chem Sci 2016; 7:3574-3580. [PMID: 29997850 PMCID: PMC6007355 DOI: 10.1039/c5sc04959h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/12/2016] [Indexed: 02/05/2023] Open
Abstract
Ethynylhelicene oligomers with TEG terminal groups showed a unique thermoresponse in aqueous solvents: double-helix formation upon heating and disaggregation upon cooling.
An ethynylhelicene oligomer [(M)-d-4]-C12-TEG with six tri(ethylene glycol) (TEG) groups at the termini was synthesized, and double-helix formation was studied using CD, UV-Vis, vapor pressure osmometry, dynamic light scattering, and 1H NMR. [(M)-d-4]-C12-TEG reversibly changed its structure between a double helix and a random coil in response to heating and cooling in aromatic solvents, non-aromatic polar organic solvents, and aqueous solvent mixtures of acetone/water/triethylamine. Notably, [(M)-d-4]-C12-TEG in acetone/water/triethylamine (1/2/1) formed a double helix upon heating and disaggregated into random coils upon cooling. The double helix/random coil ratio sharply changed in response to temperature changes. This is an unprecedented “inverse” thermoresponse, which is opposite to the “ordinary” thermoresponse in molecular dimeric aggregate formation. This phenomenon was explained by the dehydration of the terminal TEG groups and the formation of condensed triethylamine domains upon heating.
Collapse
Affiliation(s)
- Nozomi Saito
- Department of Organic Chemistry , Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai , Japan . .,Tohoku University Frontier Research Institute for Interdisciplinary Science , Sendai , Japan
| | - Higashi Kobayashi
- Department of Organic Chemistry , Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai , Japan .
| | - Masahiko Yamaguchi
- Department of Organic Chemistry , Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai , Japan .
| |
Collapse
|
41
|
Wan Z, Li Y, Bo S, Gao M, Wang X, Zeng K, Tao X, Li X, Yang Z, Jiang ZX. Amide bond-containing monodisperse polyethylene glycols beyond 10 000 Da. Org Biomol Chem 2016; 14:7912-9. [DOI: 10.1039/c6ob01286h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Monodisperse polyethylene glycols above 4000 Da, including the longest one to date (10 262 Da), can be prepared from oligoethylene glycol-containing ω-amino acids through solid phase synthesis.
Collapse
Affiliation(s)
- Zihong Wan
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- China
| | - Yu Li
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- China
| | - Shaowei Bo
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- China
| | - Ming Gao
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- China
| | - Xuemeng Wang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- China
| | - Kai Zeng
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- China
| | - Xin Tao
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- China
| | - Xuefei Li
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences
- Wuhan University
- Wuhan 430071
- China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
| |
Collapse
|
42
|
Kameta N, Matsuzawa T, Yaoi K, Masuda M. Short polyethylene glycol chains densely bound to soft nanotube channels for inhibition of protein aggregation. RSC Adv 2016. [DOI: 10.1039/c6ra06793j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Specific thermal dehydration/rehydration of short polyethylene glycol (PEG) chains densely bound to nanotube channels was useful for aggregation suppression and refolding acceleration of proteins.
Collapse
Affiliation(s)
- N. Kameta
- Research Institute for Sustainable Chemistry
- Department of Materials and Chemistry
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - T. Matsuzawa
- Bioproduction Research Institute
- Department of Life Science and Biotechnology
- AIST
- Tsukuba
- Japan
| | - K. Yaoi
- Bioproduction Research Institute
- Department of Life Science and Biotechnology
- AIST
- Tsukuba
- Japan
| | - M. Masuda
- Research Institute for Sustainable Chemistry
- Department of Materials and Chemistry
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| |
Collapse
|
43
|
Fukunaga N, Konishi K. Unexpected electronic perturbation effects of simple PEG environments on the optical properties of small cadmium chalcogenide clusters. NANOSCALE 2015; 7:20557-20563. [PMID: 26593694 DOI: 10.1039/c5nr06307h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Poly(ethylene glycol) (PEG) has been widely used for the surface protection of inorganic nanoobjects because of its virtually 'inert' nature, but little attention has been paid to its inherent electronic impacts on inorganic cores. Herein, we definitively show, through studies on optical properties of a series of PEG-modified Cd(10)Se(4)(SR)(10) clusters, that the surrounding PEG environments can electronically affect the properties of the inorganic core. For the clusters with PEG units directly attached to an inorganic core (R = (CH(2)CH(2)O)nOCH(3), 1-PEGn, n = 3, ∼7, ∼17, ∼46), the absorption bands, associated with the low-energy transitions, continuously blue-shifted with the increasing PEG chain length. The chain length dependencies were also observed in the photoluminescence properties, particularly in the excitation spectral profiles. By combining the spectral features of several PEG17-modified clusters (2-C(m)-PEG17 and 3) whose PEG and core units are separated by various alkyl chain-based spacers, it was demonstrated that sufficiently long PEG units, including PEG17 and PEG46, cause electronic perturbations in the cluster properties when they are arranged near the inorganic core. These unique effects of the long-PEG environments could be correlated with their large dipole moments, suggesting that the polarity of the proximal chemical environment is critical when affecting the electronic properties of the inorganic cluster core.
Collapse
Affiliation(s)
- Naoto Fukunaga
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan.
| | | |
Collapse
|
44
|
Structure of a PEGylated protein reveals a highly porous double-helical assembly. Nat Chem 2015; 7:823-8. [DOI: 10.1038/nchem.2342] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/31/2015] [Indexed: 12/14/2022]
|
45
|
Zhang H, Li X, Shi Q, Li Y, Xia G, Chen L, Yang Z, Jiang ZX. Highly Efficient Synthesis of Monodisperse Poly(ethylene glycols) and Derivatives through Macrocyclization of Oligo(ethylene glycols). Angew Chem Int Ed Engl 2015; 54:3763-7. [DOI: 10.1002/anie.201410309] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/08/2014] [Indexed: 12/21/2022]
|
46
|
Zhang H, Li X, Shi Q, Li Y, Xia G, Chen L, Yang Z, Jiang ZX. Highly Efficient Synthesis of Monodisperse Poly(ethylene glycols) and Derivatives through Macrocyclization of Oligo(ethylene glycols). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Sadhukhan N, Muraoka T, Ui M, Nagatoishi S, Tsumoto K, Kinbara K. Protein stabilization by an amphiphilic short monodisperse oligo(ethylene glycol). Chem Commun (Camb) 2015; 51:8457-60. [DOI: 10.1039/c4cc10301g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phenyl-appended octa(ethylene glycol) suppresses aggregation of thermally and chemically denatured lysozyme, demonstrating that octa(ethylene glycol) is almost the shortest oligoethylene glycol for providing the capability of stabilizing proteins to molecules.
Collapse
Affiliation(s)
- Nabanita Sadhukhan
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai 980-8577
- Japan
| | - Takahiro Muraoka
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai 980-8577
- Japan
- PRESTO
| | - Mihoko Ui
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai 980-8577
- Japan
| | | | - Kouhei Tsumoto
- Department of Bioengineering
- The University of Tokyo
- Bunkyo-ku
- Japan
- Department of Chemistry and Biotechnology
| | - Kazushi Kinbara
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai 980-8577
- Japan
| |
Collapse
|
48
|
Lebendiker M, Maes M, Friedler A. A screening methodology for purifying proteins with aggregation problems. Methods Mol Biol 2015; 1258:261-281. [PMID: 25447869 DOI: 10.1007/978-1-4939-2205-5_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many proteins are prone to aggregate or insoluble for different reasons. This poses an extraordinary challenge at the expression level, but even more during downstream purification processes. Here we describe a strategy that we developed for purifying prone-to-aggregate proteins. Our methodology can be easily implemented in small laboratories without the need for automated, expensive platforms. This procedure is especially suitable for intrinsically disordered proteins (IDPs) and for proteins with intrinsically disordered regions (IDRs). Such proteins are likely to aggregate due to their lack of tertiary structure and their extended and flexible conformations. Similar methodologies can be applied to other proteins with comparable tendency to aggregate during the expression or purification steps. In this chapter, we will mainly focus on protein solubility and stability issues during purification and storage, on factors that can prevent aggregation or maintain solubility, and on the importance of the early elimination of aggregates during protein purification.
Collapse
Affiliation(s)
- Mario Lebendiker
- Protein Purification Facility, Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel,
| | | | | |
Collapse
|
49
|
McGovern RE, Snarr BD, Lyons JA, McFarlane J, Whiting AL, Paci I, Hof F, Crowley PB. Structural study of a small molecule receptor bound to dimethyllysine in lysozyme. Chem Sci 2015; 6:442-449. [PMID: 25530835 PMCID: PMC4266562 DOI: 10.1039/c4sc02383h] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lysine is a ubiquitous residue on protein surfaces. Post translational modifications of lysine, including methylation to the mono-, di- or trimethylated amine result in chemical and structural alterations that have major consequences for protein interactions and signalling pathways. Small molecules that bind to methylated lysines are potential tools to modify such pathways. To make progress in this direction, detailed structural data of ligands in complex with methylated lysine is required. Here, we report a crystal structure of p-sulfonatocalix[4]arene (sclx4) bound to methylated lysozyme in which the lysine residues were chemically modified from Lys-NH3+ to Lys-NH(Me2)+. Of the six possible dimethyllysine sites, sclx4 selected Lys116-Me2 and the dimethylamino substituent was deeply buried in the calixarene cavity. This complex confirms the tendency for Lys-Me2 residues to form cation-π interactions, which have been shown to be important in protein recognition of histone tails bearing methylated lysines. Supporting data from NMR spectroscopy and MD simulations confirm the selectivity for Lys116-Me2 in solution. The structure presented here may serve as a stepping stone to the development of new biochemical reagents that target methylated lysines.
Collapse
Affiliation(s)
- Róise E McGovern
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Brendan D Snarr
- Department of Chemistry, University of Victoria, British Columbia, V8W 3V6, Canada
| | - Joseph A Lyons
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - James McFarlane
- Department of Chemistry, University of Victoria, British Columbia, V8W 3V6, Canada
| | - Amanda L Whiting
- Department of Chemistry, University of Victoria, British Columbia, V8W 3V6, Canada
| | - Irina Paci
- Department of Chemistry, University of Victoria, British Columbia, V8W 3V6, Canada
| | - Fraser Hof
- Department of Chemistry, University of Victoria, British Columbia, V8W 3V6, Canada
| | - Peter B Crowley
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
50
|
Rajan R, Matsumura K. A zwitterionic polymer as a novel inhibitor of protein aggregation. J Mater Chem B 2015; 3:5683-5689. [DOI: 10.1039/c5tb01021g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A zwitterionic polymer was synthesized via RAFT polymerization. This polymer prevented heat induced protein aggregation, by preventing hydrophobic interactions between protein chains in solution, thus acting as a molecular shield.
Collapse
Affiliation(s)
- Robin Rajan
- School of Materials Science
- Japan Advanced Institute of Science and
- Technology
- Nomi
- Japan
| | - Kazuaki Matsumura
- School of Materials Science
- Japan Advanced Institute of Science and
- Technology
- Nomi
- Japan
| |
Collapse
|