1
|
Liu C, Zhang L, Cao L, Xiong Y, Ma Y, Cheng R, Ye J. Iridium-catalyzed enantioselective synthesis of chiral γ-amino alcohols and intermediates of (S)-duloxetine, (R)-fluoxetine, and (R)-atomoxetine. Commun Chem 2022; 5:63. [PMID: 36697664 PMCID: PMC9814375 DOI: 10.1038/s42004-022-00678-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Chiral γ-amino alcohols are the prevalent structural motifs and building blocks in pharmaceuticals and bioactive molecules. Enantioselective hydrogenation of β-amino ketones provides a straightforward and powerful tool for the synthesis of chiral γ-amino alcohols, but the asymmetric transformation is synthetically challenging. Here, a series of tridentate ferrocene-based phosphine ligands bearing modular and tunable unsymmetrical vicinal diamine scaffolds were designed, synthesized, and evaluated in the iridium-catalyzed asymmetric hydrogenation of β-amino ketones. The system was greatly effective to substrates with flexible structure and functionality, and diverse β-tertiary-amino ketones and β-secondary-amino ketones were hydrogenated smoothly. The excellent reactivities and enantioselectivities were achieved in the asymmetric delivery of various chiral γ-amino alcohols with up to 99% yields, >99% ee values, and turnover number (TON) of 48,500. The gram-scale reactions with low catalyst loading showed the potential application in industrial synthesis of chiral drugs, such as (S)-duloxetine, (R)-fluoxetine, and (R)-atomoxetine.
Collapse
Affiliation(s)
- Chengyu Liu
- grid.28056.390000 0001 2163 4895Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lei Zhang
- grid.28056.390000 0001 2163 4895Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Liming Cao
- grid.28056.390000 0001 2163 4895Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yan Xiong
- grid.28056.390000 0001 2163 4895School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yueyue Ma
- grid.411851.80000 0001 0040 0205School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Ruihua Cheng
- grid.28056.390000 0001 2163 4895School of Chemical Engineering, East China University of Science and Technology, Shanghai, China ,grid.411851.80000 0001 0040 0205School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Jinxing Ye
- grid.28056.390000 0001 2163 4895Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China ,grid.411851.80000 0001 0040 0205School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Dube D, Tiwari P, Kaur P. The hunt for antimitotic agents: an overview of structure-based design strategies. Expert Opin Drug Discov 2016; 11:579-97. [PMID: 27077683 DOI: 10.1080/17460441.2016.1174689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Structure-based drug discovery offers a rational approach for the design and development of novel anti-mitotic agents which target specific proteins involved in mitosis. This strategy has paved the way for development of a new generation of chemotypes which selectively interfere with the target proteins. The interference of these anti-mitotic targets implicated in diverse stages of mitotic cell cycle progression culminates in cancer cell apoptosis. AREAS COVERED This review covers the various mitotic inhibitors developed against validated mitotic checkpoint protein targets using structure-based design and optimization strategies. The protein-ligand interactions and the insights gained from these studies, culminating in the development of more potent and selective inhibitors, have been presented. EXPERT OPINION The advent of structure-based drug design coupled with advances in X-ray crystallography has revolutionized the discovery of candidate lead molecules. The structural insights gleaned from the co-complex protein-drug interactions have provided a new dimension in the design of anti-mitotic molecules to develop drugs with a higher selectivity and specificity profile. Targeting non-catalytic domains has provided an alternate approach to address cross-reactivity and broad selectivity among kinase inhibitors. The elucidation of structures of emerging mitotic drug targets has opened avenues for the design of inhibitors that target cancer.
Collapse
Affiliation(s)
- D Dube
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| | - P Tiwari
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| | - P Kaur
- a Department of Biophysics , All India Institute of Medical Sciences , New Delhi , India
| |
Collapse
|
3
|
Abstract
Computational medicinal chemistry offers viable strategies for finding, characterizing, and optimizing innovative pharmacologically active compounds. Technological advances in both computer hardware and software as well as biological chemistry have enabled a renaissance of computer-assisted "de novo" design of molecules with desired pharmacological properties. Here, we present our current perspective on the concept of automated molecule generation by highlighting chemocentric methods that may capture druglike chemical space, consider ligand promiscuity for hit and lead finding, and provide fresh ideas for the rational design of customized screening of compound libraries.
Collapse
Affiliation(s)
- Petra Schneider
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.,inSili.com LLC , Segantinisteig 3, 8049 Zürich, Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) , Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Rodrigues T, Reker D, Welin M, Caldera M, Brunner C, Gabernet G, Schneider P, Walse B, Schneider G. De Novo Fragment Design for Drug Discovery and Chemical Biology. Angew Chem Int Ed Engl 2015; 54:15079-83. [DOI: 10.1002/anie.201508055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 01/08/2023]
|
5
|
Rodrigues T, Reker D, Welin M, Caldera M, Brunner C, Gabernet G, Schneider P, Walse B, Schneider G. De-novo-Fragmententwurf für die Wirkstoffforschung und chemische Biologie. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Wang J, Wang Y, Liu D, Zhang W. Asymmetric Hydrogenation of β-Secondary Amino Ketones Catalyzed by a Ruthenocenyl Phosphino-oxazoline-ruthenium Complex (RuPHOX-Ru): the Synthesis of γ-Secondary Amino Alcohols. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500653] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Elkamhawy A, Al-Sanea MM, Song C, Sim T, Roh EJ. Design and Synthesis of New [1,2,3]Triazolo[4,5-d]pyrimidine Derivatives as Potential Antiproliferative Agents. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ahmed Elkamhawy
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul 136-791 South Korea
- Department of Biological Chemistry; Korea University of Science and Technology (UST); Daejeon 305-350 South Korea
| | - Mohammad M. Al-Sanea
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul 136-791 South Korea
- Department of Biological Chemistry; Korea University of Science and Technology (UST); Daejeon 305-350 South Korea
| | - Chiman Song
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul 136-791 South Korea
| | - Taebo Sim
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul 136-791 South Korea
- Department of Biological Chemistry; Korea University of Science and Technology (UST); Daejeon 305-350 South Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul 136-791 South Korea
- Department of Biological Chemistry; Korea University of Science and Technology (UST); Daejeon 305-350 South Korea
| |
Collapse
|
8
|
Perna AM, Rodrigues T, Schmidt TP, Böhm M, Stutz K, Reker D, Pfeiffer B, Altmann KH, Backert S, Wessler S, Schneider G. Fragment-Based De Novo Design Reveals a Small-Molecule Inhibitor ofHelicobacter PyloriHtrA. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Perna AM, Rodrigues T, Schmidt TP, Böhm M, Stutz K, Reker D, Pfeiffer B, Altmann KH, Backert S, Wessler S, Schneider G. Fragment-Based De Novo Design Reveals a Small-Molecule Inhibitor of Helicobacter Pylori HtrA. Angew Chem Int Ed Engl 2015; 54:10244-8. [PMID: 26069090 DOI: 10.1002/anie.201504035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Indexed: 01/22/2023]
Abstract
Sustained identification of innovative chemical entities is key for the success of chemical biology and drug discovery. We report the fragment-based, computer-assisted de novo design of a small molecule inhibiting Helicobacter pylori HtrA protease. Molecular binding of the designed compound to HtrA was confirmed through biophysical methods, supporting its functional activity in vitro. Hit expansion led to the identification of the currently best-in-class HtrA inhibitor. The results obtained reinforce the validity of ligand-based de novo design and binding-kinetics-guided optimization for the efficient discovery of pioneering lead structures and prototyping drug-like chemical probes with tailored bioactivity.
Collapse
Affiliation(s)
- Anna M Perna
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich (Switzerland)
| | - Tiago Rodrigues
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich (Switzerland)
| | | | - Manja Böhm
- Department of Biology, Universität Erlangen-Nürnberg (Germany)
| | - Katharina Stutz
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich (Switzerland)
| | - Daniel Reker
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich (Switzerland)
| | - Bernhard Pfeiffer
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich (Switzerland)
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich (Switzerland)
| | - Steffen Backert
- Department of Biology, Universität Erlangen-Nürnberg (Germany)
| | - Silja Wessler
- Department of Molecular Biology, Universität Salzburg (Austria)
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zürich (Switzerland).
| |
Collapse
|
10
|
Rodrigues T, Lin YC, Hartenfeller M, Renner S, Lim YF, Schneider G. Repurposing de novo designed entities reveals phosphodiesterase 3B and cathepsin L modulators. Chem Commun (Camb) 2015; 51:7478-81. [DOI: 10.1039/c5cc01376c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Scaffold hopping: a computational algorithm correctly predicted the macromolecular target ofde novogenerated small molecular entities.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Swiss Federal Institute of Technology (ETH)
- Department of Chemistry and Applied Biosciences
- 8093 Zürich
- Switzerland
| | - Yen-Chu Lin
- Swiss Federal Institute of Technology (ETH)
- Department of Chemistry and Applied Biosciences
- 8093 Zürich
- Switzerland
| | - Markus Hartenfeller
- Swiss Federal Institute of Technology (ETH)
- Department of Chemistry and Applied Biosciences
- 8093 Zürich
- Switzerland
- Novartis Pharma AG
| | | | - Yi Fan Lim
- Swiss Federal Institute of Technology (ETH)
- Department of Chemistry and Applied Biosciences
- 8093 Zürich
- Switzerland
| | - Gisbert Schneider
- Swiss Federal Institute of Technology (ETH)
- Department of Chemistry and Applied Biosciences
- 8093 Zürich
- Switzerland
| |
Collapse
|
11
|
Rodrigues T, Hauser N, Reker D, Reutlinger M, Wunderlin T, Hamon J, Koch G, Schneider G. Multidimensional de novo design reveals 5-HT2B receptor-selective ligands. Angew Chem Int Ed Engl 2014; 54:1551-5. [PMID: 25475886 DOI: 10.1002/anie.201410201] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 10/30/2014] [Indexed: 11/10/2022]
Abstract
We report a multi-objective de novo design study driven by synthetic tractability and aimed at the prioritization of computer-generated 5-HT2B receptor ligands with accurately predicted target-binding affinities. Relying on quantitative bioactivity models we designed and synthesized structurally novel, selective, nanomolar, and ligand-efficient 5-HT2B modulators with sustained cell-based effects. Our results suggest that seamless amalgamation of computational activity prediction and molecular design with microfluidics-assisted synthesis enables the swift generation of small molecules with the desired polypharmacology.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 4, 8093 Zurich (Switzerland)
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Rodrigues T, Hauser N, Reker D, Reutlinger M, Wunderlin T, Hamon J, Koch G, Schneider G. Multidimensional De Novo Design Reveals 5-HT2BReceptor-Selective Ligands. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201410201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Abstract
The computer-assisted generation of new chemical entities (NCEs) has matured into solid technology supporting early drug discovery. Both ligand- and receptor-based methods are increasingly used for designing small lead- and druglike molecules with anticipated multi-target activities. Advanced "polypharmacology" prediction tools are essential pillars of these endeavors. In addition, it has been realized that iterative design-synthesis-test cycles facilitate the rapid identification of NCEs with the desired activity profile. Lab-on-a-chip platforms integrating synthesis, analytics and bioactivity determination and controlled by adaptive, chemistry-driven de novo design software will play an important role for future drug discovery.
Collapse
Affiliation(s)
- Gisbert Schneider
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.
| |
Collapse
|
14
|
Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc Natl Acad Sci U S A 2014; 111:4067-72. [PMID: 24591595 DOI: 10.1073/pnas.1320001111] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
De novo molecular design and in silico prediction of polypharmacological profiles are emerging research topics that will profoundly affect the future of drug discovery and chemical biology. The goal is to identify the macromolecular targets of new chemical agents. Although several computational tools for predicting such targets are publicly available, none of these methods was explicitly designed to predict target engagement by de novo-designed molecules. Here we present the development and practical application of a unique technique, self-organizing map-based prediction of drug equivalence relationships (SPiDER), that merges the concepts of self-organizing maps, consensus scoring, and statistical analysis to successfully identify targets for both known drugs and computer-generated molecular scaffolds. We discovered a potential off-target liability of fenofibrate-related compounds, and in a comprehensive prospective application, we identified a multitarget-modulating profile of de novo designed molecules. These results demonstrate that SPiDER may be used to identify innovative compounds in chemical biology and in the early stages of drug discovery, and help investigate the potential side effects of drugs and their repurposing options.
Collapse
|
15
|
Rodrigues T, Kudoh T, Roudnicky F, Lim YF, Lin YC, Koch CP, Seno M, Detmar M, Schneider G. Steering Target Selectivity and Potency by Fragment-Based De Novo Drug Design. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Rodrigues T, Kudoh T, Roudnicky F, Lim YF, Lin YC, Koch CP, Seno M, Detmar M, Schneider G. Steering target selectivity and potency by fragment-based de novo drug design. Angew Chem Int Ed Engl 2013; 52:10006-9. [PMID: 24030898 DOI: 10.1002/anie.201304847] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Indexed: 11/09/2022]
Abstract
Kinase inhibitors: Ligand-based de novo design is validated as a viable technology for rapidly generating innovative compounds possessing the desired biochemical profile. The study discloses the discovery of the most selective vascular endothelial growth factor receptor-2 (VEGFR-2) kinase inhibitor (right in scheme) known to date as prime lead for antiangiogenic drug development.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Wolfgang-Pauli-Str. 10, 8093 Zürich (Switzerland)
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rodrigues T, Roudnicky F, Koch CP, Kudoh T, Reker D, Detmar M, Schneider G. De novo design and optimization of Aurora A kinase inhibitors. Chem Sci 2013. [DOI: 10.1039/c2sc21842a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|