1
|
Pham TL, Thomas F. Design of Functional Globular β-Sheet Miniproteins. Chembiochem 2024; 25:e202300745. [PMID: 38275210 DOI: 10.1002/cbic.202300745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/27/2024]
Abstract
The design of discrete β-sheet peptides is far less advanced than e. g. the design of α-helical peptides. The reputation of β-sheet peptides as being poorly soluble and aggregation-prone often hinders active design efforts. Here, we show that this reputation is unfounded. We demonstrate this by looking at the β-hairpin and WW domain. Their structure and folding have been extensively studied and they have long served as model systems to investigate protein folding and folding kinetics. The resulting fundamental understanding has led to the development of hyperstable β-sheet scaffolds that fold at temperatures of 100 °C or high concentrations of denaturants. These have been used to design functional miniproteins with protein or nucleic acid binding properties, in some cases with such success that medical applications are conceivable. The β-sheet scaffolds are not always completely rigid, but can be specifically designed to respond to changes in pH, redox potential or presence of metal ions. Some engineered β-sheet peptides also exhibit catalytic properties, although not comparable to those of natural proteins. Previous reviews have focused on the design of stably folded and non-aggregating β-sheet sequences. In our review, we now also address design strategies to obtain functional miniproteins from β-sheet folding motifs.
Collapse
Affiliation(s)
- Truc Lam Pham
- Truc Lam Pham, Prof. Dr. Franziska Thomas, Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Franziska Thomas
- Truc Lam Pham, Prof. Dr. Franziska Thomas, Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Wu H, Xu S, Du P, Liu Y, Li H, Yang H, Wang T, Wang ZG. A nucleotide-copper(II) complex possessing a monooxygenase-like catalytic function. J Mater Chem B 2023. [PMID: 37409588 DOI: 10.1039/d3tb00780d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The de novo design of artificial biocatalysts with enzyme-like active sites and catalytic functions has long been an attractive yet challenging goal. In this study, we present a nucleotide-Cu2+ complex, synthesized through a one-pot approach, capable of catalyzing ortho-hydroxylation reactions resembling those of minimalist monooxygenases. Both experimental and theoretical findings demonstrate that the catalyst, in which Cu2+ coordinates with both the nucleobase and phosphate moieties, forms a ternary-complex intermediate with H2O2 and tyramine substrates through multiple weak interactions. The subsequent electron transfer and hydrogen (or proton) transfer steps lead to the ortho-hydroxylation of tyramine, where the single copper center exhibits a similar function to natural dicopper sites. Moreover, Cu2+ bound to nucleotides or oligonucleotides exhibits thermophilic catalytic properties within the temperature range of 25 °C to 75 °C, while native enzymes are fully deactivated above 35 °C. This study may provide insights for the future design of oxidase-mimetic catalysts and serve as a guide for the design of primitive metallocentre-dependent enzymes.
Collapse
Affiliation(s)
- Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Peidong Du
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Haijun Yang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ting Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
3
|
Hoffnagle AM, Tezcan FA. Atomically Accurate Design of Metalloproteins with Predefined Coordination Geometries. J Am Chem Soc 2023; 145:14208-14214. [PMID: 37352018 PMCID: PMC10439731 DOI: 10.1021/jacs.3c04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
We report a new computational protein design method for the construction of oligomeric protein assemblies around metal centers with predefined coordination geometries. We apply this method to design two homotrimeric assemblies, Tet4 and TP1, with tetrahedral and trigonal-pyramidal tris(histidine) metal coordination geometries, respectively, and demonstrate that both assemblies form the targeted metal centers with ≤0.2 Å accuracy. Although Tet4 and TP1 are constructed from the same parent protein building block, they are distinct in terms of their overall architectures, the environment surrounding the metal centers, and their metal-based reactivities, illustrating the versatility of our approach.
Collapse
Affiliation(s)
- Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| |
Collapse
|
4
|
Abstract
Enzymes fold into three-dimensional structures to distribute amino acid residues for catalysis, which inspired the supramolecular approach to construct enzyme-mimicking catalysts. A key concern in the development of supramolecular strategies is the ability to confine and orient functional groups to form enzyme-like active sites in artificial materials. This review introduces the design principles and construction of supramolecular nanomaterials exhibiting catalytic functions of heme-dependent enzymes, a large class of metalloproteins, which rely on a heme cofactor and spatially configured residues to catalyze diverse reactions via a complex multistep mechanism. We focus on the structure-activity relationship of the supramolecular catalysts and their applications in materials synthesis/degradation, biosensing, and therapeutics. The heme-free catalysts that catalyze reactions achieved by hemeproteins are also briefly discussed. Towards the end of the review, we discuss the outlook on the challenges related to catalyst design and future prospective, including the development of structure-resolving techniques and design concepts, with the aim of creating enzyme-mimicking materials that possess catalytic power rivaling that of natural enzymes..
Collapse
Affiliation(s)
- Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Jeong S, Lee K, Yoo SH, Lee HS, Kwon S. Crystalline Metal-Peptide Networks: Structures, Applications, and Future Outlook. Chembiochem 2023; 24:e202200448. [PMID: 36161687 DOI: 10.1002/cbic.202200448] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Indexed: 01/20/2023]
Abstract
Metal-peptide networks (MPNs), which are assembled from short peptides and metal ions, are considered one of the most fascinating metal-organic coordinated architectures because of their unique and complicated structures. Although MPNs have considerable potential for development into versatile materials, they have not been developed for practical applications because of several underlying limitations, such as designability, stability, and modifiability. In this review, we summarise several important milestones in the development of crystalline MPNs and thoroughly analyse their structural features, such as peptide sequence designs, coordination geometries, cross-linking types, and network topologies. In addition, potential applications such as gas adsorption, guest encapsulation, and chiral recognition are introduced. We believe that this review is a useful survey that can provide insights into the development of new MPNs with more sophisticated structures and novel functions.
Collapse
Affiliation(s)
- Seoneun Jeong
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Kwonjung Lee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Sung Hyun Yoo
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Hee-Seung Lee
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Sunbum Kwon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| |
Collapse
|
6
|
Abstract
Natural enzymes catalyze biochemical transformations in superior catalytic efficiency and remarkable substrate specificity. The excellent catalytic repertoire of enzymes is attributed to the sophisticated chemical structures of their active sites, as a result of billions-of-years natural evolution. However, large-scale practical applications of natural enzymes are restricted due to their poor stability, difficulty in modification, and high costs of production. One viable solution is to fabricate supramolecular catalysts with enzyme-mimetic active sites. In this review, we introduce the principles and strategies of designing peptide-based artificial enzymes which display catalytic activities similar to those of natural enzymes, such as aldolases, laccases, peroxidases, and hydrolases (mainly the esterases and phosphatases). We also discuss some multifunctional enzyme-mimicking systems which are capable of catalyzing orthogonal or cascade reactions. We highlight the relationship between structures of enzyme-like active sites and the catalytic properties, as well as the significance of these studies from an evolutionary point of view.
Collapse
|
7
|
Catalytic Peptides: the Challenge between Simplicity and Functionality. Isr J Chem 2022. [DOI: 10.1002/ijch.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Teng Q, Wu H, Sun H, Liu Y, Wang H, Wang ZG. Switchable Enzyme-mimicking catalysts Self-Assembled from de novo designed peptides and DNA G-quadruplex/hemin complex. J Colloid Interface Sci 2022; 628:1004-1011. [PMID: 35970126 DOI: 10.1016/j.jcis.2022.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/02/2023]
Abstract
Reconstruction of enzymatic active site in an artificial system is key to achieving high catalytic efficiency. Herein, we report the self-assembly of the lysine-containing peptides with guanine-rich DNA and hemin to form peroxidase-mimicking active sites and catalytic nanoparticles. The DNA strand self-folds into a G-quadruplex structure that provides a supramolecular scaffold and a potential axial ligand for hemin. The β-sheet forming capability of the lysine-containing peptides is found to affect the catalytic synergy between the G-quadruplex DNA and the peptide. It is hypothesized that the β-sheet formation of the peptides results in the enrichment of the lysine residues, which distribute on the distal side of hemin to promote the formation of Compound I, like distal arginine residue in natural heme pocket. Incorporation of the histidine residues into the lysine-containing peptides further enhanced the hemin activities, indicating the cooperation between the lysine and histidine. Furthermore, the peptide/DNA/hemin complexes can be switched between active and inactive state by reversible formation and deformation of the DNA G-quadruplex, which was attributed to the peptides-promoted conformational changes of the DNA components. This work opens an avenue to mimic the catalytic residues and their spatial distribution in the natural enzymes, and shed light on the design of the smart biocatalysts that can respond to the environmental stimuli.
Collapse
Affiliation(s)
- Qiao Teng
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Sun
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
9
|
Chatterjee A, Reja A, Pal S, Das D. Systems chemistry of peptide-assemblies for biochemical transformations. Chem Soc Rev 2022; 51:3047-3070. [PMID: 35316323 DOI: 10.1039/d1cs01178b] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the billions of years of the evolutionary journey, primitive polymers, involved in proto metabolic pathways with low catalytic activity, played critical roles in the emergence of modern enzymes with remarkable substrate specificity. The precise positioning of amino acid residues and the complex orchestrated interplay in the binding pockets of evolved enzymes promote covalent and non-covalent interactions to foster a diverse set of complex catalytic transformations. Recent efforts to emulate the structural and functional information of extant enzymes by minimal peptide based assemblies have attempted to provide a holistic approach that could help in discerning the prebiotic origins of catalytically active binding pockets of advanced proteins. In addition to the impressive sets of advanced biochemical transformations, catalytic promiscuity and cascade catalysis by such small molecule based dynamic systems can foreshadow the ancestral catalytic processes required for the onset of protometabolism. Looking beyond minimal systems that work close to equilibrium, catalytic systems and compartments under non-equilibrium conditions utilizing simple prebiotically relevant precursors have attempted to shed light on how bioenergetics played an essential role in chemical emergence of complex behaviour. Herein, we map out these recent works and progress where diverse sets of complex enzymatic transformations were demonstrated by utilizing minimal peptide based self-assembled systems. Further, we have attempted to cover the examples of peptide assemblies that could feature promiscuous activity and promote complex multistep cascade reaction networks. The review also covers a few recent examples of minimal transient catalytic assemblies under non-equilibrium conditions. This review attempts to provide a broad perspective for potentially programming functionality via rational selection of amino acid sequences leading towards minimal catalytic systems that resemble the traits of contemporary enzymes.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Antara Reja
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Sumit Pal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| |
Collapse
|
10
|
Abstract
Natural metalloproteins perform many functions - ranging from sensing to electron transfer and catalysis - in which the position and property of each ligand and metal, is dictated by protein structure. De novo protein design aims to define an amino acid sequence that encodes a specific structure and function, providing a critical test of the hypothetical inner workings of (metallo)proteins. To date, de novo metalloproteins have used simple, symmetric tertiary structures - uncomplicated by the large size and evolutionary marks of natural proteins - to interrogate structure-function hypotheses. In this Review, we discuss de novo design applications, such as proteins that induce complex, increasingly asymmetric ligand geometries to achieve function, as well as the use of more canonical ligand geometries to achieve stability. De novo design has been used to explore how proteins fine-tune redox potentials and catalyse both oxidative and hydrolytic reactions. With an increased understanding of structure-function relationships, functional proteins including O2-dependent oxidases, fast hydrolases, and multi-proton/multi-electron reductases, have been created. In addition, proteins can now be designed using xeno-biological metals or cofactors and principles from inorganic chemistry to derive new-to-nature functions. These results and the advances in computational protein design suggest a bright future for the de novo design of diverse, functional metalloproteins.
Collapse
Affiliation(s)
- Matthew J. Chalkley
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - Samuel I. Mann
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| |
Collapse
|
11
|
Juhász T, Quemé-Peña M, Kővágó B, Mihály J, Ricci M, Horváti K, Bősze S, Zsila F, Beke-Somfai T. Interplay between membrane active host defense peptides and heme modulates their assemblies and in vitro activity. Sci Rep 2021; 11:18328. [PMID: 34526616 PMCID: PMC8443738 DOI: 10.1038/s41598-021-97779-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023] Open
Abstract
In the emerging era of antimicrobial resistance, the susceptibility to co-infections of patients suffering from either acquired or inherited hemolytic disorders can lead to dramatic increase in mortality rates. Closely related, heme liberated during hemolysis is one of the major sources of iron, which is vital for both host and invading microorganisms. While recent intensive research in the field has demonstrated that heme exerts diverse local effects including impairment of immune cells functions, it is almost completely unknown how it may compromise key molecules of our innate immune system, such as antimicrobial host defense peptides (HDPs). Since HDPs hold great promise as natural therapeutic agents against antibiotic-resistant microbes, understanding the effects that may modulate their action in microbial infection is crucial. Here we explore how hemin can interact directly with selected HDPs and influence their structure and membrane activity. It is revealed that induced helical folding, large assembly formation, and altered membrane activity is promoted by hemin. However, these effects showed variations depending mainly on peptide selectivity toward charged lipids, and the affinity of the peptide and hemin to lipid bilayers. Hemin-peptide complexes are sought to form semi-folded co-assemblies, which are present even with model membranes resembling mammalian or bacterial lipid compositions. In vitro cell-based toxicity assays supported that toxic effects of HDPs could be attenuated due to their assembly formation. These results are in line with our previous findings on peptide-lipid-small molecule systems suggesting that small molecules present in the complex in vivo milieu can regulate HDP function. Inversely, diverse effects of endogenous compounds could also be manipulated by HDPs.
Collapse
Affiliation(s)
- Tünde Juhász
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Mayra Quemé-Peña
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary ,grid.5591.80000 0001 2294 6276Hevesy György PhD School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Bence Kővágó
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Judith Mihály
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Maria Ricci
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Kata Horváti
- grid.5591.80000 0001 2294 6276ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Budapest, Hungary ,grid.5591.80000 0001 2294 6276Department of Organic Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Bősze
- grid.5591.80000 0001 2294 6276ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Zsila
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Beke-Somfai
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
12
|
Hamley IW. Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures. Biomacromolecules 2021; 22:1835-1855. [PMID: 33843196 PMCID: PMC8154259 DOI: 10.1021/acs.biomac.1c00240] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Peptides and their conjugates (to lipids, bulky N-terminals, or other groups) can self-assemble into nanostructures such as fibrils, nanotubes, coiled coil bundles, and micelles, and these can be used as platforms to present functional residues in order to catalyze a diversity of reactions. Peptide structures can be used to template catalytic sites inspired by those present in natural enzymes as well as simpler constructs using individual catalytic amino acids, especially proline and histidine. The literature on the use of peptide (and peptide conjugate) α-helical and β-sheet structures as well as turn or disordered peptides in the biocatalysis of a range of organic reactions including hydrolysis and a variety of coupling reactions (e.g., aldol reactions) is reviewed. The simpler design rules for peptide structures compared to those of folded proteins permit ready ab initio design (minimalist approach) of effective catalytic structures that mimic the binding pockets of natural enzymes or which simply present catalytic motifs at high density on nanostructure scaffolds. Research on these topics is summarized, along with a discussion of metal nanoparticle catalysts templated by peptide nanostructures, especially fibrils. Research showing the high activities of different classes of peptides in catalyzing many reactions is highlighted. Advances in peptide design and synthesis methods mean they hold great potential for future developments of effective bioinspired and biocompatible catalysts.
Collapse
Affiliation(s)
- Ian W. Hamley
- Department of Chemistry, University of Reading, RG6 6AD Reading, United Kingdom
| |
Collapse
|
13
|
Fry HC, Peters BL, Ferguson AL. Pushing and Pulling: A Dual pH Trigger Controlled by Varying the Alkyl Tail Length in Heme Coordinating Peptide Amphiphiles. J Phys Chem B 2021; 125:1317-1330. [PMID: 33529038 DOI: 10.1021/acs.jpcb.0c07713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Some organisms in nature that undergo anaerobic respiration utilize 1D nanoscale arrays of densely packed cytochromes containing the molecule heme. The assemblies can be mimicked with 1D nanoscale fibrils composed of peptide amphiphiles designed to coordinate heme in dense arrays. To create such materials and assemblies, it is critical to understand the assembly process and what controls the various aspects of hierarchical assembly. MD simulations suggest that shorter alkyl chains on the peptide lead to more dynamic structures than the peptides with longer chains that yield kinetically trapped states. The hydration parameters manifest themselves experimentally through the observation of a dual pH trigger, which controls the peptide assembly rate, the heme binding affinity, and heme organization kinetics. Great strides in understanding the relative complexity of the self-assembly process in relation to incorporating a functional moiety like heme opens up many possibilities in developing abiotic assemblies for bioelectronic devices and assemblies.
Collapse
Affiliation(s)
- H Christopher Fry
- Center for Nansocale Materials, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, Argonne, Illinois 60712, United States
| | - Brandon L Peters
- Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, Argonne, Illinois 60712, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
Liu S, Du P, Sun H, Yu HY, Wang ZG. Bioinspired Supramolecular Catalysts from Designed Self-Assembly of DNA or Peptides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03753] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Siyuan Liu
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Peidong Du
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Sun
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| | - Hai-Yin Yu
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
15
|
Li M, Liu Z, Ren J, Qu X. Molecular crowding effects on the biochemical properties of amyloid β-heme, Aβ-Cu and Aβ-heme-Cu complexes. Chem Sci 2020; 11:7479-7486. [PMID: 34123030 PMCID: PMC8159413 DOI: 10.1039/d0sc01020k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Heme as a cofactor has been proposed to bind with β-amyloid peptide (Aβ) and the formed Aβ-heme complex exhibits enhanced peroxidase-like activity. So far, in vitro studies on the interactions between heme, Cu and Aβ have been exclusively performed in dilute solution. However, the intracellular environment is highly crowded with biomolecules. Therefore, exploring how Aβ-heme-Cu complexes behave under molecular crowding conditions is critical for understanding the mechanism of Aβ neurotoxicity in vivo. Herein, we selected PEG-200 as a crowding agent to mimic the crowded cytoplasmic environment for addressing the contributions of crowded physiological environments to the biochemical properties of Aβ-heme, Aβ-Cu and Aβ-heme-Cu complexes. Surprisingly, experimental studies and theoretical calculations revealed that molecular crowding weakened the stabilization of the Aβ-heme complex and decreased its peroxidase activity. Our data attributed this consequence to the decreased binding affinity of heme to Aβ as a result of the alterations in water activity and Aβ conformation. Our findings highlight the significance of hydration effects on the interaction of Aβ-heme and Aβ-Cu and their peroxidase activities. Molecular crowding inside cells may potentially impose a positive effect on Aβ-Cu but a negative effect on the interaction of Aβ with heme. This indicates that Aβ40-Cu but not Aβ40-heme may play more important roles in the oxidative damage in the etiology of AD. Therefore, this work provides a new clue for understanding the oxidative damage occurring in AD.
Collapse
Affiliation(s)
- Meng Li
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China +86-431-85262656.,College of Pharmaceutical Sciences, Hebei Medical University Shijiazhuang 050017 P. R. China
| | - Zhenqi Liu
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China +86-431-85262656.,University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China +86-431-85262656.,University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China +86-431-85262656.,University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
16
|
Abstract
Self-assembly of molecules often results in new emerging properties. Even very short peptides can self-assemble into structures with a variety of physical and structural characteristics. Remarkably, many peptide assemblies show high catalytic activity in model reactions reaching efficiencies comparable to those found in natural enzymes by weight. In this review, we discuss different strategies used to rationally develop self-assembled peptide catalysts with natural and unnatural backbones as well as with metal-containing cofactors.
Collapse
Affiliation(s)
- O Zozulia
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA.
| | | | | |
Collapse
|
17
|
Solomon LA, Kronenberg JB, Fry HC. Control of Heme Coordination and Catalytic Activity by Conformational Changes in Peptide-Amphiphile Assemblies. J Am Chem Soc 2017; 139:8497-8507. [PMID: 28505436 DOI: 10.1021/jacs.7b01588] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembling peptide materials have gained significant attention, due to well-demonstrated applications, but they are functionally underutilized. To advance their utility, we use noncovalent interactions to incorporate the biological cofactor heme-B for catalysis. Heme-proteins achieve differing functions through structural and coordinative variations. Here, we replicate this phenomenon by highlighting changes in heme reactivity as a function of coordination, sequence, and morphology (micelles versus fibers) in a series of simple peptide amphiphiles with the sequence c16-xyL3K3-CO2H where c16 is a palmitoyl moiety and xy represents the heme binding region: AA, AH, HH, and MH. The morphology of this peptide series is characterized using transmission electron and atomic force microscopies as well as dynamic light scattering. Within this small library of peptide constructs, we show that three spectroscopically (UV/visible and electron paramagnetic resonance) distinct heme environments were generated: noncoordinated/embedded high-spin, five-coordinate high-spin, and six-coordinate low-spin. The resulting material's functional dependence on sequence and supramolecular morphology is highlighted 2-fold. First, the heme active site binds carbon monoxide in both micelles and fibers, demonstrating that the heme active site in both morphologies is accessible to small molecules for catalysis. Second, peroxidase activity was observed in heme-containing micelles yet was significantly reduced in heme-containing fibers. We briefly discuss the implications these findings have in the production of functional, self-assembling peptide materials.
Collapse
Affiliation(s)
- Lee A Solomon
- Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Jacob B Kronenberg
- Illinois Math and Science Academy , 1500 West Sullivan Road, Aurora, Illinois 60506, United States
| | - H Christopher Fry
- Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| |
Collapse
|
18
|
D'Souza A, Wu X, Yeow EKL, Bhattacharjya S. Designed Heme-Cage β-Sheet Miniproteins. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Areetha D'Souza
- School of Biological Sciences; Nanyang Technological University; Singapore 637551 Singapore
| | - Xiangyang Wu
- School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| | - Edwin Kok Lee Yeow
- School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences; Nanyang Technological University; Singapore 637551 Singapore
| |
Collapse
|
19
|
D'Souza A, Wu X, Yeow EKL, Bhattacharjya S. Designed Heme-Cage β-Sheet Miniproteins. Angew Chem Int Ed Engl 2017; 56:5904-5908. [PMID: 28440962 DOI: 10.1002/anie.201702472] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Indexed: 01/21/2023]
Abstract
The structure and function of naturally occurring proteins are governed by a large number of amino acids (≥100). The design of miniature proteins with desired structures and functions not only substantiates our knowledge about proteins but can also contribute to the development of novel applications. Excellent progress has been made towards the design of helical proteins with diverse functions. However, the development of functional β-sheet proteins remains challenging. Herein, we describe the construction and characterization of four-stranded β-sheet miniproteins made up of about 19 amino acids that bind heme inside a hydrophobic binding pocket or "heme cage" by bis-histidine coordination in an aqueous environment. The designed miniproteins bound to heme with high affinity comparable to that of native heme proteins. Atomic-resolution structures confirmed the presence of a four-stranded β-sheet fold. The heme-protein complexes also exhibited high stability against thermal and chaotrope-induced unfolding.
Collapse
Affiliation(s)
- Areetha D'Souza
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xiangyang Wu
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Edwin Kok Lee Yeow
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
20
|
DeBlase AF, Harrilal CP, Lawler JT, Burke NL, McLuckey SA, Zwier TS. Conformation-Specific Infrared and Ultraviolet Spectroscopy of Cold [YAPAA+H]+ and [YGPAA+H]+ Ions: A Stereochemical “Twist” on the β-Hairpin Turn. J Am Chem Soc 2017; 139:5481-5493. [PMID: 28353347 DOI: 10.1021/jacs.7b01315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew F. DeBlase
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Christopher P. Harrilal
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - John T. Lawler
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Nicole L. Burke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Timothy S. Zwier
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
21
|
Makwana KM, Mahalakshmi R. Capping β-hairpin with N-terminal d-amino acid stabilizes peptide scaffold. Biopolymers 2017; 106:260-6. [PMID: 26999275 DOI: 10.1002/bip.22837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 12/25/2022]
Abstract
Various strategies exist to stabilize de novo designed synthetic peptide β-hairpins or β-sheets structures, especially at the non-hydrogen bonding position. However, strategies to stabilize strand termini, which are affected by fraying, are highly limited. Here, by substituting N-terminal aliphatic amino acid with its mirror image counterpart, we achieve a significant increase in scaffold stabilization, resulting from the formation of a terminal aliphatic-aromatic hydrophobic CH…pi cluster. Our extensive solution NMR studies support the incorporation of an N-terminal d-aliphatic amino acid in the design of short β-hairpins, while successfully retaining the overall structural scaffold. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 260-266, 2016.
Collapse
Affiliation(s)
- Kamlesh M Makwana
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462023, Madhya Pradesh, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462023, Madhya Pradesh, India
| |
Collapse
|
22
|
Lella M, Mahalakshmi R. Engineering a Transmembrane Nanopore Ion Channel from a Membrane Breaker Peptide. J Phys Chem Lett 2016; 7:2298-2303. [PMID: 27257735 DOI: 10.1021/acs.jpclett.6b00987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Re-engineering nature's molecules is an ideal strategy to obtain explicit functionality such as synthetic molecular machines, yet novel strategies for producing engineered molecular channels are few. Here we report a peptide engineering strategy through sequence reversal, which we applied on the first transmembrane peptide of the mycobacteriophage membranoporin protein holin. We have successfully redesigned the membrane rupture property of this peptide to form specific nanopore ion channels. We report the structural characterization and electrophysiology measurements of a library of 28-residue engineered membrane peptides, with remarkable ion channel behavior. We further identify that key residues at the peptide terminus, the central proline, charge distribution, and hydropathy index of the peptide together contribute to the channel properties that we measure. Our sequence reversal strategy for peptide engineering to successfully obtain nanopore channels can pave the way for better biobased design of controlled nanopores, using only natural amino acids.
Collapse
Affiliation(s)
- Muralikrishna Lella
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , ITI Building, Govindpura, Bhopal - 462023, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , ITI Building, Govindpura, Bhopal - 462023, India
| |
Collapse
|
23
|
Madhusudan Makwana K, Mahalakshmi R. Implications of aromatic-aromatic interactions: From protein structures to peptide models. Protein Sci 2015; 24:1920-33. [PMID: 26402741 DOI: 10.1002/pro.2814] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022]
Abstract
With increasing structural information on proteins, the opportunity to understand physical forces governing protein folding is also expanding. One of the significant non-covalent forces between the protein side chains is aromatic-aromatic interactions. Aromatic interactions have been widely exploited and thoroughly investigated in the context of folding, stability, molecular recognition, and self-assembly processes. Through this review, we discuss the contribution of aromatic interactions to the activity and stability of thermophilic, mesophilic, and psychrophilic proteins. Being hydrophobic, aromatic amino acids tend to reside in the protein hydrophobic interior or transmembrane segments of proteins. In such positions, it can play a diverse role in soluble and membrane proteins, and in α-helix and β-sheet stabilization. We also highlight here some excellent investigations made using peptide models and several approaches involving aryl-aryl interactions, as an increasingly popular strategy in protein and peptide engineering. A recent survey described the existence of aromatic clusters (trimer, tetramer, pentamer, and higher order assemblies), revealing the self-associating property of aryl groups, even in folded protein structures. The application of this self-assembly of aromatics in the generation of modern bionanomaterials is also discussed.
Collapse
Affiliation(s)
- Kamlesh Madhusudan Makwana
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462023, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462023, India
| |
Collapse
|
24
|
Zamora-Carreras H, Maestro B, Strandberg E, Ulrich AS, Sanz JM, Jiménez MÁ. Micelle-Triggered β-Hairpin to α-Helix Transition in a 14-Residue Peptide from a Choline-Binding Repeat of the Pneumococcal Autolysin LytA. Chemistry 2015; 21:8076-89. [PMID: 25917218 PMCID: PMC4471590 DOI: 10.1002/chem.201500447] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 11/08/2022]
Abstract
Choline-binding modules (CBMs) have a ββ-solenoid structure composed of choline-binding repeats (CBR), which consist of a β-hairpin followed by a short linker. To find minimal peptides that are able to maintain the CBR native structure and to evaluate their remaining choline-binding ability, we have analysed the third β-hairpin of the CBM from the pneumococcal LytA autolysin. Circular dichroism and NMR data reveal that this peptide forms a highly stable native-like β-hairpin both in aqueous solution and in the presence of trifluoroethanol, but, strikingly, the peptide structure is a stable amphipathic α-helix in both zwitterionic (dodecylphosphocholine) and anionic (sodium dodecylsulfate) detergent micelles, as well as in small unilamellar vesicles. This β-hairpin to α-helix conversion is reversible. Given that the β-hairpin and α-helix differ greatly in the distribution of hydrophobic and hydrophilic side chains, we propose that the amphipathicity is a requirement for a peptide structure to interact and to be stable in micelles or lipid vesicles. To our knowledge, this "chameleonic" behaviour is the only described case of a micelle-induced structural transition between two ordered peptide structures.
Collapse
Affiliation(s)
- Héctor Zamora-Carreras
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006-Madrid (Spain)
| | - Beatriz Maestro
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202-Alicante (Spain)
| | - Erik Strandberg
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O.B. 3640, 76021 Karlsruhe (Germany)
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O.B. 3640, 76021 Karlsruhe (Germany)
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany)
| | - Jesús M Sanz
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202-Alicante (Spain)
| | - M Ángeles Jiménez
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006-Madrid (Spain).
| |
Collapse
|
25
|
Mahajan M, Bhattacharjya S. Designed di-heme binding helical transmembrane protein. Chembiochem 2014; 15:1257-62. [PMID: 24829076 DOI: 10.1002/cbic.201402142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Indexed: 01/03/2023]
Abstract
De novo designing of functional membrane proteins is fundamental in terms of understanding the structure, folding, and stability of membrane proteins. In this work, we report the design and characterization of a transmembrane protein, termed HETPRO (HEme-binding Transmembrane PROtein), that binds two molecules of heme in a membrane and catalyzes oxidation/reduction reactions. The primary structure of HETPRO has been optimized in a guided fashion, from an antimicrobial peptide, for transmembrane orientation, defined 3D structure, and functions. HETPRO assembles into a tetrameric form, from an apo dimeric helical structure, in complex with cofactor in detergent micelles. The NMR structure of the apo HETPRO in micelles reveals an antiparallel helical dimer that inserts into the nonpolar core of detergent micelles. The well-defined structure of HETPRO and its ability to bind to heme moieties could be utilized to develop a functional membrane protein mimic for electron transport and photosystems.
Collapse
Affiliation(s)
- Mukesh Mahajan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore-637551 (Singapore)
| | | |
Collapse
|
26
|
Lichtor PA, Miller SJ. Experimental lineage and functional analysis of a remotely directed peptide epoxidation catalyst. J Am Chem Soc 2014; 136:5301-8. [PMID: 24690108 PMCID: PMC4333582 DOI: 10.1021/ja410567a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
We
describe mechanistic investigations of a catalyst (1)
that leads to selective epoxidation of farnesol at the 6,7-position,
remote from the hydroxyl directing group. The experimental lineage
of peptide 1 and a number of resin-bound peptide analogues
were examined to reveal the importance of four N-terminal residues.
We examined the selectivity of truncated analogues to find that a
trimer is sufficient to furnish the remote selectivity. Both 1D and
2D 1H NMR studies were used to determine possible catalyst
conformations, culminating in proposed models showing possible interactions
of farnesol with a protected Thr side chain and backbone NH. The models
were used to rationalize the selectivity of a modified catalyst (17) for the 6,7-position relative to an ether moiety in two
related substrates.
Collapse
Affiliation(s)
- Phillip A Lichtor
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520, United States
| | | |
Collapse
|