1
|
Kumar R, Mahata B, Gayathridevi S, Vipin Raj K, Vanka K, Sen SS. Lanthanide Mimicking by Magnesium for Oxazolidinone Synthesis. Chemistry 2024; 30:e202303478. [PMID: 37897110 DOI: 10.1002/chem.202303478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
In the last decade, magnesium complexes have emerged as a viable alternative to transition-metal catalysts for the hydrofunctionalization of unsaturated bonds. However, their potential for advanced catalytic reactions has not been thoroughly investigated. To address this gap, we have developed a novel magnesium amide compound (3) using a PNP framework that is both bulky and flexible. Our research demonstrates that compound 3 can effectively catalyze the synthesis of biologically significant oxazolidinone derivatives. This synthesis involves a tandem reaction of hydroalkoxylation and cyclohydroamination of isocyanate using propargyl alcohol. Furthermore, we conducted comprehensive theoretical calculations to gain insights into the reaction mechanism. It is important to note that these types of transformations have not been reported for magnesium and would significantly enhance the catalytic portfolio of the 7th most abundant element.
Collapse
Affiliation(s)
- Rohit Kumar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Biplab Mahata
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Gayathridevi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - K Vipin Raj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Kumar A, Jaiswal S, Tadigoppula N. Synthesis of highly substituted isoquinolines/isoquinolones by ruthenium (II)-catalyzed reaction of benzyl/α-methyl benzyl/benzoyl isocyanates with diaryl alkynes. Chem Commun (Camb) 2023; 59:2970-2973. [PMID: 36806825 DOI: 10.1039/d2cc06165a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
An efficient and novel method has been developed for the synthesis of highly substituted isoquinolines/isoquinolones by Ru(II)-catalyzed intermolecular oxidative annulation of benzyl/benzoyl isocyanates with diaryl alkynes in the presence of Cs2CO3 as base and Cu(OTf)2 as an oxidant at 120 °C for 1 h.
Collapse
Affiliation(s)
- Amrendra Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Shubham Jaiswal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201 002, India
| | - Narender Tadigoppula
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201 002, India
| |
Collapse
|
3
|
Okokhere-Edeghoghon B, Dehmel M, Hill MS, Kretschmer R, Mahon MF, McMullin CL, Morris LJ, Rajabi NA. Nucleophilic Magnesium Silanide and Silaamidinate Derivatives. Inorg Chem 2020; 59:13679-13689. [DOI: 10.1021/acs.inorgchem.0c02034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Maximilian Dehmel
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Michael S. Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Robert Kretschmer
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Mary F. Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Claire L. McMullin
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Louis J. Morris
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Nasir A. Rajabi
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
4
|
Cui CX, Xu D, Ding BW, Qu LB, Zhang YP, Lan Y. Benchmark study of popular density functionals for calculating binding energies of three-center two-electron bonds. J Comput Chem 2019; 40:657-670. [PMID: 30565268 DOI: 10.1002/jcc.25752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/13/2022]
Abstract
Density functional theory (DFT) can be used to study the three-center two-electron (3c2e) bonding mode, which is universal in catalysts containing alkaline-earth (Ae) and boron-group (Bg) elements. However, because of the delocalization pattern of the 3c2e bond, the wavefunction cannot be accurately described by DFT methods. The calculated energies of Ae and Bg catalysts therefore fluctuate greatly when different functionals are used, largely because of inconsistent DFT-calculated binding energies of 3c2e bonds. Nevertheless, with the development of supercomputers and theoretical calculation software, the DFT method is becoming increasingly popular for studying Ae and Bg catalysts. In this study, we compared the performances of 21 functionals with the high-level composite G3B3 method in calculations for the binding energies of 3c2e bonds. Several frequently used post-Hartree-Fock methods were also tested. The calculation results indicate that the M06-2X, MN12-L, and MN15 functionals give consistent and reliable binding energies for common 3c2e bonds. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheng-Xing Cui
- Postdoctoral Station of Food Science and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.,Postdoctoral Research Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China
| | - Dongdong Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Bo-Wen Ding
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ling-Bo Qu
- Postdoctoral Station of Food Science and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yu-Ping Zhang
- Postdoctoral Research Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People's Republic of China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
5
|
Effective synthesis of some novel pyrazolidine-3,5-dione derivatives via Mg(II) catalyzed in water medium and their anticancer and antimicrobial activities. Mol Divers 2018; 23:35-53. [DOI: 10.1007/s11030-018-9850-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 06/14/2018] [Indexed: 11/27/2022]
|
6
|
Konnert L, Lamaty F, Martinez J, Colacino E. Recent Advances in the Synthesis of Hydantoins: The State of the Art of a Valuable Scaffold. Chem Rev 2017. [PMID: 28644621 DOI: 10.1021/acs.chemrev.7b00067] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The review highlights the hydantoin syntheses presented from the point of view of the preparation methods. Novel synthetic routes to various hydantoin structures, the advances brought to the classical methods in the aim of producing more sustainable and environmentally friendly procedures for the preparation of these biomolecules, and a critical comparison of the different synthetic approaches developed in the last twelve years are also described. The review is composed of 95 schemes, 8 figures and 528 references for the last 12 years and includes the description of the hydantoin-based marketed drugs and clinical candidates.
Collapse
Affiliation(s)
- Laure Konnert
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Frédéric Lamaty
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Jean Martinez
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Evelina Colacino
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| |
Collapse
|
7
|
|
8
|
Martínez A, Moreno-Blázquez S, Rodríguez-Diéguez A, Ramos A, Fernández-Galán R, Antiñolo A, Carrillo-Hermosilla F. Simple ZnEt2as a catalyst in carbodiimide hydroalkynylation: structural and mechanistic studies. Dalton Trans 2017; 46:12923-12934. [DOI: 10.1039/c7dt02700a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simple ZnEt2is an efficient catalyst for the addition of terminal alkynes to carbodiimides, through amidinate complexes, and consecutive isocyanate addition and intramolecular cyclohydroamination.
Collapse
Affiliation(s)
- Antonio Martínez
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Dpto. de Química Inorgánica
- Orgánica y Bioquímica
- Facultad de Ciencias y Tecnologías Químicas
- Universidad de Castilla-La Mancha
| | - Sonia Moreno-Blázquez
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Dpto. de Química Inorgánica
- Orgánica y Bioquímica
- Facultad de Ciencias y Tecnologías Químicas
- Universidad de Castilla-La Mancha
| | | | - Alberto Ramos
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Dpto. de Química Inorgánica
- Orgánica y Bioquímica
- Facultad de Ciencias y Tecnologías Químicas
- Universidad de Castilla-La Mancha
| | - Rafael Fernández-Galán
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Dpto. de Química Inorgánica
- Orgánica y Bioquímica
- Facultad de Ciencias y Tecnologías Químicas
- Universidad de Castilla-La Mancha
| | - Antonio Antiñolo
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Dpto. de Química Inorgánica
- Orgánica y Bioquímica
- Facultad de Ciencias y Tecnologías Químicas
- Universidad de Castilla-La Mancha
| | - Fernando Carrillo-Hermosilla
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Dpto. de Química Inorgánica
- Orgánica y Bioquímica
- Facultad de Ciencias y Tecnologías Químicas
- Universidad de Castilla-La Mancha
| |
Collapse
|
9
|
Hill MS, Liptrot DJ, Weetman C. Alkaline earths as main group reagents in molecular catalysis. Chem Soc Rev 2016; 45:972-88. [PMID: 26797470 DOI: 10.1039/c5cs00880h] [Citation(s) in RCA: 369] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The past decade has witnessed some remarkable advances in our appreciation of the structural and reaction chemistry of the heavier alkaline earth (Ae = Mg, Ca, Sr, Ba) elements. Derived from complexes of these metals in their immutable +2 oxidation state, a broad and widely applicable catalytic chemistry has also emerged, driven by considerations of cost and inherent low toxicity. The considerable adjustments incurred to ionic radius and resultant cation charge density also provide reactivity with significant mechanistic and kinetic variability as group 2 is descended. In an attempt to place these advances in the broader context of contemporary main group element chemistry, this review focusses on the developing state of the art in both multiple bond heterofunctionalisation and cross coupling catalysis. We review specific advances in alkene and alkyne hydroamination and hydrophosphination catalysis and related extensions of this reactivity that allow the synthesis of a wide variety of acyclic and heterocyclic small molecules. The use of heavier alkaline earth hydride derivatives as pre-catalysts and intermediates in multiple bond hydrogenation, hydrosilylation and hydroboration is also described along with the emergence of these and related reagents in a variety of dehydrocoupling processes that allow that facile catalytic construction of Si-C, Si-N and B-N bonds.
Collapse
Affiliation(s)
- Michael S Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | | | |
Collapse
|
10
|
Gallegos C, Camacho R, Valiente M, Cuenca T, Cano J. Cyclopentadienyl-based Mg complexes in the intramolecular hydroamination of aminoalkenes: mechanistic evidence for cationic versus neutral magnesium derivatives. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01040c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mechanistic evidence in the catalytic hydroamination of aminoalkenes for a cationic magnesium derivative.
Collapse
Affiliation(s)
- Carlos Gallegos
- Dpto de Química Inorgánica
- Universidad de Alcalá
- 28871 Alcalá de Henares
- Spain
| | - Ruth Camacho
- Dpto de Química Inorgánica
- Universidad de Alcalá
- 28871 Alcalá de Henares
- Spain
| | - Mercedes Valiente
- Dpto de Química Física
- Universidad de Alcalá
- 28871 Alcalá de Henares
- Spain
| | - Tomás Cuenca
- Dpto de Química Inorgánica
- Universidad de Alcalá
- 28871 Alcalá de Henares
- Spain
| | - Jesús Cano
- Dpto de Química Inorgánica
- Universidad de Alcalá
- 28871 Alcalá de Henares
- Spain
| |
Collapse
|
11
|
Arrowsmith M, Hill MS, Kociok-Köhn G. Group 2 Catalysis for the Atom-Efficient Synthesis of Imidazolidine and Thiazolidine Derivatives. Chemistry 2015; 21:10548-57. [DOI: 10.1002/chem.201501328] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Indexed: 11/07/2022]
|
12
|
Hernán-Gómez A, Bradley TD, Kennedy AR, Livingstone Z, Robertson SD, Hevia E. Developing catalytic applications of cooperative bimetallics: competitive hydroamination/trimerization reactions of isocyanates catalysed by sodium magnesiates. Chem Commun (Camb) 2014; 49:8659-61. [PMID: 23948951 DOI: 10.1039/c3cc45167d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mixed-metal reagents [NaMg(CH2SiMe3)3] (1) and [(THF)NaMg(NPh2)3(THF)] [3-(THF)(2)] can act as precatalysts to selectively promote the hydroamination/trimerization of isocyanates (RNCO) depending on the steric bulk of the R substituent.
Collapse
Affiliation(s)
- Alberto Hernán-Gómez
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Arrowsmith M, Shepherd WMS, Hill MS, Kociok-Köhn G. Alkaline earth catalysis for the 100% atom-efficient three component assembly of imidazolidin-2-ones. Chem Commun (Camb) 2014; 50:12676-9. [PMID: 25209547 DOI: 10.1039/c4cc05223d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A variety of functionalised imidazolidin-2-ones may be synthesised under very mild reaction conditions using non-toxic and cost-effective alkaline earth bis(amide) pre-catalysts in a 100% atom-efficient, intermolecular one-pot assembly from inexpensive alkyne and cumulene reagents.
Collapse
|
14
|
Schwamm RJ, Coles MP. Catalytic C–C Bond Formation Promoted by Organo- and Amidomagnesium(II) Compounds. Organometallics 2013. [DOI: 10.1021/om400909e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan J. Schwamm
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | - Martyn P. Coles
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| |
Collapse
|