1
|
Zhou X, Hu Z, Ji X. Synthesis of Adhesive Polyrotaxanes Through Sequential Self-Assembly via Supramolecular Interactions and Dynamic Covalent Interactions. Chemistry 2024; 30:e202402156. [PMID: 39140795 DOI: 10.1002/chem.202402156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
Self-assembly is an effective approach to construct complicated structures. Polyrotaxanes (PRs) as one of the typical polymer types with complex structure, own interlocked structures and dynamic components, in which it results in unique characteristics and functions. Currently, the synthesis of which involves covalent reactions to hinder the development of polyrotaxanes. Herein, we employed supramolecular interactions as well as dynamic covalent bonds to synthesize PRs by sequential self-assembly. First, we prepared M1 possessing two diamine structures and M2 of a bisammonium salt with two dibenzylammonium (DBA) units modified by two stoppers at its ends, then M1 and M2 self-assembled into supramolecular polymers stemming from hydrogen bonding of [N+-H ⋅ ⋅ ⋅ O] under high concentrations. After adding 2,6-pyridinedicarboxaldehyde (M3), the imine bond formation enabled the generation of macrocycles, transforming supramolecular polymers into PRs. Besides, the solution of polyrotaxanes was applied as the adhesive for diverse hard and soft materials. This strategy provides an important approach for synthesizing PRs, accelerating the advances of mechanically interlocked polymers.
Collapse
Affiliation(s)
- Xiaohe Zhou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 43007, China
| | - Ziqing Hu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 43007, China
| | - Xiaofan Ji
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 43007, China
| |
Collapse
|
2
|
Song T, Liu H, Zou H, Wang C, Shu S, Dai H, Duan L. Metal-Free Wet Chemistry for the Fast Gram-Scale Synthesis of γ-Graphyne and its Derivatives. Angew Chem Int Ed Engl 2024:e202411228. [PMID: 39292221 DOI: 10.1002/anie.202411228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
γ-Graphyne (GY), an emerging carbon allotrope, is envisioned to offer various alluring properties and broad applicability. While significant progress has been made in the synthesis of GY over recent decades, its widespread application hinges on developing efficient, scalable, and accessible synthetic methods for the production of GY and its derivatives. Here we report a facile metal-free nucleophilic crosslinking method using wet chemistry for fast gram-scale production of GY and its derivatives. This synthesis method involves the aromatic nucleophilic substitution reactions between fluoro-(hetero)arenes and alkynyl silanes in the presence of a catalytic amount of tetrabutylammonium fluoride, where the fluoride plays a crucial role in removing protective groups from alkynyl silanes and generating reactive alkynylides. Our comprehensive analysis of the as-prepared GY reveals a layered structure, characterized by the presence of the C(sp)-C(sp2) bond. The synthetic strategy shows remarkable tolerance to various functional groups and enables the preparation of diverse F-/N-rich GY derivatives, using electron-deficient fluoro-substituted (hetero)arenes as precursors. The feasibility of producing GY and derivatives from fluorinated (hetero)arenes through the metal-free, scalable, and cost-effective approach paves the way for broad applications of GY and may inspire the development of new carbon materials.
Collapse
Affiliation(s)
- Tao Song
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310030, Hangzhou, China
| | - Hong Liu
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Haiyuan Zou
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Cheng Wang
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310030, Hangzhou, China
| | - Siyan Shu
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310030, Hangzhou, China
| | - Hao Dai
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310030, Hangzhou, China
| | - Lele Duan
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310030, Hangzhou, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, 310000, Hangzhou, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 310024, Hangzhou, China
| |
Collapse
|
3
|
Li X, Xu WT, Xu XQ, Wang Y, Wang XQ, Yang HB, Wang W. Lighting Up Bispyrene-Functionalized Chiral Molecular Muscles with Switchable Circularly Polarized Excimer Emissions. Angew Chem Int Ed Engl 2024:e202412548. [PMID: 39136324 DOI: 10.1002/anie.202412548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Indexed: 10/29/2024]
Abstract
Aiming at the further extension of the application scope of traditional molecular muscles, a novel bispyrene-functionalized chiral molecular [c2]daisy chain was designed and synthesized. Taking advantage of the unique dimeric interlocked structure of molecular [c2]daisy chain, the resultant chiral molecular muscle emits strong circularly polarized luminescence (CPL) attributed to the pyrene excimer with a high dissymmetry factor (glum) value of 0.010. More importantly, along with the solvent- or anion- induced motions of the chiral molecular muscle, the precise regulation of the pyrene stacking within its skeleton results in the switching towards either "inversed" state with sign inversion and larger glum values or "down" state with maintained handedness and smaller glum values, making it a novel multistate CPL switch. As the first example of chiral molecular muscle-based CPL switch, this proof-of-concept study not only successfully widens the application scopes of molecular muscles, but also provides a promising platform for the construction of novel smart chiral luminescent materials for practical applications.
Collapse
Affiliation(s)
- Xue Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xiao-Qin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process Engineering, Sinopec Research Institute of Petroleum Processing Co. LTD., Beijing, 100083, China
- East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
4
|
Riebe J, Bädorf B, Löffelsender S, Gutierrez Suburu ME, Rivas Aiello MB, Strassert CA, Grimme S, Niemeyer J. Molecular folding governs switchable singlet oxygen photoproduction in porphyrin-decorated bistable rotaxanes. Commun Chem 2024; 7:171. [PMID: 39112693 PMCID: PMC11306352 DOI: 10.1038/s42004-024-01247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Rotaxanes are mechanically interlocked molecules where a ring (macrocycle) is threaded onto a linear molecule (thread). The position of the macrocycle on different stations on the thread can be controlled in response to external stimuli, making rotaxanes applicable as molecular switches. Here we show that bistable rotaxanes based on the combination of a Zn(II) tetraphenylporphyrin photosensitizer, attached to the macrocycle, and a black-hole-quencher, attached to the thread, are capable of singlet oxygen production which can be switched on/off by the addition of base/acid. However, we found that only a sufficiently long linker between both stations on the thread enabled switchability, and that the direction of switching was inversed with regard to the original design. This unexpected behavior was attributed to intramolecular folding of the rotaxanes, as indicated by extensive theoretical calculations. This evidences the importance to take into account the conformational flexibility of large molecular structures when designing functional switchable systems.
Collapse
Affiliation(s)
- Jan Riebe
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Benedikt Bädorf
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Sarah Löffelsender
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Matias E Gutierrez Suburu
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - María Belén Rivas Aiello
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany.
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany.
| |
Collapse
|
5
|
Zuo Y, Chen Z, Li Z, Fu E, Xin Y, Chen C, Li C, Zhang S. Unraveling the Dynamic Molecular Motions of a Twin-Cavity Cage with Slow Configurational but Rapid Conformational Interconversions. Angew Chem Int Ed Engl 2024; 63:e202405858. [PMID: 38604976 DOI: 10.1002/anie.202405858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Featuring diverse structural motions/changes, dynamic molecular systems hold promise for executing complex tasks. However, their structural complexity presents formidable challenge in elucidating their kinetics, especially when multiple structural motions are intercorrelated. We herein introduce a twin-cavity cage that features interconvertible C3- and C1-configurations, with each configuration exhibiting interchangeable P- and M-conformations. This molecule is therefore composed of four interconnected chiral species (P)-C3, (M)-C3, (P)-C1, (M)-C1. We showcase an effective approach to decouple these sophisticated structural changes into two kinetically distinct pathways. Utilizing time-dependent 1H NMR spectroscopy at various temperatures, which disregards the transition between mirror-image conformations, we first determine the rate constant (kc) for the C3- to C1-configuration interconversion, while time-dependent circular dichroism spectroscopy at different temperatures quantifies the observed rate constant (kobs) of the ensemble of all the structural changes. As kobs ≫ ${{\rm { \gg }}}$ kc, it allows us to decouple the overall molecular motions into a slow configurational transformation and rapid conformational interconversions, with the latter further dissected into two independent conformational interchanges, namely (P)-C3← → ${ \mathbin{{\stackrel{\textstyle\rightarrow} { {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}} } }} }$ (M)-C3 and (P)-C1← → ${ \mathbin{{\stackrel{\textstyle\rightarrow} { {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}} } }} }$ (M)-C1. This work, therefore, sheds light on the comprehensive kinetic study of complex molecular dynamics, offering valuable insights for the rational design of smart dynamic materials for applications of sensing, separation, catalysis, molecular machinery, etc.
Collapse
Affiliation(s)
- Yong Zuo
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Zhenghong Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Ziying Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Enguang Fu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Yonghang Xin
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Chenhao Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Chenfei Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
6
|
Wang B, Lu Y. Collective Molecular Machines: Multidimensionality and Reconfigurability. NANO-MICRO LETTERS 2024; 16:155. [PMID: 38499833 PMCID: PMC10948734 DOI: 10.1007/s40820-024-01379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work. During the last 60 years, designing molecular structures capable of generating unidirectional mechanical motion at the nanoscale has been the topic of intense research. Effective progress has been made, attributed to advances in various fields such as supramolecular chemistry, biology and nanotechnology, and informatics. However, individual molecular machines are only capable of producing nanometer work and generally have only a single functionality. In order to address these problems, collective behaviors realized by integrating several or more of these individual mechanical units in space and time have become a new paradigm. In this review, we comprehensively discuss recent developments in the collective behaviors of molecular machines. In particular, collective behavior is divided into two paradigms. One is the appropriate integration of molecular machines to efficiently amplify molecular motions and deformations to construct novel functional materials. The other is the construction of swarming modes at the supramolecular level to perform nanoscale or microscale operations. We discuss design strategies for both modes and focus on the modulation of features and properties. Subsequently, in order to address existing challenges, the idea of transferring experience gained in the field of micro/nano robotics is presented, offering prospects for future developments in the collective behavior of molecular machines.
Collapse
Affiliation(s)
- Bin Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
7
|
Zhou SW, Zhou D, Gu R, Ma CS, Yu C, Qu DH. Mechanically interlocked [c2]daisy chain backbone enabling advanced shape-memory polymeric materials. Nat Commun 2024; 15:1690. [PMID: 38402228 PMCID: PMC10894290 DOI: 10.1038/s41467-024-45980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/09/2024] [Indexed: 02/26/2024] Open
Abstract
The incorporation of mechanically interlocked structures into polymer backbones has been shown to confer remarkable functionalities to materials. In this work, a [c2]daisy chain unit based on dibenzo-24-crown-8 is covalently embedded into the backbone of a polymer network, resulting in a synthetic material possessing remarkable shape-memory properties under thermal control. By decoupling the molecular structure into three control groups, we demonstrate the essential role of the [c2]daisy chain crosslinks in driving the shape memory function. The mechanically interlocked topology is found to be an essential element for the increase of glass transition temperature and consequent gain of shape memory function. The supramolecular host-guest interactions within the [c2]daisy chain topology not only ensure robust mechanical strength and good network stability of the polymer, but also impart the shape memory polymer with remarkable shape recovery properties and fatigue resistance ability. The incorporation of the [c2]daisy chain unit as a building block has the potential to lay the groundwork for the development of a wide range of shape-memory polymer materials.
Collapse
Affiliation(s)
- Shang-Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Danlei Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ruirui Gu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Chang-Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chengyuan Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
8
|
Xia Q, Jiang H, Liu X, Yin L, Wang X. Advances in Engineered Nano-Biosensors for Bacteria Diagnosis and Multidrug Resistance Inhibition. BIOSENSORS 2024; 14:59. [PMID: 38391978 PMCID: PMC10887026 DOI: 10.3390/bios14020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Bacterial infections continue to pose a significant global health challenge, with the emergence of multidrug-resistant (MDR) bacteria and biofilms further complicating treatment options. The rise of pan-resistant bacteria, coupled with the slow development of new antibiotics, highlights the urgent need for new therapeutic strategies. Nanotechnology-based biosensors offer fast, specific, sensitive, and selective methods for detecting and treating bacteria; hence, it is a promising approach for the diagnosis and treatment of MDR bacteria. Through mechanisms, such as destructive bacterial cell membranes, suppression of efflux pumps, and generation of reactive oxygen species, nanotechnology effectively combats bacterial resistance and biofilms. Nano-biosensors and related technology have demonstrated their importance in bacteria diagnosis and treatment, providing innovative ideas for MDR inhibition. This review focuses on multiple nanotechnology approaches in targeting MDR bacteria and eliminating antimicrobial biofilms, highlighting nano-biosensors via photodynamics-based biosensors, eletrochemistry biosensors, acoustic-dynamics sensors, and so on. Furthermore, the major challenges, opportunities of multi-physical-field biometrics-based biosensors, and relevant nanotechnology in MDR bacterial theranostics are also discussed. Overall, this review provides insights and scientific references to harness the comprehensive and diverse capabilities of nano-biosensors for precise bacteria theranostics and MDR inhibition.
Collapse
Affiliation(s)
- Qingxiu Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China;
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China (X.L.)
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China (X.L.)
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China;
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China (X.L.)
| |
Collapse
|
9
|
Moulin E, Carmona-Vargas CC, Giuseppone N. Daisy chain architectures: from discrete molecular entities to polymer materials. Chem Soc Rev 2023; 52:7333-7358. [PMID: 37850236 DOI: 10.1039/d3cs00619k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Daisy chain architectures, made by the self-complementary threading of an axle covalently linked to a macrocycle, represent a particularly intriguing family of supramolecular and mechanically interlocked (macro)molecules. In this review, we discuss their recent history, their modular chemical structures, and the various synthetic strategies to access them. We also detail how their internal sliding motions can be controlled and how their integration within polymers can amplify that motions up to the macroscopic scale. This overview of the literature demonstrates that the peculiar structure and dynamics of daisy chains have already strongly influenced the research on artificial molecular machines, with the potential to be implemented from nanometric switchable devices to mechanically active soft-matter materials.
Collapse
Affiliation(s)
- Emilie Moulin
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000 Strasbourg, France.
| | - Christian C Carmona-Vargas
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000 Strasbourg, France.
| | - Nicolas Giuseppone
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000 Strasbourg, France.
- Institut Universitaire de France (IUF), France
| |
Collapse
|
10
|
Shi JT, Chen XH, Peng YY, Wang GP, Du GY, Li Q. Tunable Fluorescence and Morphology of Aggregates Built from a Mechanically Bonded Amphiphilic Bistable [2]Rotaxane. Chemistry 2023; 29:e202302132. [PMID: 37526053 DOI: 10.1002/chem.202302132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/02/2023]
Abstract
Advanced Organic Chemical Materials Co-constructed Mechanically bonded amphiphiles (MBAs), also known as mechanically interlocked molecules (MIMs), have emerged as an important kind of functional building block for the construction of artificial molecular machines and soft materials. Herein, a novel MBA, i. e., bistable [2]rotaxane H2 was designed and synthesized. In the solution state, H2 demonstrated pH and metal ion-responsive emissions due to the presence of a distance-dependent photoinduced electron transfer (PET) process and the fluorescence resonance energy transfer (FRET) process, respectively. Importantly, the amphiphilic feature of H2 has endowed it with unique self-assembly capability, and nanospheres were obtained in a mixed H2 O/CH3 CN solvent. Moreover, the morphology of H2 aggregates can be tuned from nanospheres to vesicles due to the pH-controlled shuttling motion-induced alternation of H2 amphiphilicity. Interestingly, larger spheres with novel pearl-chain-like structures from H2 were observed after adding stoichiometric Zn2+ . In particular, H2 shows pH-responsive emissions in its aggregation state, allowing the visualization of the shuttling movement by just naked eyes. It is assumed that the well-designed [2]rotaxane, and particularly the proposed concept of MBA shown here, will further enrich the families of MIMs, offering prospects for synthesizing more MIMs with novel assembly capabilities and bottom-up building dynamic smart materials with unprecedented functions.
Collapse
Affiliation(s)
- Jun-Tao Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xian-Hui Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yuan-Yuan Peng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, P. R. China
| | - Gui-Ping Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, P. R. China
| | - Guang-Yan Du
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Quan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
- Collaborative Innovation Center for, Advanced Organic Chemical Materials Co-constructed, by the Province and Ministry, Ministry-of-Education Key Laboratory for, the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
11
|
Zhu WB, Wei TB, Hu HB, Li ZJ, Zhang YQ, Li YC, Zhang L, Zhang XW. Pillar[5]arene-based supramolecular pseudorotaxane polymer material for ultra-sensitive detection of Fe 3+ and F . RSC Adv 2023; 13:12270-12275. [PMID: 37091614 PMCID: PMC10113919 DOI: 10.1039/d3ra00997a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023] Open
Abstract
Recent advancements in ultra-sensitive detection, particularly the Aggregation Induced Emission (AIE) materials, have demonstrated a promising detection method due to their low cost, real-time detection, and simplicity of operation. Here, coumarin functionalized pillar[5]arene (P5C) and bis-bromohexyl pillar[5]arene (DP5) were successfully combined to create a linear AIE supramolecular pseudorotaxane polymer (PCDP-G). The use of PCDP-G as a supramolecular AIE polymer material for recyclable ultra-sensitive Fe3+ and F- detection is an interesting application of the materials. According to measurements, the low detection limits of PCDP-G for Fe3+ and F- are 4.16 × 10-10 M and 6.8 × 10-10 M, respectively. The PCDP-G is also a very effective logic gate and a material for luminous displays.
Collapse
Affiliation(s)
- Wen-Bo Zhu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Hao-Bin Hu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Zhi-Jun Li
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Yu-Quan Zhang
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Yan-Chun Li
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Liang Zhang
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Xiao-Wei Zhang
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| |
Collapse
|
12
|
Chau AKH, Leung FKC. Exploration of molecular machines in supramolecular soft robotic systems. Adv Colloid Interface Sci 2023; 315:102892. [PMID: 37084547 DOI: 10.1016/j.cis.2023.102892] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Soft robotic system, a new era of material science, is rapidly developing with advanced processing technology in soft matters, featured with biomimetic nature. An important bottom-up approach is through the implementation of molecular machines into polymeric materials, however, the synchronized molecular motions, acumination of strain across multiple length-scales, and amplification into macroscopic actuations remained highly challenging. This review presents the significances, key design strategies, and outlook of the hierarchical supramolecular systems of molecular machines to develop novel types of supramolecular-based soft robotic systems.
Collapse
Affiliation(s)
- Anson Kwok-Hei Chau
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Franco King-Chi Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
13
|
Supramolecular Polymers: Recent Advances Based on the Types of Underlying Interactions. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Yang X, Cheng L, Zhang Z, Zhao J, Bai R, Guo Z, Yu W, Yan X. Amplification of integrated microscopic motions of high-density [2]rotaxanes in mechanically interlocked networks. Nat Commun 2022; 13:6654. [PMID: 36333320 PMCID: PMC9636211 DOI: 10.1038/s41467-022-34286-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Integrating individual microscopic motion to perform tasks in macroscopic sale is common in living organisms. However, developing artificial materials in which molecular-level motions could be amplified to behave macroscopically is still challenging. Herein, we present a class of mechanically interlocked networks (MINs) carrying densely rotaxanated backbones as a model system to understand macroscopic mechanical properties stemmed from the integration and amplification of intramolecular motion of the embedded [2]rotaxane motifs. On the one hand, the motion of mechanical bonds introduces the original dangling chains into the network, and the synergy of numerous such microscopic motions leads to an expansion of entire network, imparting good stretchability and puncture resistance to the MINs. On the other hand, the dissociation of host-guest recognition and subsequent sliding motion represent a peculiar energy dissipation pathway, whose integration and amplification result in the bulk materials with favorable toughness and damping capacity. Thereinto, we develop a continuous stress-relaxation method to elucidate the microscopic motion of [2]rotaxane units, which contributes to the understanding of the relationship between cumulative microscopic motions and amplified macroscopic mechanical performance.
Collapse
Affiliation(s)
- Xue Yang
- grid.16821.3c0000 0004 0368 8293School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
| | - Lin Cheng
- grid.16821.3c0000 0004 0368 8293School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
| | - Zhaoming Zhang
- grid.16821.3c0000 0004 0368 8293School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
| | - Jun Zhao
- grid.16821.3c0000 0004 0368 8293School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
| | - Ruixue Bai
- grid.16821.3c0000 0004 0368 8293School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
| | - Zhewen Guo
- grid.16821.3c0000 0004 0368 8293School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
| | - Wei Yu
- grid.16821.3c0000 0004 0368 8293School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
| | - Xuzhou Yan
- grid.16821.3c0000 0004 0368 8293School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
| |
Collapse
|
15
|
Qiu TY, Zhao YN, Tang WS, Tan HQ, Sun HY, Kang ZH, Zhao X, Li YG. Smart Covalent Organic Framework with Proton-Initiated Switchable Photocatalytic Aerobic Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tian-Yu Qiu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ying-Nan Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wen-Si Tang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hua-Qiao Tan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hui-Ying Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhen-Hui Kang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Xia Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yang-Guang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
16
|
Yelda Ünlü F, Aydogan A. An AB 2 -Type Hyperbranched Supramolecular Polymer Based on Calix[4]pyrrole Anion Recognition: Construction, Stimuli-Responsiveness, and Morphology Tuning. Macromol Rapid Commun 2022; 43:e2200447. [PMID: 35858488 DOI: 10.1002/marc.202200447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/01/2022] [Indexed: 11/10/2022]
Abstract
An AB2 -type monomer comprised of a calix[4]pyrrole skeleton and alternating bis-carboxylate units is reported and used for the construction of a novel supramolecular hyperbranched polymer based on anion recognition ability of calix[4]pyrrole. 1 H-, DOSY-NMR spectroscopy, viscosity measurements, and dynamic light scattering techniques are used for the characterization of the supramolecular hyperbranched polymer exhibiting thermo-, pH-, and chemical responsiveness, as well as concentration dependent morphology tune as inferred from electron microscopy analyses. The present study enriches the field of supramolecular polymers with a new construction motif, building block, and provides a simple approach for the fabrication of smart polymer material with multi-responsiveness and -morphologies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fatma Yelda Ünlü
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Abdullah Aydogan
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
17
|
Chen L, Sheng X, Li G, Huang F. Mechanically interlocked polymers based on rotaxanes. Chem Soc Rev 2022; 51:7046-7065. [PMID: 35852571 DOI: 10.1039/d2cs00202g] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nature of mechanically interlocked molecules (MIMs) has continued to encourage researchers to design and construct a variety of high-performance materials. Introducing mechanically interlocked structures into polymers has led to novel polymeric materials, called mechanically interlocked polymers (MIPs). Rotaxane-based MIPs are an important class, where the mechanically interlocked characteristic retains a high degree of structural freedom and mobility of their components, such as the rotation and sliding motions of rotaxane units. Therefore, these MIP materials are known to possess a unique set of properties, including mechanical robustness, adaptability and responsiveness, which endow them with potential applications in many emerging fields, such as protective materials, intelligent actuators, and mechanisorption. In this review, we outline the synthetic strategies, structure-property relationships, and application explorations of various polyrotaxanes, including linear polyrotaxanes, polyrotaxane networks, and rotaxane dendrimers.
Collapse
Affiliation(s)
- Liya Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Xinru Sheng
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. .,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. .,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China. .,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
18
|
Li P, Zhou L, Zhao C, Ju H, Gao Q, Si W, Cheng L, Hao J, Li M, Chen Y, Jia C, Guo X. Single-molecule nano-optoelectronics: insights from physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086401. [PMID: 35623319 DOI: 10.1088/1361-6633/ac7401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Single-molecule optoelectronic devices promise a potential solution for miniaturization and functionalization of silicon-based microelectronic circuits in the future. For decades of its fast development, this field has made significant progress in the synthesis of optoelectronic materials, the fabrication of single-molecule devices and the realization of optoelectronic functions. On the other hand, single-molecule optoelectronic devices offer a reliable platform to investigate the intrinsic physical phenomena and regulation rules of matters at the single-molecule level. To further realize and regulate the optoelectronic functions toward practical applications, it is necessary to clarify the intrinsic physical mechanisms of single-molecule optoelectronic nanodevices. Here, we provide a timely review to survey the physical phenomena and laws involved in single-molecule optoelectronic materials and devices, including charge effects, spin effects, exciton effects, vibronic effects, structural and orbital effects. In particular, we will systematically summarize the basics of molecular optoelectronic materials, and the physical effects and manipulations of single-molecule optoelectronic nanodevices. In addition, fundamentals of single-molecule electronics, which are basic of single-molecule optoelectronics, can also be found in this review. At last, we tend to focus the discussion on the opportunities and challenges arising in the field of single-molecule optoelectronics, and propose further potential breakthroughs.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Zhou
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Si
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Cheng
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Yijian Chen
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| |
Collapse
|
19
|
Zhang X, Liu K, Zhao J, Zhang Z, Luo Z, Guo Y, Zhang H, Wang Y, Bai R, Zhao D, Yang X, Liu Y, Yan X. Mechanically Interlocked Aerogels with Densely Rotaxanated Backbones. J Am Chem Soc 2022; 144:11434-11443. [PMID: 35696720 DOI: 10.1021/jacs.2c04717] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanically interlocked molecules are considered promising candidates for the construction of self-adaptive materials by virtue of their fascinating structural and dynamic features. However, it is still a great challenge to fabricate such materials with higher complexity and richer functionality. Herein, we propose the concept of mechanically interlocked aerogels (MIAs) in which the three-dimensional (3D) porous frameworks are made of dense mechanically interlocked modules, thereby enabling the integration of mechanical adaptivity and multifunctionality in a single entity. The lightweight MIA monoliths possess a good appearance and hierarchical meso- and submicron-pores. Profiting from the combination of dynamic mechanical bonds and porous skeletons of aerogels, our MIAs are not only mechanically robust (average Young's modulus = 5.80 GPa and specific modulus = 130.5 kN·m/kg) but also showcase favorable mechanical adaptivity and responsiveness under external stimuli. Taking advantage of the above integrative merits, we demonstrate the multifunctionality of our MIAs in terms of iodine uptake, thermal insulation, and selective adsorption of organic dyes. Our work opens the door to designing intelligent aerogels with delicate topological chemical structures while facilitating the development of mechanically interlocked materials.
Collapse
Affiliation(s)
- Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuchen Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Dong Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xue Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
20
|
Hertzog JE, Maddi VJ, Hart LF, Rawe BW, Rauscher PM, Herbert KM, Bruckner EP, de Pablo JJ, Rowan SJ. Metastable doubly threaded [3]rotaxanes with a large macrocycle. Chem Sci 2022; 13:5333-5344. [PMID: 35655545 PMCID: PMC9093191 DOI: 10.1039/d2sc01486f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Ring size is a critically important parameter in many interlocked molecules as it directly impacts many of the unique molecular motions that they exhibit. Reported herein are studies using one of the largest macrocycles reported to date to synthesize doubly threaded [3]rotaxanes. A large ditopic 46 atom macrocycle containing two 2,6-bis(N-alkyl-benzimidazolyl)pyridine ligands has been used to synthesize several metastable doubly threaded [3]rotaxanes in high yield (65-75% isolated) via metal templating. Macrocycle and linear thread components were synthesized and self-assembled upon addition of iron(ii) ions to form the doubly threaded pseudo[3]rotaxanes that could be subsequently stoppered using azide-alkyne cycloaddition chemistry. Following demetallation with base, these doubly threaded [3]rotaxanes were fully characterized utilizing a variety of NMR spectroscopy, mass spectrometry, size-exclusion chromatography, and all-atom simulation techniques. Critical to the success of accessing a metastable [3]rotaxane with such a large macrocycle was the nature of the stopper group employed. By varying the size of the stopper group it was possible to access metastable [3]rotaxanes with stabilities in deuterated chloroform ranging from a half-life of <1 minute to ca. 6 months at room temperature potentially opening the door to interlocked materials with controllable degradation rates.
Collapse
Affiliation(s)
- Jerald E Hertzog
- Department of Chemistry, University of Chicago Chicago IL 60637 USA
| | - Vincent J Maddi
- Department of Chemistry, University of Chicago Chicago IL 60637 USA
| | - Laura F Hart
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| | - Benjamin W Rawe
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| | - Phillip M Rauscher
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
| | - Katie M Herbert
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
- Department of Macromolecular Science and Engineering, Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106 USA
| | - Eric P Bruckner
- Department of Macromolecular Science and Engineering, Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106 USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
- Chemical Science and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory 9700 S. Cass Ave., Lemont IL 60434 USA
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago Chicago IL 60637 USA
- Pritzker School of Molecular Engineering, University of Chicago Chicago IL 60637 USA
- Department of Macromolecular Science and Engineering, Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106 USA
- Chemical Science and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory 9700 S. Cass Ave., Lemont IL 60434 USA
| |
Collapse
|
21
|
Gauthier M, Waelès P, Coutrot F. Post-Synthetic Macrocyclization of Rotaxane Building Blocks. Chempluschem 2021; 87:e202100458. [PMID: 34811956 DOI: 10.1002/cplu.202100458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Indexed: 11/06/2022]
Abstract
Although not often encountered, cyclic interlocked molecules are appealing molecular targets because of their restrained tridimensional structure which is related to both the cyclic and interlocked shapes. Interlocked molecules such as rotaxane building blocks may be good candidates for post-synthetic intramolecular cyclization if the preservation of the mechanical bond ensures the interlocked architecture throughout the reaction. This is obviously the case if the modification does not involve the cleavage of either the macrocycle's main chain or the encircled part of the axle. However, among the post-synthetic reactions, the chemical linkage between two reactive sites belonging to embedded elements of rotaxanes still consists of an underexploited route to interlocked cyclic molecules. This Review lists the rare examples of macrocyclization through chemical connection between reactive sites belonging to a surrounding macrocycle and/or an encircled axle of interlocked rotaxanes.
Collapse
Affiliation(s)
- Maxime Gauthier
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Philip Waelès
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Frédéric Coutrot
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
22
|
Nishino T, Martin CJ, Yasuhara K, Rapenne G. Nanocars based on Polyaromatic or Porphyrinic Chassis. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Toshio Nishino
- Division of Materials Science, Nara Institute of Science and Technology, NAIST
| | - Colin J. Martin
- Division of Materials Science, Nara Institute of Science and Technology, NAIST
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology, NAIST
| | - Gwénaël Rapenne
- Division of Materials Science, Nara Institute of Science and Technology, NAIST
| |
Collapse
|
23
|
Urakami N, Shimomasu H, Matsumura J. Formation of the various types of daisy chains constructed by modified cyclodextrin depending on the bond angle of the modified part linked to α-cyclodextrin. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1983179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Naohito Urakami
- Department of Physics and Informatics, Yamaguchi University, Yamaguchi, Japan
| | - Haruna Shimomasu
- Department of Physics and Informatics, Yamaguchi University, Yamaguchi, Japan
| | - Junya Matsumura
- Department of Physics and Informatics, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
24
|
|
25
|
Yu Z, Centola M, Valero J, Matthies M, Šulc P, Famulok M. A Self-Regulating DNA Rotaxane Linear Actuator Driven by Chemical Energy. J Am Chem Soc 2021; 143:13292-13298. [PMID: 34398597 DOI: 10.1021/jacs.1c06226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nature-inspired molecular machines can exert mechanical forces by controlling and varying the distance between two molecular subunits in response to different inputs. Here, we present an automated molecular linear actuator composed of T7 RNA polymerase (T7RNAP) and a DNA [2]rotaxane. A T7 promoter region and terminator sequences are introduced into the rotaxane axle to achieve automated and iterative binding and detachment of T7RNAP in a self-controlled fashion. Transcription by T7RNAP is exploited to control the release of the macrocycle from a single-stranded (ss) region in the T7 promoter to switch back and forth from a static state (hybridized macrocycle) to a dynamic state (movable macrocycle). During transcription, the T7RNAP keeps restricting the movement range on the axle available for the interlocked macrocycle and prevents its return to the promotor region. Since this range is continuously depleted as T7RNAP moves along, a directional and active movement of the macrocycle occurs. When it reaches the transcription terminator, the polymerase detaches, and the system can reset as the macrocycle moves back to hybridize again to the ss-promoter docking site. The hybridization is required for the initiation of a new transcription cycle. The rotaxane actuator runs autonomously and repeats these self-controlled cycles of transcription and movement as long as NTP-fuel is available.
Collapse
Affiliation(s)
- Ze Yu
- LIMES Chemical Biology Unit, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Mathias Centola
- LIMES Chemical Biology Unit, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.,Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Julián Valero
- LIMES Chemical Biology Unit, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.,Interdisciplinary Nanoscience Center - INANO-MBG, iNANO-huset, Gustav Wieds Vej 14, building 1592, 328, 8000 Århus C, Denmark
| | - Michael Matthies
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Michael Famulok
- LIMES Chemical Biology Unit, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.,Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
26
|
Kartha KK, Takai A, Futera Z, Labuta J, Takeuchi M. Dynamics of Meso–Chiral Interconversion in a Butterfly‐Shape Overcrowded Alkene Rotor Tunable by Solvent Properties. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kalathil K. Kartha
- Molecular Design and Function Group National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Atsuro Takai
- Molecular Design and Function Group National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Zdeněk Futera
- University of South Bohemia Faculty of Science Branišovská 1760 370 05 České Budějovice Czech Republic
| | - Jan Labuta
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| |
Collapse
|
27
|
Kartha KK, Takai A, Futera Z, Labuta J, Takeuchi M. Dynamics of Meso-Chiral Interconversion in a Butterfly-Shape Overcrowded Alkene Rotor Tunable by Solvent Properties. Angew Chem Int Ed Engl 2021; 60:16466-16471. [PMID: 33905168 DOI: 10.1002/anie.202102719] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/15/2021] [Indexed: 11/10/2022]
Abstract
Elucidation of dynamics of molecular rotational motion is an essential part and challenging area of research. We demonstrate reversible diastereomeric interconversion of a molecular rotor composed of overcrowded butterfly-shape alkene (FDF). Its inherent dual rotatory motion (two rotors, one stator) with interconversion between two diastereomers, chiral trans-FDF and meso cis-FDF forms, has been examined in detail upon varying temperatures and solvents. The free energy profile of 180° revolution of one rotor part has a bimodal shape with unevenly positioned maxima (transition states). FDF in aromatic solvents adopts preferentially meso cis-conformation, while in non-aromatic solvents a chiral trans-conformation is more abundant owing to the solvent interactions with peripheral hexyl chains (solvophobic effect). Moderate correlations between the trans-FDF/cis-FDF ratio and solvent parameters, such as refractive index, polarizability, and viscosity were found.
Collapse
Affiliation(s)
- Kalathil K Kartha
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Atsuro Takai
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Zdeněk Futera
- University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Jan Labuta
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| |
Collapse
|
28
|
Akiyoshi R, Komatsumaru Y, Donoshita M, Dekura S, Yoshida Y, Kitagawa H, Kitagawa Y, Lindoy LF, Hayami S. Ferroelectric and Spin Crossover Behavior in a Cobalt(II) Compound Induced by Polar-Ligand-Substituent Motion. Angew Chem Int Ed Engl 2021; 60:12717-12722. [PMID: 33713041 DOI: 10.1002/anie.202015322] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/12/2021] [Indexed: 02/01/2023]
Abstract
Ferroelectric spin crossover (SCO) behavior is demonstrated to occur in the cobalt(II) complex, [Co(FPh-terpy)2 ](BPh4 )2 ⋅3ac (1⋅3 ac; FPh-terpy=4'-((3-fluorophenyl)ethynyl)-2,2':6',2''-terpyridine) and is dependent on the degree of 180° flip-flop motion of the ligand's polar fluorophenyl ring. Single crystal X-ray structures at several temperatures confirmed the flip-flop motion of fluorobenzene ring and also gave evidence for the SCO behavior with the latter behavior also confirmed by magnetic susceptibility measurements. The molecular motion of the fluorobenzene ring was also revealed using solid-state 19 F NMR spectroscopy. Thus the SCO behavior is accompanied by the flip-flop motion of the fluorobenzene ring, leading to destabilization of the low spin cobalt(II) state; with the magnitude of rotation able to be controlled by an electric field. This first example of spin-state conversion being dependent on the molecular motion of a ligand-appended fluorobenzene ring in a SCO cobalt(II) compound provides new insight for the design of a new category of molecule-based magnetoelectric materials.
Collapse
Affiliation(s)
- Ryohei Akiyoshi
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yuki Komatsumaru
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Masaki Donoshita
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shun Dekura
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yukihiro Yoshida
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yasutaka Kitagawa
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Leonard F Lindoy
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.,Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
29
|
Akiyoshi R, Komatsumaru Y, Donoshita M, Dekura S, Yoshida Y, Kitagawa H, Kitagawa Y, Lindoy LF, Hayami S. Ferroelectric and Spin Crossover Behavior in a Cobalt(II) Compound Induced by Polar‐Ligand‐Substituent Motion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ryohei Akiyoshi
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Yuki Komatsumaru
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Masaki Donoshita
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Shun Dekura
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Yukihiro Yoshida
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Hiroshi Kitagawa
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Yasutaka Kitagawa
- Division of Chemical Engineering Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1–3, Machikaneyama, Toyonaka Osaka 560-8531 Japan
| | - Leonard F. Lindoy
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Shinya Hayami
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
- Institute of Industrial Nanomaterials (IINa) Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
30
|
Furusho Y, Endo T. Supramolecular polymer gels formed from polyamidine and random copolymer of
n‐butyl
acrylate and acrylic acid. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yoshio Furusho
- Department of Chemistry Shiga University of Medical Science Otsu Shiga Japan
- Molecular Engineering Institute Kyushu Institute of Technology Kitakyushu Japan
| | - Takeshi Endo
- Molecular Engineering Institute Kyushu Institute of Technology Kitakyushu Japan
| |
Collapse
|
31
|
Asato R, Martin CJ, Abid S, Gisbert Y, Asanoma F, Nakashima T, Kammerer C, Kawai T, Rapenne G. Molecular Rotor Functionalized with a Photoresponsive Brake. Inorg Chem 2021; 60:3492-3501. [DOI: 10.1021/acs.inorgchem.0c03330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ryosuke Asato
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- International Collaborative Laboratory for Supraphotoactive Systems, NAIST-CEMES, CNRS, UPR 8011, 29 rue Marvig, F-31055 Toulouse, Cedex 4, France
| | - Colin J. Martin
- International Collaborative Laboratory for Supraphotoactive Systems, NAIST-CEMES, CNRS, UPR 8011, 29 rue Marvig, F-31055 Toulouse, Cedex 4, France
| | - Seifallah Abid
- CEMES, Université de Toulouse, CNRS, 29 rue Marvig, F-31055 Toulouse, Cedex 4, France
| | - Yohan Gisbert
- CEMES, Université de Toulouse, CNRS, 29 rue Marvig, F-31055 Toulouse, Cedex 4, France
| | - Fumio Asanoma
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Takuya Nakashima
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Claire Kammerer
- CEMES, Université de Toulouse, CNRS, 29 rue Marvig, F-31055 Toulouse, Cedex 4, France
| | - Tsuyoshi Kawai
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- International Collaborative Laboratory for Supraphotoactive Systems, NAIST-CEMES, CNRS, UPR 8011, 29 rue Marvig, F-31055 Toulouse, Cedex 4, France
| | - Gwénaël Rapenne
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- International Collaborative Laboratory for Supraphotoactive Systems, NAIST-CEMES, CNRS, UPR 8011, 29 rue Marvig, F-31055 Toulouse, Cedex 4, France
- CEMES, Université de Toulouse, CNRS, 29 rue Marvig, F-31055 Toulouse, Cedex 4, France
| |
Collapse
|
32
|
Tsuchiya H, Sinawang G, Asoh TA, Osaki M, Ikemoto Y, Higuchi Y, Yamaguchi H, Harada A, Uyama H, Takashima Y. Supramolecular Biocomposite Hydrogels Formed by Cellulose and Host-Guest Polymers Assisted by Calcium Ion Complexes. Biomacromolecules 2020; 21:3936-3944. [PMID: 32809809 DOI: 10.1021/acs.biomac.0c01095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogels are biocompatible polymer networks; however, they have the disadvantage of having poor mechanical properties. Herein, the mechanical properties of host-guest hydrogels were increased by adding a filler and incorporating other noncovalent interactions. Cellulose was added as a filler to the hydrogels to afford a composite. Citric acid-modified cellulose (CAC) with many carboxyl groups was used instead of conventional cellulose. The preparation began with mixing an acrylamide-based αCD host polymer (p-αCD) and a dodecanoic acid guest polymer (p-AADA) to form supramolecular hydrogels (p-αCD/p-AADA). However, when CAC was directly added to p-αCD/p-AADA to form biocomposite hydrogels (p-αCD/p-AADA/CAC), it showed weaker mechanical properties than p-αCD/p-AADA itself. This was caused by the strong intramolecular hydrogen bonding (H-bonding) within the CAC, which prevented the CAC reinforcing p-αCD/p-AADA in p-αCD/p-AADA/CAC. Then, calcium chloride solution (CaCl2) was used to form calcium ion (Ca2+) complexes between the CAC and p-αCD/p-AADA. This approach successfully created supramolecular biocomposite hydrogels assisted by Ca2+ complexes (p-αCD/p-AADA/CAC/Ca2+) with improved mechanical properties relative to p-αCD/p-AADA hydrogels; the toughness was increased 6-fold, from 1 to 6 MJ/m3. The mechanical properties were improved because of the disruption of the intramolecular H-bonding within the CAC by Ca2+ and subsequent complex formation between the carboxyl groups of CAC and p-AADA. This mechanism is a new approach for improving the mechanical properties of hydrogels that can be broadly applied as biomaterials.
Collapse
Affiliation(s)
- Hinako Tsuchiya
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Garry Sinawang
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Taka-Aki Asoh
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Motofumi Osaki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation Research Institute (SPring-8), 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yuji Higuchi
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akira Harada
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
|
34
|
Su H, Chen W, Li L, Li B, Zhang ZY, Li C. Coordination-Driven Poly[2]Pseudorotaxanes in Highly Polar Organic Solvent. Front Chem 2020; 8:579. [PMID: 32850622 PMCID: PMC7406859 DOI: 10.3389/fchem.2020.00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/04/2020] [Indexed: 11/13/2022] Open
Abstract
Self-assembly of polypseudorotaxanes in high-polar organic solvents is difficult due to remarkably weak interactions between macrocycles and axles. Reported here is a novel metal-coordinated poly[2]pseudorotaxane constructed by pillar[5]arene, 1,4-bis(4-pyridyl pyridinium)butane, and [PdCl2(PhCN)2] in highly polar organic solvent of dimethyl sulfoxide (DMSO). Utilizing a combination of 1H NMR, NOESY, DOSY, DLS, SEM, and viscosity measurements, the formation of polypseudorotaxane was shown to be dependent on the concentration of [2]pseudorotaxanes/[PdCl2(PhCN)2] and temperature. Furthermore, a temperature-responsive supramolecular gel with reversibly gel-sol transformation was obtained via spontaneous assembly of the polypseudorotaxanes at high concentrations.
Collapse
Affiliation(s)
- Hang Su
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China.,Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, China
| | - Wei Chen
- Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, China
| | - Liang Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Bin Li
- Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, China
| | - Zhi-Yuan Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, China
| | - Chunju Li
- Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, China.,Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, China
| |
Collapse
|
35
|
|
36
|
Sinawang G, Osaki M, Takashima Y, Yamaguchi H, Harada A. Biofunctional hydrogels based on host–guest interactions. Polym J 2020. [DOI: 10.1038/s41428-020-0352-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
37
|
Corra S, Curcio M, Baroncini M, Silvi S, Credi A. Photoactivated Artificial Molecular Machines that Can Perform Tasks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906064. [PMID: 31957172 DOI: 10.1002/adma.201906064] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/17/2019] [Indexed: 05/24/2023]
Abstract
Research on artificial photoactivated molecular machines has moved in recent years from a basic scientific endeavor toward a more applicative effort. Nowadays, the prospect of reproducing the operation of natural nanomachines with artificial counterparts is no longer a dream but a concrete possibility. The progress toward the construction of molecular-machine-based devices and materials in which light irradiation results in the execution of a task as a result of nanoscale movements is illustrated here. After a brief description of a few basic types of photoactivated molecular machines, significant examples of their exploitation to perform predetermined functions are presented. These include switchable catalysts, nanoactuators that interact with cellular membranes, transporters of small molecular cargos, and active joints capable of mechanically coupling molecular-scale movements. Investigations aimed at harnessing the collective operation of a multitude of molecular machines organized in arrays to perform tasks at the microscale and macroscale in hard and soft materials are also reviewed. Surfaces, gels, liquid crystals, polymers, and self-assembled nanostructures are described wherein the nanoscale movement of embedded molecular machines is amplified, allowing the realization of muscle-like actuators, microfluidic devices, and polymeric materials for light energy transduction and storage.
Collapse
Affiliation(s)
- Stefano Corra
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Massimiliano Curcio
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Massimo Baroncini
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Serena Silvi
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40127, Bologna, Italy
| | - Alberto Credi
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| |
Collapse
|
38
|
Moulin E, Faour L, Carmona‐Vargas CC, Giuseppone N. From Molecular Machines to Stimuli‐Responsive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906036. [PMID: 31833132 DOI: 10.1002/adma.201906036] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/18/2019] [Indexed: 05/12/2023]
Affiliation(s)
- Emilie Moulin
- SAMS Research Group, Institut Charles Sadron, CNRS‐UPR 22University of Strasbourg 23 rue du Loess, BP 84047 Strasbourg 67034 Cedex 2 France
| | - Lara Faour
- SAMS Research Group, Institut Charles Sadron, CNRS‐UPR 22University of Strasbourg 23 rue du Loess, BP 84047 Strasbourg 67034 Cedex 2 France
| | - Christian C. Carmona‐Vargas
- SAMS Research Group, Institut Charles Sadron, CNRS‐UPR 22University of Strasbourg 23 rue du Loess, BP 84047 Strasbourg 67034 Cedex 2 France
| | - Nicolas Giuseppone
- SAMS Research Group, Institut Charles Sadron, CNRS‐UPR 22University of Strasbourg 23 rue du Loess, BP 84047 Strasbourg 67034 Cedex 2 France
| |
Collapse
|
39
|
Mariani G, Colard-Itté JR, Moulin E, Giuseppone N, Buhler E. Structural properties of contractile gels based on light-driven molecular motors: a small-angle neutron and X-ray study. SOFT MATTER 2020; 16:4008-4023. [PMID: 32267287 DOI: 10.1039/d0sm00031k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The detailed structure of active polymer gels built by integrating light-driven rotary molecular motors as reticulation units in polymer networks is discussed as a function of gel composition. Upon light-irradiation, the collective rotation of molecular motors is translated into the macroscopic contraction of the gels through polymer chains twisting. The major role of the characteristic ratio c/c* (c* being the overlap concentration of the polymer-motor conjugates before crosslinking) on the contraction efficiency is exploited. Combined small-angle neutron and X-ray scattering experiments reveal the importance of heterogeneities in the macroscopic contraction process: the mesh size of the network increases under irradiation in the whole range of c/c*, an increase that is maximal for c/c* = 1; i.e. at higher contraction efficiency. Furthermore, the mesh size of the network reaches equilibrium within a short period of time, while the heterogeneities increase in size untill the end of the contraction process. Finally, the significant motorized twisting of polymer chains within the network allows to foresee the design of new storage energy systems.
Collapse
Affiliation(s)
- Giacomo Mariani
- Matière et Systèmes Complexes Laboratory (MSC), UMR CNRS 7057, Université de Paris, Bâtiment Condorcet, 75205 Paris Cedex 13, France.
| | - Jean-Rémy Colard-Itté
- Institut Charles Sadron, UPR CNRS 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France.
| | - Emilie Moulin
- Institut Charles Sadron, UPR CNRS 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France.
| | - Nicolas Giuseppone
- Institut Charles Sadron, UPR CNRS 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France.
| | - Eric Buhler
- Matière et Systèmes Complexes Laboratory (MSC), UMR CNRS 7057, Université de Paris, Bâtiment Condorcet, 75205 Paris Cedex 13, France.
| |
Collapse
|
40
|
Li WJ, Wang W, Wang XQ, Li M, Ke Y, Yao R, Wen J, Yin GQ, Jiang B, Li X, Yin P, Yang HB. Daisy Chain Dendrimers: Integrated Mechanically Interlocked Molecules with Stimuli-Induced Dimension Modulation Feature. J Am Chem Soc 2020; 142:8473-8482. [PMID: 32302108 DOI: 10.1021/jacs.0c02475] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The precise construction of the high-order mechanically interlocked molecules (MIMs) with well-defined topological arrangements of multiple mechanically interlocked units has been a great challenge. Herein, we present the first successful preparation of a new family of daisy chain dendrimers, in which the individual [c2]daisy chain rotaxane units serve as the branches of dendrimer skeleton. In particular, the third-generation daisy chain dendrimer with 21 [c2]daisy chain rotaxane moieties was realized, which might be among the most complicated discrete high-order MIMs comprised of multiple [c2]daisy chain rotaxane units. Interestingly, such unique topological arrangements of multiple stimuli-responsive [c2]daisy chain rotaxanes endowed the resultant daisy chain dendrimers controllable and reversible nanoscale dimension modulation through the collective and amplified extension/contraction of each [c2]daisy chain rotaxane branch upon the addition of acetate anions or DMSO molecules as external stimulus. Furthermore, on the basis of such an intriguing size switching feature of daisy chain dendrimers, dynamic composite polymer films were constructed through the incorporation of daisy chain dendrimers into polymer films, which could undergo fast, reversible, and controllable shape transformations when DMSO molecules were employed as stimulus. The successful merging of [c2]daisy chain rotaxanes and dendrimers described herein provides not only a brand-new type of high-order mechanically interlocked systems with well-defined topological arrangements of [c2]daisy chain rotaxanes, but also a successful and practical approach toward the construction of supramolecular dynamic materials.
Collapse
Affiliation(s)
- Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yubin Ke
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Rui Yao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Jin Wen
- Institute of Theoretical Chemistry, Faculty of Vienna, University of Vienna, Währinger Strasse 17, Vienna A-1090, Austria.,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China.,Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Bo Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| |
Collapse
|
41
|
Sinawang G, Osaki M, Takashima Y, Yamaguchi H, Harada A. Supramolecular self-healing materials from non-covalent cross-linking host-guest interactions. Chem Commun (Camb) 2020; 56:4381-4395. [PMID: 32249859 DOI: 10.1039/d0cc00672f] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The introduction of non-covalent bonds is effective for achieving self-healing properties because they can be controlled reversibly. One approach to introduce these bonds into supramolecular materials is use of host-guest interactions. This feature article summarizes the development of supramolecular materials constructed by non-covalent cross-linking through several approaches, such as host-guest interactions between host polymers and guest polymers, 1 : 2-type host-guest interactions, and host-guest interactions from the polymerization of host-guest inclusion complexes. Host-guest interactions show self-healing functions while also enabling stimuli-responsiveness (redox, pH, and temperature). The self-healing function of supramolecular materials is achieved by stress dispersion arising from host-guest interactions when stress is applied. Reversible bonds based on host-guest interactions have tremendous potential to expand the variety of functional materials.
Collapse
Affiliation(s)
- Garry Sinawang
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | | | |
Collapse
|
42
|
Biagini C, Di Stefano S. Abiotic Chemical Fuels for the Operation of Molecular Machines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912659] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chiara Biagini
- Dipartimento di Chimica Istituto CNR per i Sistemi Biologici (ISB-CNR) Sezione Meccanismi di Reazione Università di Roma “La Sapienza” P. le A. Moro 5 00185 Roma Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica Istituto CNR per i Sistemi Biologici (ISB-CNR) Sezione Meccanismi di Reazione Università di Roma “La Sapienza” P. le A. Moro 5 00185 Roma Italy
| |
Collapse
|
43
|
Biagini C, Di Stefano S. Abiotic Chemical Fuels for the Operation of Molecular Machines. Angew Chem Int Ed Engl 2020; 59:8344-8354. [DOI: 10.1002/anie.201912659] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/28/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Chiara Biagini
- Dipartimento di Chimica Istituto CNR per i Sistemi Biologici (ISB-CNR) Sezione Meccanismi di Reazione Università di Roma “La Sapienza” P. le A. Moro 5 00185 Roma Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica Istituto CNR per i Sistemi Biologici (ISB-CNR) Sezione Meccanismi di Reazione Università di Roma “La Sapienza” P. le A. Moro 5 00185 Roma Italy
| |
Collapse
|
44
|
Xiao T, Zhou L, Sun XQ, Huang F, Lin C, Wang L. Supramolecular polymers fabricated by orthogonal self-assembly based on multiple hydrogen bonding and macrocyclic host–guest interactions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
45
|
Shejul DA, Wagalgave SM, Jadhav RW, Kobaisi MA, La DD, Jones LA, Bhosale RS, Bhosale SV, Bhosale SV. Aggregation-induced emission characteristics and solvent triggered hierarchical self-assembled chiral superstructures of naphthalenediimide amphiphiles. NEW J CHEM 2020. [DOI: 10.1039/c9nj05137f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein, we report the design, synthesis and self-assembly of two naphthalene diimide amphiphiles NDI-TA1 and NDI-TA2 bearing acylated and deacylated hydroxyl groups of tartaric acid, respectively.
Collapse
Affiliation(s)
- Dipak A. Shejul
- Polymers and Functional Materials Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Sopan M. Wagalgave
- Polymers and Functional Materials Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Ratan W. Jadhav
- School of Chemical Sciences
- Goa University
- Taleigao Plateau
- India
| | - Mohammad Al Kobaisi
- School of Science
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn
| | - Duong Duc La
- Institute of Chemistry and Materials
- Hoang Sam
- Vietnam
| | | | | | - Sidhanath V. Bhosale
- Polymers and Functional Materials Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | | |
Collapse
|
46
|
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules 2019; 25:molecules25010112. [PMID: 31892180 PMCID: PMC6982820 DOI: 10.3390/molecules25010112] [Citation(s) in RCA: 444] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Nanoscience breakthroughs in almost every field of science and nanotechnologies make life easier in this era. Nanoscience and nanotechnology represent an expanding research area, which involves structures, devices, and systems with novel properties and functions due to the arrangement of their atoms on the 1–100 nm scale. The field was subject to a growing public awareness and controversy in the early 2000s, and in turn, the beginnings of commercial applications of nanotechnology. Nanotechnologies contribute to almost every field of science, including physics, materials science, chemistry, biology, computer science, and engineering. Notably, in recent years nanotechnologies have been applied to human health with promising results, especially in the field of cancer treatment. To understand the nature of nanotechnology, it is helpful to review the timeline of discoveries that brought us to the current understanding of this science. This review illustrates the progress and main principles of nanoscience and nanotechnology and represents the pre-modern as well as modern timeline era of discoveries and milestones in these fields.
Collapse
Affiliation(s)
- Samer Bayda
- Department of Chemistry, Faculty of Sciences, Jinan University, Tripoli 818, Lebanon
- Correspondence: (S.B.); (F.R.); Tel.: +961-06-447 907 (S.B.); +39-0434-659026 (F.R.)
| | - Muhammad Adeel
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
- PhD School in Science and Technology of Bio and Nanomaterials, University Ca’ Foscari of Venice, 30170 Venice, Italy
| | | | - Marco Cordani
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain;
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
- Department of Molecular science and Nanosystems, University Ca’ Foscari of Venice, 30170 Venice, Italy
- Correspondence: (S.B.); (F.R.); Tel.: +961-06-447 907 (S.B.); +39-0434-659026 (F.R.)
| |
Collapse
|
47
|
Dattler D, Fuks G, Heiser J, Moulin E, Perrot A, Yao X, Giuseppone N. Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors. Chem Rev 2019; 120:310-433. [PMID: 31869214 DOI: 10.1021/acs.chemrev.9b00288] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precise control over molecular movement is of fundamental and practical importance in physics, biology, and chemistry. At nanoscale, the peculiar functioning principles and the synthesis of individual molecular actuators and machines has been the subject of intense investigations and debates over the past 60 years. In this review, we focus on the design of collective motions that are achieved by integrating, in space and time, several or many of these individual mechanical units together. In particular, we provide an in-depth look at the intermolecular couplings used to physically connect a number of artificial mechanically active molecular units such as photochromic molecular switches, nanomachines based on mechanical bonds, molecular rotors, and light-powered rotary motors. We highlight the various functioning principles that can lead to their collective motion at various length scales. We also emphasize how their synchronized, or desynchronized, mechanical behavior can lead to emerging functional properties and to their implementation into new active devices and materials.
Collapse
Affiliation(s)
- Damien Dattler
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Gad Fuks
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Joakim Heiser
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Emilie Moulin
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Alexis Perrot
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Xuyang Yao
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Nicolas Giuseppone
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| |
Collapse
|
48
|
Goswami A, Saha S, Biswas PK, Schmittel M. (Nano)mechanical Motion Triggered by Metal Coordination: from Functional Devices to Networked Multicomponent Catalytic Machinery. Chem Rev 2019; 120:125-199. [DOI: 10.1021/acs.chemrev.9b00159] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Abir Goswami
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| |
Collapse
|
49
|
Wang XQ, Li WJ, Wang W, Wen J, Zhang Y, Tan H, Yang HB. Construction of Type III-C Rotaxane-Branched Dendrimers and Their Anion-Induced Dimension Modulation Feature. J Am Chem Soc 2019; 141:13923-13930. [PMID: 31411028 DOI: 10.1021/jacs.9b06739] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Starting from a novel rotaxane building block with dendrimer growth sites being located at both the wheel and axle component, we realized the successful construction of a new family of rotaxane-branched dendrimers, i.e., Type III-C rotaxane-branched dendrimers, up to fourth generation as a highly branched [46]rotaxane through a controllable divergent approach. In the resultant rotaxane-branched dendrimers, the wheel components of the rotaxane units are located on the branches as well as at the branching points, making them excellent candidates to mimic the amplified collective molecular motions. Thus, taking advantage of the urea moiety inserted into the axle components of the rotaxane units as the binding sites, the addition or removal of acetate anion as stimulus endows the individual rotaxane unit a switchable feature that lead to a collective expansion-contraction motion of the integrated rotaxane-branched dendrimers, thus allowing for the remarkable and reversible size modulation. Such a three-dimensional size switching feature makes Type III-C rotaxane-branched dendrimers a very promising platform toward the fabrication of novel dynamic smart materials.
Collapse
Affiliation(s)
- Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute , East China Normal University , 3663 N. Zhongshan Road , Shanghai 200062 , People's Republic of China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute , East China Normal University , 3663 N. Zhongshan Road , Shanghai 200062 , People's Republic of China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute , East China Normal University , 3663 N. Zhongshan Road , Shanghai 200062 , People's Republic of China
| | - Jin Wen
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , 16610 Prague 6 , Czech Republic
| | - Ying Zhang
- Department of Chemistry , Beijing Normal University , Beijing 100050 , People's Republic of China
| | - Hongwei Tan
- Department of Chemistry , Beijing Normal University , Beijing 100050 , People's Republic of China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute , East China Normal University , 3663 N. Zhongshan Road , Shanghai 200062 , People's Republic of China
| |
Collapse
|
50
|
Abstract
Directed motion at the nanoscale is a central attribute of life, and chemically driven motor proteins are nature's choice to accomplish it. Motivated and inspired by such bionanodevices, in the past few decades chemists have developed artificial prototypes of molecular motors, namely, multicomponent synthetic species that exhibit directionally controlled, stimuli-induced movements of their parts. In this context, photonic and redox stimuli represent highly appealing modes of activation, particularly from a technological viewpoint. Here we describe the evolution of the field of photo- and redox-driven artificial molecular motors, and we provide a comprehensive review of the work published in the past 5 years. After an analysis of the general principles that govern controlled and directed movement at the molecular scale, we describe the fundamental photochemical and redox processes that can enable its realization. The main classes of light- and redox-driven molecular motors are illustrated, with a particular focus on recent designs, and a thorough description of the functions performed by these kinds of devices according to literature reports is presented. Limitations, challenges, and future perspectives of the field are critically discussed.
Collapse
Affiliation(s)
- Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , viale Fanin 44 , 40127 Bologna , Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Chimica "G. Ciamician" , Università di Bologna , via Selmi 2 , 40126 Bologna , Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , viale Fanin 44 , 40127 Bologna , Italy
| |
Collapse
|