1
|
Ma W, Zhong C, Lin J, Chen Z, Li G, Tong W, Wu Y, Zhang L, Lin Z. Copper(II) ions-immobilized virus-like hollow covalent organic frameworks for highly efficient capture and sensitive analysis of amyloid beta-peptide 1-42 by MALDI-MS. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
2
|
Zhang X, Wang W, Zare RN, Min Q. Peptide and protein assays using customizable bio-affinity arrays combined with ambient ionization mass spectrometry. Chem Sci 2021; 12:10810-10816. [PMID: 34476062 PMCID: PMC8372322 DOI: 10.1039/d1sc02311j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
High-throughput identification and quantification of protein/peptide biomarkers from biofluids in a label-free manner is achieved by interfacing bio-affinity arrays (BAAs) with nano-electrospray desorption electrospray ionization mass spectrometry (nano-DESI-MS). A wide spectrum of proteins and peptides ranging from phosphopeptides to cis-diol biomolecules as well as thrombin can be rapidly extracted via arbitrarily predefined affinity interactions including coordination chemistry, covalent bonding, and biological recognition. An integrated MS platform allows continuous interrogation. Profiling and quantitation of dysregulated phosphopeptides from small-volume (∼5 μL) serum samples has been successfully demonstrated. As a front-end device adapted to any mass spectrometer, this MS platform might hold much promise in protein/peptide analysis in point-of-care (POC) diagnostics and clinical applications. Customizable bio-affinity arrays were interfaced with ambient ionization mass spectrometry for high-throughput assays of protein/peptide biomarkers in biofluids.![]()
Collapse
Affiliation(s)
- Xuemeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Richard N Zare
- Department of Chemistry, Stanford University Stanford California 94305 USA
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
3
|
Advances in aptamer-based nanomaterials for separation and analysis of non-genetic biomarkers in biofluids. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Fang X, Wang Z, Sun N, Deng C. Magnetic metal oxide affinity chromatography-based molecularly imprinted approach for effective separation of serous and urinary phosphoprotein biomarker. Talanta 2021; 226:122143. [DOI: 10.1016/j.talanta.2021.122143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
|
5
|
António M, Vitorino R, Daniel-da-Silva AL. Gold nanoparticles-based assays for biodetection in urine. Talanta 2021; 230:122345. [PMID: 33934794 DOI: 10.1016/j.talanta.2021.122345] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Urine is a biofluid easy to collect through a non-invasive technique that allows collecting a large volume of sample. The use of urine for disease diagnosis is not yet well explored. However, it has gained attention over the last three years. It has been applied in the diagnosis of several illnesses such as kidney disease, bladder cancer, prostate cancer and cardiovascular diseases. In the last decade, gold nanoparticles (Au NPs) have attracted attention in biosensors' development for the diagnosis of diseases due to their electrical and optical properties, ability to conjugate with biomolecules, high sensitivity, and selectivity. Therefore, this article aims to present a comprehensive view of state of the art on the advances made in the quantification of analytes in urinary samples using AuNPs based assays, with a focus on protein analysis. The type of diagnosis methods, the Au NPs synthesis approaches and the strategies for surface modification aiming at selectivity towards the different targets are highlighted.
Collapse
Affiliation(s)
- Maria António
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Vitorino
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal; Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal; LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal.
| | - Ana L Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
6
|
Chen Y, Jiang B, Yuan H, Zhu X, Liu J, Zhang X, Liang Z, Wang L, Zhang L, Zhang Y. Fully integrated protein absolute quantification platform for analysis of multiple tumor markers in human plasma. Talanta 2021; 226:122102. [PMID: 33676658 DOI: 10.1016/j.talanta.2021.122102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 11/18/2022]
Abstract
In this study, we developed a fully integrated protein absolute quantification platform for simultaneous analysis of multiple tumor markers in human plasma, by which multiple target proteins (alpha-fetoprotein, prostate-specific antigen, carcino-embryonic antigen and mucin-1) were firstly enriched by aptamers immobilized capillary column using graphene oxide modified polymer microsphere as the separation matrix, and then the eluted target proteins were online denatured, reduced, desalted and digested by our developed fully automated sample treatment device (FAST), finally the resulting peptides were analyzed by parallel reaction monitoring (PRM) on LTQ-orbitrap velos mass spectrometry. Compared to traditional ELISA assay, the platform exhibited significant advantages such as short analysis time, low limit of detection, and ease of automation. Furthermore, our developed platform was also applied in the absolute quantification of tumor markers from clinical human plasma samples, and the results were comparable to those obtained by clinical immunoassay. All the results demonstrated that such a platform could provide a promising tool for achieving high sensitivity, high accuracy, and high throughput detection of disease related protein markers in the routine physical examination and clinical disease diagnosis.
Collapse
Affiliation(s)
- Yuanbo Chen
- National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Jiang
- National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Huiming Yuan
- National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China.
| | - Xudong Zhu
- National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhui Liu
- National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodan Zhang
- National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Zhen Liang
- National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Liming Wang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Lihua Zhang
- National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China.
| | - Yukui Zhang
- National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| |
Collapse
|
7
|
Yu J, Di S, Yu H, Ning T, Yang H, Zhu S. Insights into the structure-performance relationships of extraction materials in sample preparation for chromatography. J Chromatogr A 2020; 1637:461822. [PMID: 33360779 DOI: 10.1016/j.chroma.2020.461822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023]
Abstract
Sample preparation is one of the most crucial steps in analytical processes. Commonly used methods, including solid-phase extraction, dispersive solid-phase extraction, dispersive magnetic solid-phase extraction, and solid-phase microextraction, greatly depend on the extraction materials. In recent decades, a vast number of materials have been studied and used in sample preparation for chromatography. Due to the unique structural properties, extraction materials significantly improve the performance of extraction devices. Endowing extraction materials with suitable structural properties can shorten the pretreatment process and improve the extraction efficiency and selectivity. To understand the structure-performance relationships of extraction materials, this review systematically summarizes the structural properties, including the pore size, pore shape, pore volume, accessibility of active sites, specific surface area, functional groups and physicochemical properties. The mechanisms by which the structural properties influence the extraction performance are also elucidated in detail. Finally, three principles for the design and synthesis of extraction materials are summarized. This review can provide systematic guidelines for synthesizing extraction materials and preparing extraction devices.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hao Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Tao Ning
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China.
| |
Collapse
|
8
|
YANG JW, WANG CY, LUO L, GUO L, XIE JW. Applications and Prospects of Oligonucleotide Aptamers in Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Radko S, Ptitsyn K, Novikova S, Kiseleva Y, Moysa A, Kurbatov L, Mannanova M, Zgoda V, Ponomarenko E, Lisitsa A, Archakov A. Evaluation of Aptamers as Affinity Reagents for an Enhancement of SRM-Based Detection of Low-Abundance Proteins in Blood Plasma. Biomedicines 2020; 8:E133. [PMID: 32456365 PMCID: PMC7277749 DOI: 10.3390/biomedicines8050133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Selected reaction monitoring (SRM) is a mass spectrometric technique characterized by the exceptionally high selectivity and sensitivity of protein detection. However, even with this technique, the quantitative detection of low- and ultralow-abundance proteins in blood plasma, which is of great importance for the search and verification of novel protein disease markers, is a challenging task due to the immense dynamic range of protein abundance levels. One approach used to overcome this problem is the immunoaffinity enrichment of target proteins for SRM analysis, employing monoclonal antibodies. Aptamers appear as a promising alternative to antibodies for affinity enrichment. Here, using recombinant protein SMAD4 as a model target added at known concentrations to human blood plasma and SRM as a detection method, we investigated a relationship between the initial amount of the target protein and its amount in the fraction enriched with SMAD4 by an anti-SMAD4 DNA-aptamer immobilized on magnetic beads. It was found that the aptamer-based enrichment provided a 30-fold increase in the sensitivity of SRM detection of SMAD4. These results indicate that the aptamer-based affinity enrichment of target proteins can be successfully employed to improve quantitative detection of low-abundance proteins by SRM in undepleted human blood plasma.
Collapse
Affiliation(s)
- Sergey Radko
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Konstantin Ptitsyn
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Svetlana Novikova
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Yana Kiseleva
- Russian Scientific Center of Roentgenoradiology, Moscow 117485, Russia;
| | - Alexander Moysa
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Leonid Kurbatov
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Maria Mannanova
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Elena Ponomarenko
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Andrey Lisitsa
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Alexander Archakov
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| |
Collapse
|
10
|
Zhu L, Han J, Wang Z, Yin L, Zhang W, Peng Y, Nie Z. Competitive adsorption on gold nanoparticles for human papillomavirus 16 L1 protein detection by LDI-MS. Analyst 2019; 144:6641-6646. [PMID: 31595888 DOI: 10.1039/c9an01612k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The detection of the HPV L1 protein provides information about the infection status of the virus, reflects the replication status of the HPV virus in cervical cells, and helps understand the regression and progress of cervical lesions. Herein, we report a novel laser desorption ionization mass spectrometry (LDI MS) method for the sensitive detection of the HPV 16 L1 protein, based on non-covalent competitive adsorption between the HPV 16 L1 aptamer and melamine on gold nanoparticles (AuNPs). The intensity of the MS signal corresponding to the mass tag shows a linear relationship with the HPV 16 L1 concentration in the range 2-80 ng mL-1, with a limit of detection (LOD) of 58.8 pg mL-1. Using this method, the HPV 16 L1 protein is quantitatively analyzed in both clinical and vaccine samples. The described method is simple and has high sensitivity and good reliability.
Collapse
Affiliation(s)
- Li Zhu
- State Key Laboratory of Chemical Resource Engineering, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China. and National Institutes for Food and Drug Control, Beijing 102629, China
| | - Jing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhihua Wang
- State Key Laboratory of Chemical Resource Engineering, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lihui Yin
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Wei Zhang
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - You Peng
- Department of Chemistry and Environment Engineering, Jiujiang University, Jiujiang, 332005 China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
11
|
Wang Z, Hu X, Sun N, Deng C. Aptamer-functionalized magnetic metal organic framework as nanoprobe for biomarkers in human serum. Anal Chim Acta 2019; 1087:69-75. [PMID: 31585568 DOI: 10.1016/j.aca.2019.08.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022]
Abstract
Human serum is a huge bioinformatics database of human physiological and pathological state, many proteins/peptides among which can serve as biomarkers for monitoring human's health condition, thereby being worth exploring. The simple and fast capture of biomarkers from human serum is the first key step to realize their accurate detection. In this work, we developed the aptamer functionalized magnetic metal organic framework nanoprobe, and furtherly combined with mass spectrometry technology to establish an efficient method of identifying biomarkers. Taking insulin as example of biomarker in human serum, we developed sulfhydryl human insulin aptamer functionalized magnetic metal organic framework (denoted as Mag MOF@Au@HIA) through the post-synthetic modification of MIL-101(Cr)-NH2 for testing the applicability of the established method. Depending on the strong magnetic responsiveness and high specific area as well as high-loaded human insulin aptamers, the limit of detection of insulin was down to 1 ng/mL and 2 ng/mL in the standard insulin solution and human serum, respectively. Moreover, a good linear relationship (R2 = 0.998) was obtained by using standard insulin solution with concentration range from 100 ng/mL to 5 ng/mL, based on which the capture recovery of insulin with Mag MOF@Au@HIA from human serum was demonstrated to be excellent. All of the results indicate that the aptamer-functionalized magnetic metal organic framework is a promising nanoprobe for biomarkers capture in human serum.
Collapse
Affiliation(s)
- Zidan Wang
- Department of Chemistry and the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200433, China
| | - Xufang Hu
- Department of Chemistry and the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200433, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Chunhui Deng
- Department of Chemistry and the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200433, China; Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
12
|
Ptitsyn KG, Novikova SE, Kiseleva YY, Moysa AA, Kurbatov LK, Farafonova TE, Radko SP, Zgoda VG, Archakov AI. [Use of DNA-aptamers for enrichment of low abundant proteins in cellular extracts for quntitative detection by selected reaction monitoring]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:5-9. [PMID: 29460828 DOI: 10.18097/pbmc20186401005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The relationship between the amount of a target protein in a complex biological sample and its amount measured by selected reaction monitoring (SRM) mass spectrometry upon the affinity enrichment of target protein with aptamers immobilized on a solid phase was studied. Human thrombin added in known concentrations to cellular extracts derived from bacterial cells was used as model target protein. It has been demonstrated that the affinity enrichment of thrombin in cellular extracts by means of the thrombin-binding aptamer immobilized on the surface of magnetic microbeads results in an approximately 10-fold increase of the concentration of target protein and a 100-fold decrease of the low limit of a target protein concentration range where its quantitative detection by SRM is possible without an interference from other peptides present in a tryptic digest.
Collapse
Affiliation(s)
- K G Ptitsyn
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S E Novikova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Y Y Kiseleva
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - A A Moysa
- Institute of Biomedical Chemistry, Moscow, Russia
| | - L K Kurbatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - S P Radko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
13
|
Xie Y, Liu Q, Li Y, Deng C. Core-shell structured magnetic metal-organic framework composites for highly selective detection of N-glycopeptides based on boronic acid affinity chromatography. J Chromatogr A 2018; 1540:87-93. [PMID: 29429745 DOI: 10.1016/j.chroma.2018.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 01/17/2023]
Abstract
Boronic acid affinity chromatography (BAAC) is one of the most significant methods in glycoproteomics research due to its low bias towards glycopeptides and easy enrichment process. In this work, core-shell structured magnetic metal-organic framework (MOF) composites with abundant boronic acid groups were designed and synthesized for selective glycopeptide enrichment based on BAAC. The as-prepared core-shell structured magnetic MOF composites (denoted as Fe3O4@PVP/PEI@MOF (B)) inherited strong magnetic responsiveness from the Fe3O4 core as well as ultrahigh surface area and abundant boronic acid sites from the MOF shell. The affinity between boronic acid and cis-diols groups endowed the composites with improved sensitivity (0.5 fmol/μL) and selectivity (1:100) towards glycopeptides, achieving remarkable results in glycopeptides detection from standard glycoprotein digests as well as complex bio-samples. As a result, a total of 209 N-glycosylation peptides from 89 different glycoproteins were identified from human serum digests, indicating its broad prospect in glycoproteome study.
Collapse
Affiliation(s)
- Yiqin Xie
- The Fifth People's Hospital of Shanghai, Department of Chemistry, Institutes of Biomedical Sciences, and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China
| | - Qianjing Liu
- The Fifth People's Hospital of Shanghai, Department of Chemistry, Institutes of Biomedical Sciences, and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China
| | - Yan Li
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai, 201206, China.
| | - Chunhui Deng
- The Fifth People's Hospital of Shanghai, Department of Chemistry, Institutes of Biomedical Sciences, and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
14
|
Jacob JM, Sharma S, Balakrishnan RM. Exploring the fungal protein cadre in the biosynthesis of PbSe quantum dots. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:54-61. [PMID: 26849922 DOI: 10.1016/j.jhazmat.2015.12.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/08/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
While a large number of microbial sources have recently emerged as potent sources for biosynthesis of chalcogenide quantum dots (QDs), studies regarding their biomimetic strategies that initiate QD biosynthesis are scarce. The present study describes several mechanistic aspects of PbSe QD biosynthesis using marine Aspergillus terreus. Scanning electron microscopic (SEM) studies indicated distinctive morphological features such as abrasion and agglomeration on the fungal biomass after the biosynthesis reaction. Further, the biomass subsequent to the heavy metal/metalloid precursor was characterized with spectral signatures typical to primary and secondary stress factors such as thiol compounds and oxalic acid using Fourier Transform Infra-Red Spectroscopic (FTIR) analysis. An increase in the total protein content in the reaction mixture after biosynthesis was another noteworthy observation. Further, metal-phytochelatins were identified as the prominent metal-ion trafficking components in the reaction mixture using Liquid Chromatography Mass Spectroscopic analysis (LCMS). Subsequent assays confirmed the involvement of metal binding peptides namely metallothioneins and other anti-oxidant enzymes that might have played a prominent role in the microbial metal detoxification system for the biosynthesis of PbSe QDs. Based on these findings a possible mechanism for the biosynthesis of PbSe QDs by marine A. terreus has been elucidated.
Collapse
Affiliation(s)
- Jaya Mary Jacob
- Department of Chemical Engineering, National Institute of Technology, Karnataka, Surathkal 575 025, India
| | - Sumit Sharma
- Department of Chemical Engineering, National Institute of Technology, Karnataka, Surathkal 575 025, India
| | - Raj Mohan Balakrishnan
- Department of Chemical Engineering, National Institute of Technology, Karnataka, Surathkal 575 025, India.
| |
Collapse
|
15
|
Lin XC, Wang XN, Liu L, Wen Q, Yu RQ, Jiang JH. Surface Enhanced Laser Desorption Ionization of Phospholipids on Gold Nanoparticles for Mass Spectrometric Immunoassay. Anal Chem 2016; 88:9881-9884. [DOI: 10.1021/acs.analchem.6b02733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiang-Cheng Lin
- State Key Laboratory of Chemeo/Bio-Sensing
and Chemometrics, Institute of Chemical Biology and Nanomedicine,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Xiang-Nan Wang
- State Key Laboratory of Chemeo/Bio-Sensing
and Chemometrics, Institute of Chemical Biology and Nanomedicine,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Lan Liu
- State Key Laboratory of Chemeo/Bio-Sensing
and Chemometrics, Institute of Chemical Biology and Nanomedicine,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Qian Wen
- State Key Laboratory of Chemeo/Bio-Sensing
and Chemometrics, Institute of Chemical Biology and Nanomedicine,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemeo/Bio-Sensing
and Chemometrics, Institute of Chemical Biology and Nanomedicine,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemeo/Bio-Sensing
and Chemometrics, Institute of Chemical Biology and Nanomedicine,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
16
|
Hou J, Chen S, Cao C, Liu H, Xiong C, Zhang N, He Q, Song W, Nie Z. Application of flowerlike MgO for highly sensitive determination of lead via matrix-assisted laser desorption/ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30 Suppl 1:208-216. [PMID: 27539440 DOI: 10.1002/rcm.7637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RATIONALE Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is a high-throughput method to achieve fast and accurate identification of lead (Pb) exposure, but is seldom used because of low ionization efficiency and insufficient sensitivity. Nanomaterials applied in MS are a promising technique to overcome the obstacles of MALDI. METHODS Flowerlike MgO nanostructures are applied for highly sensitive lead profiling in real samples. They can be used in two ways: (a) MgO is mixed with N-naphthylethylenediamine dihydrochloride (NEDC) as a novel matrix MgO/NEDC; (b) MgO is applied as an absorbent to enrich Pb ions in very dilute solution. RESULTS The signal intensities of lead by MgO/NEDC were ten times higher than the NEDC matrix. It also shows superior anti-interference ability when analyzing 10 μmol/L Pb ions in the presence of organic substances or interfering metal ions. By applying MgO as adsorbent, the LOD of lead before enrichment is 1 nmol/L. Blood lead test can be achieved using this enrichment process. Besides, MgO can play the role of internal standard to achieve quantitative analysis. CONCLUSIONS Flowerlike MgO nanostructures were applied for highly sensitive lead profiling in real samples. The method is helpful to prevent Pb contamination in a wide range. Further, the combination of MgO with MALDI MS could inspire more nanomaterials being applied in highly sensitive profiling of pollutants. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jian Hou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Suming Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changyan Cao
- Beijing National Laboratory for Molecular Science, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ning Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qing He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiguo Song
- Beijing National Laboratory for Molecular Science, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
17
|
|
18
|
Abdelhamid HN, Wu HF. Gold nanoparticles assisted laser desorption/ionization mass spectrometry and applications: from simple molecules to intact cells. Anal Bioanal Chem 2016; 408:4485-502. [DOI: 10.1007/s00216-016-9374-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/29/2015] [Accepted: 01/28/2016] [Indexed: 01/05/2023]
|
19
|
A high-throughput method for measurement of glycohemoglobin in blood samples utilizing laser-accelerated proteolysis and MALDI-TOF MS. Anal Bioanal Chem 2015; 408:1507-13. [DOI: 10.1007/s00216-015-9258-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/02/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
|
20
|
Liu Y, Yan G, Gao M, Deng C, Zhang X. Membrane protein isolation and identification by covalent binding for proteome research. Proteomics 2015; 15:3892-900. [DOI: 10.1002/pmic.201400572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 08/21/2015] [Accepted: 09/11/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Yiying Liu
- Department of Chemistry, Institutes of Biomedical Sciences; Fudan University; Shanghai P. R. China
| | - Guoquan Yan
- Department of Chemistry, Institutes of Biomedical Sciences; Fudan University; Shanghai P. R. China
| | - Mingxia Gao
- Department of Chemistry, Institutes of Biomedical Sciences; Fudan University; Shanghai P. R. China
| | - Chunhui Deng
- Department of Chemistry, Institutes of Biomedical Sciences; Fudan University; Shanghai P. R. China
| | - Xiangmin Zhang
- Department of Chemistry, Institutes of Biomedical Sciences; Fudan University; Shanghai P. R. China
| |
Collapse
|
21
|
Hou J, Chen S, Zhang N, Liu H, Wang J, He Q, Wang J, Xiong S, Nie Z. Organic salt NEDC (N-naphthylethylenediamine dihydrochloride) assisted laser desorption ionization mass spectrometry for identification of metal ions in real samples. Analyst 2015; 139:3469-75. [PMID: 24842842 DOI: 10.1039/c4an00297k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The significance of metals in life and their epidemiological effects necessitate the development of a direct, efficient, and rapid method of analysis. The matrix assisted laser desorption/ionization technique is on the horns of a dilemma of metal analysis as the conventional matrixes have high background in the low mass range. An organic salt, NEDC (N-naphthylethylenediamine dihydrochloride), is applied as a matrix for identification of metal ions in the negative ion mode in the present work. Sixteen metal ions, Ba(2+), Ca(2+), Cd(2+), Ce(3+), Co(2+), Cu(2+), Fe(3+), Hg(2+), K(+), Mg(2+), Mn(2+), Na(+), Ni(2+), Pb(2+), Sn(2+) and Zn(2+), in the form of their chloride-adducted clusters were systematically tested. Mass spectra can provide unambiguous identification through accurate mass-to-charge ratios and characteristic isotope patterns. Compared to ruthenium ICP standard solution, tris(2,2'-bipyridyl)dichlororuthenium(ii) (C30H24N6Cl2Ru) can form organometallic chloride adducts to discriminate from the inorganic ruthenium by this method. After evaluating the sensitivity for Ca, Cu, Mg, Mn, Pb and Zn and plotting their quantitation curves of signal intensity versus concentration, we determined magnesium concentration in lake water quantitatively to be 5.42 mg L(-1) using the standard addition method. There is no significant difference from the result obtained with ICP-OES, 5.8 mg L(-1). Human urine and blood were also detected to ascertain the multi-metal analysis ability of this strategy in complex samples. At last, we explored its applicability to tissue slice and visualized sodium and potassium distribution by mass spectrometry imaging in the normal Kunming mouse brain.
Collapse
Affiliation(s)
- Jian Hou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen Q, Yan G, Gao M, Zhang X. Ultrasensitive Proteome Profiling for 100 Living Cells by Direct Cell Injection, Online Digestion and Nano-LC-MS/MS Analysis. Anal Chem 2015; 87:6674-80. [PMID: 26061007 DOI: 10.1021/acs.analchem.5b00808] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Single-cell proteome analysis has always been an exciting goal because it provides crucial information about cellular heterogeneity and dynamic change. Here we presented an integrated proteome analysis device (iPAD) for 100 living cells (iPAD-100) that might be suitable for single-cell analysis. Once cells were cultured, the iPAD-100 could be applied to inject 100 living cells, to transform the living cells into peptides, and to produce protein identification results with total automation. Due to the major obstacle for detection limit of mass spectrometry, we applied the iPAD-100 to analyze the proteome of 100 cells. In total, 813 proteins were identified in a DLD-cell proteome by three duplicate runs. Gene Ontology analysis revealed that proteins from different cellular compartments were well-represented, including membrane proteins. The iPAD-100 greatly simplified the sampling process, reduced sample loss, and prevented contamination. As a result, proteins whose copy numbers were lower than 1000 were identified from 100-cell samples with the iPAD-100, showing that a detection limit of 200 zmol was achieved. With increased sensitivity of mass spectrometry, the iPAD-100 may be able to reveal bountiful proteome information from a single cell in the near future.
Collapse
Affiliation(s)
- Qi Chen
- Collaborative Innovation Center of Chemistry for Life Sciences, Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Guoquan Yan
- Collaborative Innovation Center of Chemistry for Life Sciences, Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Mingxia Gao
- Collaborative Innovation Center of Chemistry for Life Sciences, Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiangmin Zhang
- Collaborative Innovation Center of Chemistry for Life Sciences, Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
23
|
Du F, Guo L, Qin Q, Zheng X, Ruan G, Li J, Li G. Recent advances in aptamer-functionalized materials in sample preparation. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Rapid development of proteomics in China: from the perspective of the Human Liver Proteome Project and technology development. SCIENCE CHINA-LIFE SCIENCES 2014; 57:1162-71. [PMID: 25119674 DOI: 10.1007/s11427-014-4714-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/01/2014] [Indexed: 12/17/2022]
|
25
|
Lee SJ, Adler B, Ekström S, Rezeli M, Végvári Á, Park JW, Malm J, Laurell T. Aptamer/ISET-MS: a new affinity-based MALDI technique for improved detection of biomarkers. Anal Chem 2014; 86:7627-34. [PMID: 25001319 DOI: 10.1021/ac501488b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the rapid progress in the development of new clinical biomarkers there is an unmet need of fast and sensitive multiplex analysis methods for disease specific protein monitoring. Immunoaffinity extraction integrated with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis offers a route to rapid and sensitive protein analysis and potentially multiplex biomarker analysis. In this study, the previously reported integrated selective enrichment target (ISET)-MALDI-MS analysis was implemented with ssDNA aptamer functionalized microbeads to address the specific capturing of thrombin in complex samples. The main objective for using an aptamer as the capturing ligand was to avoid the inherently high background components, which are produced during the digestion step following the target extraction when antibodies are used. By applying a thrombin specific aptamer linked to ISET-MALDI-MS detection, a proof of concept of antibody fragment background reduction in the ISET-MALDI-MS readout is presented. Detection sensitivity was significantly increased compared to the corresponding system based on antibody-specific binding as the aptamer ligand does not induce any interfering background residues from the antibodies. The limit of detection for thrombin was 10 fmol in buffer using the aptamer/ISET-MALDI-MS configuration as confirmed by MS/MS fragmentation. The aptamer/ISET-MALDI-MS platform also displayed a limit of detection of 10 fmol for thrombin in five different human serum samples (1/10 diluted), demonstrating the applicability of the aptamer/ISET-MALDI-MS analysis in clinical samples.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Biomedical Engineering, Lund University , P.O. Box 118, SE-211 00 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
This review highlights recent progress in developing DNA aptamers for personalized medicine, with more focus on in vivo studies for potential clinical applications. Examples include design of aptamers in combination with DNA nanostructures, nanomaterials, or microfluidic devices as diagnostic probes or therapeutic agents for cancers and other diseases. The use of aptamers as targeting agents in drug delivery is also covered. The advantages and future directions of such DNA aptamer-based technology for the continued development of personalized medicine are discussed.
Collapse
Affiliation(s)
- Hang Xing
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 ; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Ji Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 ; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Seyed-Fakhreddin Torabi
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 ; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 ; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
27
|
Hou L, Zhu C, Wu X, Chen G, Tang D. Bioresponsive controlled release from mesoporous silica nanocontainers with glucometer readout. Chem Commun (Camb) 2014; 50:1441-3. [DOI: 10.1039/c3cc48453j] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A portable and quantitative biosensing platform for monitoring proteins and small molecules without the need for sample separation and washing is developed by using a commercialized personal glucose meter based on bioresponsive controlled release of glucose from aptamer-gated mesoporous silica nanocontainers.
Collapse
Affiliation(s)
- Li Hou
- Ministry of Education & Fujian Provincial Key Laboratory of Analysis and Detection of Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou 350108, P.R. China
| | - Chunling Zhu
- Ministry of Education & Fujian Provincial Key Laboratory of Analysis and Detection of Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou 350108, P.R. China
| | - Xiaoping Wu
- Ministry of Education & Fujian Provincial Key Laboratory of Analysis and Detection of Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou 350108, P.R. China
| | - Guonan Chen
- Ministry of Education & Fujian Provincial Key Laboratory of Analysis and Detection of Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou 350108, P.R. China
| | - Dianping Tang
- Ministry of Education & Fujian Provincial Key Laboratory of Analysis and Detection of Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou 350108, P.R. China
| |
Collapse
|
28
|
Hu W, He G, Chen T, Guo CX, Lu Z, Selvaraj JN, Liu Y, Li CM. Graphene oxide-enabled tandem signal amplification for sensitive SPRi immunoassay in serum. Chem Commun (Camb) 2014; 50:2133-5. [DOI: 10.1039/c3cc47933a] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|