1
|
Díaz-Casado L, Santana AG, Gómez-Pinto I, Villacampa A, Corzana F, Jiménez-Barbero J, González C, Asensio JL. Binding-driven reactivity attenuation enables NMR identification of selective drug candidates for nucleic acid targets. Commun Chem 2022; 5:137. [PMID: 36697799 PMCID: PMC9814457 DOI: 10.1038/s42004-022-00755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 01/28/2023] Open
Abstract
NMR methods, and in particular ligand-based approaches, are among the most robust and reliable alternatives for binding detection and consequently, they have become highly popular in the context of hit identification and drug discovery. However, when dealing with DNA/RNA targets, these techniques face limitations that have precluded widespread application in medicinal chemistry. In order to expand the arsenal of spectroscopic tools for binding detection and to overcome the existing difficulties, herein we explore the scope and limitations of a strategy that makes use of a binding indicator previously unexploited by NMR: the perturbation of the ligand reactivity caused by complex formation. The obtained results indicate that ligand reactivity can be utilised to reveal association processes and identify the best binders within mixtures of significant complexity, providing a conceptually different reactivity-based alternative within NMR screening methods.
Collapse
Affiliation(s)
- Laura Díaz-Casado
- grid.419121.e0000 0004 1761 1887Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Andrés G. Santana
- grid.419121.e0000 0004 1761 1887Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Irene Gómez-Pinto
- grid.429036.a0000 0001 0805 7691Instituto de Química-Física Rocasolano (IQFR-CSIC), Madrid, 28006 Spain
| | - Alejandro Villacampa
- grid.419121.e0000 0004 1761 1887Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Francisco Corzana
- grid.119021.a0000 0001 2174 6969Dept. Química and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26005 La Rioja, Spain
| | - Jesús Jiménez-Barbero
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC-bioGUNE). Derio, 48160 Bizkaia, Spain
| | - Carlos González
- grid.429036.a0000 0001 0805 7691Instituto de Química-Física Rocasolano (IQFR-CSIC), Madrid, 28006 Spain
| | - Juan Luis Asensio
- grid.419121.e0000 0004 1761 1887Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
2
|
Zárate SG, Bastida A, Santana AG, Revuelta J. Synthesis of Ring II/III Fragment of Kanamycin: A New Minimum Structural Motif for Aminoglycoside Recognition. Antibiotics (Basel) 2019; 8:antibiotics8030109. [PMID: 31382490 PMCID: PMC6783941 DOI: 10.3390/antibiotics8030109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022] Open
Abstract
A novel protocol has been established to prepare the kanamycin ring II/III fragment, which has been validated as a minimum structural motif for the development of new aminoglycosides on the basis of its bactericidal activity even against resistant strains. Furthermore, its ability to act as a AAC-(6′) and APH-(3′) binder, and as a poor substrate for the ravenous ANT-(4′), makes it an excellent candidate for the design of inhibitors of these aminoglycoside modifying enzymes.
Collapse
Affiliation(s)
- Sandra G Zárate
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
- Facultad de Tecnología, Carrera de Ingeniería Química, Universidad Mayor, Real y Pontificia de San Francisco Xavier de Chuquisaca, Regimiento Campos 180, Casilla 60-B Sucre, Bolivia
| | - Agatha Bastida
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Andrés G Santana
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Julia Revuelta
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
3
|
Jiménez-Moreno E, Montalvillo-Jiménez L, Santana AG, Gómez AM, Jiménez-Osés G, Corzana F, Bastida A, Jiménez-Barbero J, Cañada FJ, Gómez-Pinto I, González C, Asensio JL. Finding the Right Candidate for the Right Position: A Fast NMR-Assisted Combinatorial Method for Optimizing Nucleic Acids Binders. J Am Chem Soc 2016; 138:6463-74. [DOI: 10.1021/jacs.6b00328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ester Jiménez-Moreno
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Andrés G. Santana
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ana M. Gómez
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Química y Centro de Investigación en
Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
- Institute of Biocomputation and Physics of Complex Systems
(BIFI), University of Zaragoza, BIFI-IQFR (CSIC), 50018 Zaragoza, Spain
| | - Francisco Corzana
- Departamento de Química y Centro de Investigación en
Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Agatha Bastida
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Jesús Jiménez-Barbero
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Center for Cooperative Research in Biosciences (CIC-bioGUNE), 48160 Derio, Bizkaia, Spain
- Basque Foundation for Science, Ikerbasque, 48013 Bilbao, Bizkaia, Spain
| | | | - Irene Gómez-Pinto
- Instituto de Química-Física Rocasolano (IQFR-CSIC), C/ Serrano 119, 28006 Madrid, Spain
| | - Carlos González
- Instituto de Química-Física Rocasolano (IQFR-CSIC), C/ Serrano 119, 28006 Madrid, Spain
| | - Juan Luis Asensio
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
4
|
Santana AG, Zárate SG, Asensio JL, Revuelta J, Bastida A. Selective modification of the 3''-amino group of kanamycin prevents significant loss of activity in resistant bacterial strains. Org Biomol Chem 2016; 14:516-525. [PMID: 26501183 DOI: 10.1039/c5ob01599e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminoglycosides are highly potent, wide-spectrum bactericidals. N-1 modification of aminoglycosides has thus far been the best approach to regain bactericidal efficiency of this class of antibiotics against resistant bacterial strains. In the present study we have evaluated the effect that both, the number of modifications and their distribution on the aminoglycoside amino groups (N-1, N-3, N-6' and N-3''), have on the antibiotic activity. The modification of N-3'' in the antibiotic kanamycin A is the key towards the design of new aminoglycoside antibiotics. This derivative maintains the antibiotic activity against aminoglycoside acetyl-transferase- and nucleotidyl-transferase-expressing strains, which are two of the most prevalent modifying enzymes found in aminoglycoside resistant bacteria.
Collapse
Affiliation(s)
- Andrés G Santana
- CSIC, Department of Bioorganic Chemistry, c/Juan de la Cierva, 3, 28006-Madrid, Spain.
| | | | | | | | | |
Collapse
|
5
|
Madariaga D, Martínez-Sáez N, Somovilla VJ, Coelho H, Valero-González J, Castro-López J, Asensio JL, Jiménez-Barbero J, Busto JH, Avenoza A, Marcelo F, Hurtado-Guerrero R, Corzana F, Peregrina JM. Detection of tumor-associated glycopeptides by lectins: the peptide context modulates carbohydrate recognition. ACS Chem Biol 2015; 10:747-56. [PMID: 25457745 DOI: 10.1021/cb500855x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tn antigen (α-O-GalNAc-Ser/Thr) is a convenient cancer biomarker that is recognized by antibodies and lectins. This work yields remarkable results for two plant lectins in terms of epitope recognition and reveals that these receptors show higher affinity for Tn antigen when it is incorporated in the Pro-Asp-Thr-Arg (PDTR) peptide region of mucin MUC1. In contrast, a significant affinity loss is observed when Tn antigen is located in the Ala-His-Gly-Val-Thr-Ser-Ala (AHGVTSA) or Ala-Pro-Gly-Ser-Thr-Ala-Pro (APGSTAP) fragments. Our data indicate that the charged residues, Arg and Asp, present in the PDTR sequence establish noteworthy fundamental interactions with the lectin surface as well as fix the conformation of the peptide backbone, favoring the presentation of the sugar moiety toward the lectin. These results may help to better understand glycopeptide-lectin interactions and may contribute to engineer new binding sites, allowing novel glycosensors for Tn antigen detection to be designed.
Collapse
Affiliation(s)
- David Madariaga
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Nuria Martínez-Sáez
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Víctor J. Somovilla
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Helena Coelho
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jessika Valero-González
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jorge Castro-López
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Juan L. Asensio
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jesús Jiménez-Barbero
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jesús H. Busto
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Alberto Avenoza
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Filipa Marcelo
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Ramón Hurtado-Guerrero
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Francisco Corzana
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jesús M. Peregrina
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| |
Collapse
|
6
|
Tethering in RNA: an RNA-binding fragment discovery tool. Molecules 2015; 20:4148-61. [PMID: 25749683 PMCID: PMC4760646 DOI: 10.3390/molecules20034148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/20/2015] [Accepted: 02/17/2015] [Indexed: 11/17/2022] Open
Abstract
Tethering has been extensively used to study small molecule interactions with proteins through reversible disulfide bond forming reactions to cysteine residues. We describe the adaptation of Tethering to the study of small molecule binding to RNA using a thiol-containing adenosine analog (ASH). Among 30 disulfide-containing small molecules screened for efficient Tethering to ASH-bearing RNAs derived from pre-miR21, a benzotriazole-containing compound showed prominent adduct formation and selectivity for one of the RNAs tested. The results of this screen demonstrate the viability of using thiol-modified nucleic acids to discover molecules with binding affinity and specificity for the purpose of therapeutic compound lead discovery.
Collapse
|
7
|
Herrmann A. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem Soc Rev 2014; 43:1899-933. [PMID: 24296754 DOI: 10.1039/c3cs60336a] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reversible covalent bond formation under thermodynamic control adds reactivity to self-assembled supramolecular systems, and is therefore an ideal tool to assess complexity of chemical and biological systems. Dynamic combinatorial/covalent chemistry (DCC) has been used to read structural information by selectively assembling receptors with the optimum molecular fit around a given template from a mixture of reversibly reacting building blocks. This technique allows access to efficient sensing devices and the generation of new biomolecules, such as small molecule receptor binders for drug discovery, but also larger biomimetic polymers and macromolecules with particular three-dimensional structural architectures. Adding a kinetic factor to a thermodynamically controlled equilibrium results in dynamic resolution and in self-sorting and self-replicating systems, all of which are of major importance in biological systems. Furthermore, the temporary modification of bioactive compounds by reversible combinatorial/covalent derivatisation allows control of their release and facilitates their transport across amphiphilic self-assembled systems such as artificial membranes or cell walls. The goal of this review is to give a conceptual overview of how the impact of DCC on supramolecular assemblies at different levels can allow us to understand, predict and modulate the complexity of biological systems.
Collapse
Affiliation(s)
- Andreas Herrmann
- Firmenich SA, Division Recherche et Développement, Route des Jeunes 1, B. P. 239, CH-1211 Genève 8, Switzerland.
| |
Collapse
|
8
|
Madariaga D, Martínez-Sáez N, Somovilla VJ, García-García L, Berbis MÁ, Valero-Gónzalez J, Martín-Santamaría S, Hurtado-Guerrero R, Asensio JL, Jiménez-Barbero J, Avenoza A, Busto JH, Corzana F, Peregrina JM. Serine versus Threonine Glycosylation with α-O-GalNAc: Unexpected Selectivity in Their Molecular Recognition with Lectins. Chemistry 2014; 20:12616-27. [DOI: 10.1002/chem.201403700] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 12/17/2022]
|