1
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Bennett JL, Nguyen GTH, Donald WA. Protein-Small Molecule Interactions in Native Mass Spectrometry. Chem Rev 2021; 122:7327-7385. [PMID: 34449207 DOI: 10.1021/acs.chemrev.1c00293] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small molecule drug discovery has been propelled by the continual development of novel scientific methodologies to occasion therapeutic advances. Although established biophysical methods can be used to obtain information regarding the molecular mechanisms underlying drug action, these approaches are often inefficient, low throughput, and ineffective in the analysis of heterogeneous systems including dynamic oligomeric assemblies and proteins that have undergone extensive post-translational modification. Native mass spectrometry can be used to probe protein-small molecule interactions with unprecedented speed and sensitivity, providing unique insights into polydisperse biomolecular systems that are commonly encountered during the drug discovery process. In this review, we describe potential and proven applications of native MS in the study of interactions between small, drug-like molecules and proteins, including large multiprotein complexes and membrane proteins. Approaches to quantify the thermodynamic and kinetic properties of ligand binding are discussed, alongside a summary of gas-phase ion activation techniques that have been used to interrogate the structure of protein-small molecule complexes. We additionally highlight some of the key areas in modern drug design for which native mass spectrometry has elicited significant advances. Future developments and applications of native mass spectrometry in drug discovery workflows are identified, including potential pathways toward studying protein-small molecule interactions on a whole-proteome scale.
Collapse
Affiliation(s)
- Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
3
|
Delannoy López DM, Tran DT, Viault G, Dairi S, Peixoto PA, Capello Y, Minder L, Pouységu L, Génot E, Di Primo C, Deffieux D, Quideau S. Real-Time Analysis of Polyphenol-Protein Interactions by Surface Plasmon Resonance Using Surface-Bound Polyphenols. Chemistry 2021; 27:5498-5508. [PMID: 33443311 DOI: 10.1002/chem.202005187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 11/11/2022]
Abstract
A selection of bioactive polyphenols of different structural classes, such as the ellagitannins vescalagin and vescalin, the flavanoids catechin, epicatechin, epigallocatechin gallate (EGCG), and procyanidin B2, and the stilbenoids resveratrol and piceatannol, were chemically modified to bear a biotin unit for enabling their immobilization on streptavidin-coated sensor chips. These sensor chips were used to evaluate in real time by surface plasmon resonance (SPR) the interactions of three different surface-bound polyphenolic ligands per sensor chip with various protein analytes, including human DNA topoisomerase IIα, flavonoid leucoanthocyanidin dioxygenase, B-cell lymphoma 2 apoptosis regulator protein, and bovine serum albumin. The types and levels of SPR responses unveiled major differences in the association, or lack thereof, and dissociation between a given protein analyte and different polyphenolic ligands. Thus, this multi-analysis SPR technique is a valuable methodology to rapidly screen and qualitatively compare various polyphenol-protein interactions.
Collapse
Affiliation(s)
| | - Dong Tien Tran
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Guillaume Viault
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Sofiane Dairi
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | | | - Yoan Capello
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Laëtitia Minder
- INSERM, CNRS, IECB (US001, UMS 3033), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Laurent Pouységu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Elisabeth Génot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Carmelo Di Primo
- INSERM, CNRS (U1212, UMR 5320), IECB, Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Denis Deffieux
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Stéphane Quideau
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France
| |
Collapse
|
4
|
Asakawa D, Takahashi H, Iwamoto S, Tanaka K. Gas-Phase Peptide Fragmentation Induced by Hydrogen Attachment, from Principle to Sequencing of Amide Nitrogen-Methylated Peptides. Anal Chem 2020; 92:15773-15780. [PMID: 33256396 DOI: 10.1021/acs.analchem.0c02766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tandem mass spectrometry (MS/MS) with radical-based fragmentation was developed recently, which involves the reaction of hydrogen atoms and peptides in a process called hydrogen attachment/abstraction dissociation (HAD). HAD mainly produces [cn + 2H]+ and [zm + 2H]+ via hydrogen attachment to the carbonyl oxygen on the peptide backbone. In addition, HAD often generates [an + 2H]+ and [xm + 2H]+. To explain the formation of [an + 2H]+ and [xm + 2H]+, hydrogen attachment to the carbonyl carbon atom on the peptide backbone is proposed to initiate Cα-C bond cleavage. The resultant hydrogen-abundant oxygen-centered radical intermediate undergoes radical-induced dissociation to give [an + H]+• and [xm + 2H]+. Subsequently, [an + 2H]+ was produced by the reaction of [an + H]+• and a hydrogen atom. The fragment ions formed by the cleavage of N-Cα and Cα-C bonds are observed in the HAD-MS/MS spectra, and the mass differences of these fragment ions correspond to the mass of peptide bonds. Consequently, HAD-MS/MS allows the identification of post-translational modifications on the peptide backbone. In addition, HAD-MS/MS provides a consecutive series of [cn + 2H]+ and [an + 2H]+ as the N-terminal fragments, as well as [zm + 2H]+ and [xm + 2H]+, which enables the sequencing of peptides with post-translational modification, including the discrimination of modifications on the side chain and backbone.
Collapse
Affiliation(s)
- Daiki Asakawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Hidenori Takahashi
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
5
|
Pires MA, Pastrana LM, Fuciños P, Abreu CS, Oliveira SM. Sensorial Perception of Astringency: Oral Mechanisms and Current Analysis Methods. Foods 2020; 9:E1124. [PMID: 32824086 PMCID: PMC7465539 DOI: 10.3390/foods9081124] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 01/12/2023] Open
Abstract
Understanding consumers' food choices and the psychological processes involved in their preferences is crucial to promote more mindful eating regulation and guide food design. Fortifying foods minimizing the oral dryness, rough, and puckering associated with many functional ingredients has been attracting interest in understanding oral astringency over the years. A variety of studies have explored the sensorial mechanisms and the food properties determining astringency perception. The present review provides a deeper understanding of astringency, a general view of the oral mechanisms involved, and the exciting variety of the latest methods used to direct and indirectly quantify and simulate the astringency perception and the specific mechanisms involved.
Collapse
Affiliation(s)
- Mariana A. Pires
- International Iberian Nanotechnology Laboratory—Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.A.P.); (L.M.P.); (P.F.)
- Center for Microelectromechanical Systems, University of Minho, Azurém, 4800-058 Guimarães, Portugal;
| | - Lorenzo M. Pastrana
- International Iberian Nanotechnology Laboratory—Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.A.P.); (L.M.P.); (P.F.)
| | - Pablo Fuciños
- International Iberian Nanotechnology Laboratory—Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.A.P.); (L.M.P.); (P.F.)
| | - Cristiano S. Abreu
- Center for Microelectromechanical Systems, University of Minho, Azurém, 4800-058 Guimarães, Portugal;
- Physics Department, Porto Superior Engineering Institute, ISEP, 4200-072 Porto, Portugal
| | - Sara M. Oliveira
- International Iberian Nanotechnology Laboratory—Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.A.P.); (L.M.P.); (P.F.)
| |
Collapse
|
6
|
Brodbelt JS, Morrison LJ, Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem Rev 2020; 120:3328-3380. [PMID: 31851501 PMCID: PMC7145764 DOI: 10.1021/acs.chemrev.9b00440] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of new ion-activation/dissociation methods continues to be one of the most active areas of mass spectrometry owing to the broad applications of tandem mass spectrometry in the identification and structural characterization of molecules. This Review will showcase the impact of ultraviolet photodissociation (UVPD) as a frontier strategy for generating informative fragmentation patterns of ions, especially for biological molecules whose complicated structures, subtle modifications, and large sizes often impede molecular characterization. UVPD energizes ions via absorption of high-energy photons, which allows access to new dissociation pathways relative to more conventional ion-activation methods. Applications of UVPD for the analysis of peptides, proteins, lipids, and other classes of biologically relevant molecules are emphasized in this Review.
Collapse
Affiliation(s)
- Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lindsay J. Morrison
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Inês Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Schwob L, Dörner S, Atak K, Schubert K, Timm M, Bülow C, Zamudio-Bayer V, von Issendorff B, Lau JT, Techert S, Bari S. Site-Selective Dissociation upon Sulfur L-Edge X-ray Absorption in a Gas-Phase Protonated Peptide. J Phys Chem Lett 2020; 11:1215-1221. [PMID: 31978303 DOI: 10.1021/acs.jpclett.0c00041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Site-selective dissociation induced by core photoexcitation of biomolecules is of key importance for the understanding of radiation damage processes and dynamics and for its promising use as "chemical scissors" in various applications. However, identifying products of site-selective dissociation in large molecules is challenging at the carbon, nitrogen, and oxygen edges because of the high recurrence of these atoms and related chemical groups. In this paper, we present the observation of site-selective dissociation at the sulfur L-edge in the gas-phase peptide methionine enkephalin, which contains only a single sulfur atom. Near-edge X-ray absorption mass spectrometry has revealed that the resonant S 2p → σ*C-S excitation of the sulfur contained in the methionine side chain leads to site-selective dissociation, which is not the case after core ionization above the sulfur L-edge. The prospects of such results for the study of charge dynamics in biomolecular systems are discussed.
Collapse
Affiliation(s)
- Lucas Schwob
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Simon Dörner
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Kaan Atak
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Kaja Schubert
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| | - Martin Timm
- Abteilung für Hochempfindliche Röntgenspektroskopie , Helmholtz Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany
| | - Christine Bülow
- Abteilung für Hochempfindliche Röntgenspektroskopie , Helmholtz Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany
| | - Vicente Zamudio-Bayer
- Abteilung für Hochempfindliche Röntgenspektroskopie , Helmholtz Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany
| | - Bernd von Issendorff
- Physikalisches Institut , Universität Freiburg , Hermann-Herder-Straße 3 , 79104 Freiburg , Germany
| | - J Tobias Lau
- Abteilung für Hochempfindliche Röntgenspektroskopie , Helmholtz Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany
- Physikalisches Institut , Universität Freiburg , Hermann-Herder-Straße 3 , 79104 Freiburg , Germany
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
- Institute of X-ray Physics , University of Göttingen , Friedrich-Hund-Platz 1 , 37077 Göttingen , Germany
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85 , 22607 Hamburg , Germany
| |
Collapse
|
8
|
Abdelmouleh M, Lalande M, Vizcaino V, Schlathölter T, Poully J. Photoinduced Processes within Noncovalent Complexes Involved in Molecular Recognition. Chemistry 2020; 26:2243-2250. [DOI: 10.1002/chem.201904786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/28/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Marwa Abdelmouleh
- CIMAP UMR 6252 Unicaen/CEA/CNRS/ENSICAEN, Bd Becquerel 14070 Caen Cedex 5 France
| | - Mathieu Lalande
- CIMAP UMR 6252 Unicaen/CEA/CNRS/ENSICAEN, Bd Becquerel 14070 Caen Cedex 5 France
| | - Violaine Vizcaino
- CIMAP UMR 6252 Unicaen/CEA/CNRS/ENSICAEN, Bd Becquerel 14070 Caen Cedex 5 France
| | - Thomas Schlathölter
- Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | | |
Collapse
|
9
|
Zheng S, Yuan S, Hou Z, Li G, Chen Y, Pan Y, Liu Y, Huang G. Charge-dependent modulation of specific and nonspecific protein-metal ion interactions in nanoelectrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1502-1511. [PMID: 31151135 DOI: 10.1002/rcm.8493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Previous studies found that charge state could affect both specific and nonspecific binding of protein-metal ion interactions in nanoelectrospray ionization mass spectrometry (nESI-MS). However, the two kinds of interactions have been studied individually in spite of the problem that they often coexist in the same system. Thus, it is necessary to study the effects of charge state on specific and nonspecific protein-metal ion interactions in one system to reveal more accurate binding state. METHODS The HIV-1 nucleocapsid protein (NCp7(31-55)) which can bind specifically and nonspecifically to Zn2+ served as the model to show the charge-dependent protein-metal ion interactions. Hydrogen/deuterium exchange (HDX) and photodissociation (PD) were used to demonstrate that specific binding state was correlated with protein structure. In addition to NCp7(31-55), three other model proteins were used to investigate the reason for the charge-dependent nonspecific binding. RESULTS For specific binding, we proposed that protein ions with different charge states had different conformations. The HDX results showed that labile protons in the NCp7(31-55)-Zn complex were exchanged in a charge-state-dependent way. The PD experiments revealed differential fragment yields for different charge states. For nonspecific binding, higher charge states had more Zn2+ additions, but less SO4 2- additions. The effects of charge states on nonspecific binding levels were entirely the opposite for Zn2+ and SO4 2- . These results could reveal that the nonspecific binding was caused by electrostatic interaction. CONCLUSIONS For specific binding, NCp7(31-55) with lower charge states have folding and undenatured structures. The binding states of lower charge states can better reflect more native binding states. For nonspecific binding, when multiple metal ions adduct to proteins, the proteins have more net positive charges, which tend to generate higher charge ions during electrospray.
Collapse
Affiliation(s)
- Shihui Zheng
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Siming Yuan
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhuanghao Hou
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Gongyu Li
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yuting Chen
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Yangzhong Liu
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Guangming Huang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
10
|
Egorov D, Bari S, Boll R, Dörner S, Deinert S, Techert S, Hoekstra R, Zamudio-Bayer V, Lindblad R, Bülow C, Timm M, von Issendorff B, Lau JT, Schlathölter T. Near-Edge Soft X-ray Absorption Mass Spectrometry of Protonated Melittin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2138-2151. [PMID: 30047073 DOI: 10.1007/s13361-018-2035-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
We have investigated the photoionization and photofragmentation yields of gas-phase multiply protonated melittin cations for photon energies at the K-shell absorption edges of carbon, nitrogen, and oxygen. Two similar experimental approaches were employed. In both experiments, mass selected [melittin+qH]q+ (q=2-4) ions were accumulated in radiofrequency ion traps. The trap content was exposed to intense beams of monochromatic soft X-ray photons from synchrotron beamlines and photoproducts were analyzed by means of time-of-flight mass spectrometry. Mass spectra were recorded for fixed photon energies, and partial ion yield spectra were recorded as a function of photon energy. The combination of mass spectrometry and soft X-ray spectroscopy allows for a direct correlation of protein electronic structure with various photoionization channels. Non-dissociative single and double ionization are used as a reference. The contribution of both channels to various backbone scission channels is quantified and related to activation energies and protonation sites. Soft X-ray absorption mass spectrometry combines fast energy deposition with single and double ionization and could complement established activation techniques. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Dmitrii Egorov
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, Netherlands
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Rebecca Boll
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Simon Dörner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Sascha Deinert
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Institute of X-ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Ronnie Hoekstra
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, Netherlands
| | - Vicente Zamudio-Bayer
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Physikalisches Institut, Universität Freiburg, Hermann-Herder-Str. 3, 79104, Freiburg, Germany
| | - Rebecka Lindblad
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Synkrotronljusfysik, Lunds Universitet, 22100, Lund, Sweden
| | - Christine Bülow
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| | - Martin Timm
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| | - Bernd von Issendorff
- Physikalisches Institut, Universität Freiburg, Hermann-Herder-Str. 3, 79104, Freiburg, Germany
| | - J Tobias Lau
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Thomas Schlathölter
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, Netherlands.
| |
Collapse
|
11
|
Giuliani A, Williams JP, Green MR. Extreme Ultraviolet Radiation: A Means of Ion Activation for Tandem Mass Spectrometry. Anal Chem 2018; 90:7176-7180. [DOI: 10.1021/acs.analchem.8b01789] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexandre Giuliani
- Synchrotron SOLEIL, L’Orme des Merisiers, Gif-sur-Yvette F-91190, France
- UAR 1008 CEPIA, INRA, Nantes F-44316, France
| | | | - Martin R. Green
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, U.K
| |
Collapse
|
12
|
Deuscher Z, Bonny JM, Boué F, Cheynier V, Clerjon S, Devaux MF, Meneghel J, Guillon F, Jamme F, Le Feunteun S, Passot S, Réfrégiers M, Rogniaux H, Ropartz D, Thévenot J, Vallverdu-Queralt A, Canon F. Selected case studies presenting advanced methodologies to study food and chemical industry materials: From the structural characterization of raw materials to the multisensory integration of food. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Ployon S, Morzel M, Canon F. The role of saliva in aroma release and perception. Food Chem 2017; 226:212-220. [DOI: 10.1016/j.foodchem.2017.01.055] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/14/2016] [Accepted: 01/12/2017] [Indexed: 12/18/2022]
|
14
|
Ahmed A, Lim D, Choi CH, Kim S. Correlation between experimental data of protonation of aromatic compounds at (+) atmospheric pressure photoionization and theoretically calculated enthalpies. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1023-1030. [PMID: 28401729 DOI: 10.1002/rcm.7875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/22/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE The theoretical enthalpy calculated from the overall protonation reaction (electron transfer plus hydrogen transfer) in positive-mode (+) atmospheric-pressure photoionization (APPI) was compared with experimental results for 49 aromatic compounds. A linear relationship was observed between the calculated ΔH and the relative abundance of the protonated peak. The parameter gives reasonable predictions for all the aromatic hydrocarbon compounds used in this study. METHODS A parameter is devised by combining experimental MS data and high-level theoretical calculations. A (+) APPI Q Exactive Orbitrap mass spectrometer was used to obtain MS data for each solution. B3LYP exchange-correlation functions with the standard 6-311+G(df,2p) basis set was used to perform density functional theory (DFT) calculations. RESULTS All the molecules with ΔH <0 kcal/mol for the overall protonation reaction with toluene clusters produced protonated ions, regardless of the desolvation temperature. For molecules with ΔH >0, molecular ions were more abundant at typical APPI desolvation temperatures (300°C), while the protonated ions became comparable or dominant at higher temperatures (400°C). The toluene cluster size was an important factor when predicting the ionization behavior of aromatic hydrocarbon ions in (+) APPI. CONCLUSIONS The data used in this study clearly show that the theoretically calculated reaction enthalpy (ΔH) of protonation with toluene dimers can be used to predict the protonation behavior of aromatic compounds. When compounds have a negative ΔH value, the types of ions generated for aromatic compounds could be very well predicted based on the ΔH value. The ΔH can explain overall protonation behavior of compounds with ΔH values >0. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Arif Ahmed
- Department of Chemistry, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Dongwon Lim
- Department of Chemistry, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu, 702-701, Republic of Korea
- Department of Chemistry, Green Nano Center, Daegu, 702-701, Republic of Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, 702-701, Republic of Korea
- Department of Chemistry, Green Nano Center, Daegu, 702-701, Republic of Korea
| |
Collapse
|
15
|
Vallverdú‐Queralt A, Meudec E, Eder M, Lamuela‐Raventos RM, Sommerer N, Cheynier V. The Hidden Face of Wine Polyphenol Polymerization Highlighted by High-Resolution Mass Spectrometry. ChemistryOpen 2017; 6:336-339. [PMID: 28638763 PMCID: PMC5474658 DOI: 10.1002/open.201700044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Indexed: 11/18/2022] Open
Abstract
Polyphenols, including tannins and red anthocyanin pigments, are responsible for the color, taste, and beneficial health properties of plant-derived foods and beverages, especially in red wines. Known compounds represent only the emerged part of the "wine polyphenol iceberg". It is believed that the immersed part results from complex cascades of reactions involving grape polyphenols and yeast metabolites. We used a non-targeted strategy based on high-resolution mass spectrometry and Kendrick mass defect plots to explore this hypothesis. Reactions of acetaldehyde, epicatechin, and malvidin-3-O-glucoside, representing yeast metabolites, tannins, and anthocyanins, respectively, were selected for a proof-of-concept experiment. A series of compounds including expected and so-far-unknown structures were detected. Random polymerization involving both the original substrates and intermediate products resulting from cascade reactions was demonstrated.
Collapse
Affiliation(s)
- Anna Vallverdú‐Queralt
- Department Sciences pour l'œnologieInstitution INRA, UMR10832 Place Pierre VialaMontpellier34000France
| | - Emmanuelle Meudec
- Department Sciences pour l'œnologieInstitution INRA, UMR10832 Place Pierre VialaMontpellier34000France
| | - Matthias Eder
- Department Sciences pour l'œnologieInstitution INRA, UMR10832 Place Pierre VialaMontpellier34000France
| | - Rosa M. Lamuela‐Raventos
- Nutrition and Food Science DepartmentUniversity of BarcelonaAv Joan XXIII s/n08007BarcelonaSpain
- Instituto de Salud Carlos III, ISCIII (CIBEROBN)C/ Sinesio Delgado, 428029MadridSpain
| | - Nicolas Sommerer
- Department Sciences pour l'œnologieInstitution INRA, UMR10832 Place Pierre VialaMontpellier34000France
| | - Véronique Cheynier
- Department Sciences pour l'œnologieInstitution INRA, UMR10832 Place Pierre VialaMontpellier34000France
| |
Collapse
|
16
|
Cammarata M, Thyer R, Lombardo M, Anderson A, Wright D, Ellington A, Brodbelt JS. Characterization of trimethoprim resistant E. coli dihydrofolate reductase mutants by mass spectrometry and inhibition by propargyl-linked antifolates. Chem Sci 2017; 8:4062-4072. [PMID: 29967675 PMCID: PMC6020862 DOI: 10.1039/c6sc05235e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
Native mass spectrometry, size exclusion chromatography, and kinetic assays were employed to study trimethoprim resistance in E. coli caused by mutations P21L and W30R of dihydrofolate reductase.
Pathogenic Escherichia coli, one of the primary causes of urinary tract infections, has shown significant resistance to the most popular antibiotic, trimethoprim (TMP), which inhibits dihydrofolate reductase (DHFR). The resistance is modulated by single point mutations of DHFR. The impact of two clinically relevant mutations, P21L and W30R, on the activity of DHFR was evaluated via measurement of Michaelis–Menten and inhibitory kinetics, and structural characterization was undertaken by native mass spectrometry with ultraviolet photodissociation (UVPD). Compared to WT-DHFR, both P21L and W30R mutants produced less stable complexes with TMP in the presence of co-factor NADPH as evidenced by the relative abundances of complexes observed in ESI mass spectra. Moreover, based on variations in the fragmentation patterns obtained by UVPD mass spectrometry of binary and ternary DHFR complexes, notable structural changes were localized to the substrate binding pocket for W30R and to the M20 loop region as well as the C-terminal portion containing the essential G–H functional loop for the P21L mutant. The results suggest that the mutations confer resistance through distinctive mechanisms. A novel propargyl-linked antifolate compound 1038 was shown to be a reasonably effective inhibitor of the P21L mutant.
Collapse
Affiliation(s)
- Michael Cammarata
- Department of Chemistry , University of Texas , Austin , TX 78712 , USA .
| | - Ross Thyer
- Center for Systems and Synthetic Biology , University of Texas , Austin , TX 78712 , USA
| | - Michael Lombardo
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT 06269 , USA
| | - Amy Anderson
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT 06269 , USA
| | - Dennis Wright
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT 06269 , USA
| | - Andrew Ellington
- Center for Systems and Synthetic Biology , University of Texas , Austin , TX 78712 , USA
| | | |
Collapse
|
17
|
Kim S, Ahmed A. Protonation Sites of Aromatic Compounds in (+) Atmospheric Pressure Photoionization. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sunghwan Kim
- Department of Chemistry; Kyungpook National University; Daegu 702-701 Republic of Korea
- Department of Chemistry; Green Nano Center; Daegu 702-701 Republic of Korea
| | - Arif Ahmed
- Department of Chemistry; Kyungpook National University; Daegu 702-701 Republic of Korea
| |
Collapse
|
18
|
Schwob L, Lalande M, Rangama J, Egorov D, Hoekstra R, Pandey R, Eden S, Schlathölter T, Vizcaino V, Poully JC. Single-photon absorption of isolated collagen mimetic peptides and triple-helix models in the VUV-X energy range. Phys Chem Chem Phys 2017; 19:18321-18329. [DOI: 10.1039/c7cp02527k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By monitoring ionization and fragmentation after single-photon absorption, we show that an isolated collagen triple helix model is stabilized by proline hydroxylation.
Collapse
Affiliation(s)
- Lucas Schwob
- CIMAP
- UMR 6252 (CEA/CNRS/ENSICAEN/Université de Caen Normandie)
- Caen
- France
| | - Mathieu Lalande
- CIMAP
- UMR 6252 (CEA/CNRS/ENSICAEN/Université de Caen Normandie)
- Caen
- France
| | - Jimmy Rangama
- CIMAP
- UMR 6252 (CEA/CNRS/ENSICAEN/Université de Caen Normandie)
- Caen
- France
| | - Dmitrii Egorov
- Zernike Institute for Advanced Materials
- University of Groningen
- Nijenborgh 4
- 9747AG Groningen
- The Netherlands
| | - Ronnie Hoekstra
- Zernike Institute for Advanced Materials
- University of Groningen
- Nijenborgh 4
- 9747AG Groningen
- The Netherlands
| | - Rahul Pandey
- Dept. of Physical Sciences
- The Open University
- Walton Hall
- Milton Keynes
- UK
| | - Samuel Eden
- Dept. of Physical Sciences
- The Open University
- Walton Hall
- Milton Keynes
- UK
| | - Thomas Schlathölter
- Zernike Institute for Advanced Materials
- University of Groningen
- Nijenborgh 4
- 9747AG Groningen
- The Netherlands
| | - Violaine Vizcaino
- CIMAP
- UMR 6252 (CEA/CNRS/ENSICAEN/Université de Caen Normandie)
- Caen
- France
| | | |
Collapse
|
19
|
Wang W, Fang Q, Hu Z. High-Throughput Peptide Screening on a Bimodal Imprinting Chip Through MS-SPRi Integration. Methods Mol Biol 2016; 1352:111-25. [PMID: 26490471 DOI: 10.1007/978-1-4939-3037-1_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Screening of high affinity and high specificity peptide probes towards various targets is important in the biomedical field while traditional peptide screening procedure is manual and tedious. Herein, a bimodal imprinting microarray system to embrace the whole peptide screening process is presented. Surface Plasmon Resonance imaging (SPRi) and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) are combined for both quantitative and qualitative identification of the peptide. The method provides a solution for high efficiency peptide screening.
Collapse
Affiliation(s)
- Weizhi Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No.11. Beiyitiao Zhongguancun, Beijing, 100190, China
| | - Qiaojun Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No.11. Beiyitiao Zhongguancun, Beijing, 100190, China.
| | - Zhiyuan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, No.11. Beiyitiao Zhongguancun, Beijing, 100190, China.
| |
Collapse
|
20
|
Online coupling of high-resolution chromatography with extreme UV photon activation tandem mass spectrometry: Application to the structural investigation of complex glycans by dissociative photoionization. Anal Chim Acta 2016; 933:1-9. [PMID: 27496992 DOI: 10.1016/j.aca.2016.05.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/17/2016] [Accepted: 05/22/2016] [Indexed: 01/09/2023]
Abstract
The activation of ions by extreme-energy photons (XUV) produced by a synchrotron radiation beamline is a powerful method for characterizing complex glycans using tandem mass spectrometry (MS). As previously described, this activation method leads to rich fragmentation spectra with many structurally valuable cross-ring cleavages while maintaining labile modifications on the glycan structures. However, until now, the tandem MS event was too long to be compatible with liquid chromatography elution times. In this work, the duty cycle of the activation and detection of fragments was shortened, and the background signal on the spectra was drastically reduced. Both improvements allowed, for the first time, the successful coupling of a UHPLC system to XUV-activated tandem MS. The approach was used to characterize a complex mixture of oligo-porphyrans, which are a class of highly sulfated oligosaccharides, in a fully automated way. Due to an enhanced dynamic range and an increased sensitivity, some hypothetical structures of low abundance have been unequivocally confirmed in this study and others have been revised. Some previously undescribed species of oligo-porphyrans that exhibit lateral branching have been fully resolved. This work contributes to the scarce knowledge of the structure of porphyrans in red algae and pushes the current capacities of XUV-activation tandem MS by demonstrating the possibility of a direct coupling with UHPLC. This study will considerably broaden the applicability and practicality of this method in many fields of analytical biology.
Collapse
|
21
|
Shaw JB, Robinson EW, Paša-Tolić L. Vacuum Ultraviolet Photodissociation and Fourier Transform–Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry: Revisited. Anal Chem 2016; 88:3019-23. [DOI: 10.1021/acs.analchem.6b00148] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jared B. Shaw
- Environmental Molecular Sciences
Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Errol W. Robinson
- Environmental Molecular Sciences
Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences
Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
22
|
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
23
|
|
24
|
Cammarata MB, Thyer R, Rosenberg J, Ellington A, Brodbelt JS. Structural Characterization of Dihydrofolate Reductase Complexes by Top-Down Ultraviolet Photodissociation Mass Spectrometry. J Am Chem Soc 2015; 137:9128-35. [PMID: 26125523 DOI: 10.1021/jacs.5b04628] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The stepwise reduction of dihydrofolate to tetrahydrofolate entails significant conformational changes of dihydrofolate reductase (DHFR). Binary and ternary complexes of DHFR containing cofactor NADPH, inhibitor methotrexate (MTX), or both NADPH and MTX were characterized by 193 nm ultraviolet photodissociation (UVPD) mass spectrometry. UVPD yielded over 80% sequence coverage of DHFR and resulted in production of fragment ions that revealed the interactions between DHFR and each ligand. UVPD of the binary DHFR·NADPH and DHFR·MTX complexes led to an unprecedented number of fragment ions containing either an N- or C-terminal protein fragment still bound to the ligand via retention of noncovalent interactions. In addition, holo-fragments retaining both ligands were observed upon UVPD of the ternary DHFR·NADPH·MTX complex. The combination of extensive holo and apo fragment ions allowed the locations of the NADPH and MTX ligands to be mapped, with NADPH associated with the adenosine binding domain of DHFR and MTX interacting with the loop domain. These findings are consistent with previous crystallographic evidence. Comparison of the backbone cleavage propensities for apo DHFR and its holo counterparts revealed significant variations in UVPD fragmentation in the regions expected to experience conformational changes upon binding NADPH, MTX, or both ligands. In particular, the subdomain rotation and loop movements, which are believed to occur upon formation of the transition state of the ternary complex, are reflected in the UVPD mass spectra. The UVPD spectra indicate enhanced backbone cleavages in regions that become more flexible or show suppressed backbone cleavages for those regions either shielded by the ligand or involved in new intramolecular interactions. This study corroborates the versatility of 193 nm UVPD mass spectrometry as a sensitive technique to track enzymatic cycles that involve conformational rearrangements.
Collapse
Affiliation(s)
- Michael B Cammarata
- †Department of Chemistry and ‡Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ross Thyer
- †Department of Chemistry and ‡Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jake Rosenberg
- †Department of Chemistry and ‡Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Ellington
- †Department of Chemistry and ‡Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- †Department of Chemistry and ‡Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
25
|
Canon F, Ployon S, Mazauric JP, Sarni-Manchado P, Réfrégiers M, Giuliani A, Cheynier V. Binding site of different tannins on a human salivary proline-rich protein evidenced by dissociative photoionization tandem mass spectrometry. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Warnke S, von Helden G, Pagel K. Analyzing the higher order structure of proteins with conformer-selective ultraviolet photodissociation. Proteomics 2015; 15:2804-12. [PMID: 25644066 DOI: 10.1002/pmic.201400480] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/19/2014] [Accepted: 01/28/2015] [Indexed: 11/09/2022]
Abstract
The top-down approach in protein sequencing requires simple methods in which the analyte can be readily dissociated at every position along the backbone. In this context, ultraviolet photodissociation (UVPD) recently emerged as a promising tool because, in contrast to slow heating techniques such as CID, the absorption of UV light is followed by a rather statistically distributed cleavage of backbone bonds. As a result, nearly complete sequence coverage can be obtained. It is well known, however, that gas-phase proteins can adopt a variety of different, sometimes coexisting conformations and the influence of this structural diversity on the UVPD fragmentation behavior is not clear. Using ion mobility-UVPD-MS, we recently showed that UVPD is sensitive to the higher order structure of gas-phase proteins. In particular, the cis/trans isomerization of certain proline peptide bonds was shown to significantly influence the UVPD fragmentation pattern of two extended conformers of 11(+) ubiquitin. Building on these results, we here provide conformer-selective UVPD data for 7(+) ubiquitin ions, which are known to be present in a much more diverse and wider ensemble of different structures, ranging from very compact to highly extended species. Our data show that certain conformers fall into groups with similar UVPD fragmentation pattern. Surprisingly, however, the conformers within each group can differ tremendously in their collision cross-section. This indicates that the multiple coexisting conformations typically observed for 7(+) ubiquitin are caused by a few, not easily interconvertible, subpopulations.
Collapse
Affiliation(s)
- Stephan Warnke
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Gert von Helden
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Kevin Pagel
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
27
|
Label-free detection microarray for novel peptide ligands screening base on MS–SPRi combination. Talanta 2015; 134:705-711. [DOI: 10.1016/j.talanta.2014.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 12/30/2022]
|
28
|
Ropartz D, Giuliani A, Hervé C, Geairon A, Jam M, Czjzek M, Rogniaux H. High-Energy Photon Activation Tandem Mass Spectrometry Provides Unprecedented Insights into the Structure of Highly Sulfated Oligosaccharides Extracted from Macroalgal Cell Walls. Anal Chem 2015; 87:1042-9. [DOI: 10.1021/ac5036007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- David Ropartz
- INRA, UR1268 Biopolymers
Interactions Assemblies F-44316 NANTES, France
| | - Alexandre Giuliani
- Synchrotron SOLEIL, L’Orme des Merisiers, F-91190 Gif-sur-Yvette, France
- UAR 1008
CEPIA,
INRA, F-44316 NANTES, France
| | - Cécile Hervé
- Sorbonne Universités, Université Pierre et Marie Curie, Paris VI, CNRS, Integrative Biology of Marine Models, UMR 8227, Station Biologique, Place George Teissier, F29688 Roscoff Cedex, France
| | - Audrey Geairon
- INRA, UR1268 Biopolymers
Interactions Assemblies F-44316 NANTES, France
| | - Murielle Jam
- Sorbonne Universités, Université Pierre et Marie Curie, Paris VI, CNRS, Integrative Biology of Marine Models, UMR 8227, Station Biologique, Place George Teissier, F29688 Roscoff Cedex, France
| | - Mirjam Czjzek
- Sorbonne Universités, Université Pierre et Marie Curie, Paris VI, CNRS, Integrative Biology of Marine Models, UMR 8227, Station Biologique, Place George Teissier, F29688 Roscoff Cedex, France
| | - Hélène Rogniaux
- INRA, UR1268 Biopolymers
Interactions Assemblies F-44316 NANTES, France
| |
Collapse
|
29
|
Canon F, Milosavljević AR, Nahon L, Giuliani A. Action spectroscopy of a protonated peptide in the ultraviolet range. Phys Chem Chem Phys 2015; 17:25725-33. [DOI: 10.1039/c4cp04762a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Action spectroscopy of substance P, a model undecapeptide, has been probed from 5.2 eV to 20 eV.
Collapse
Affiliation(s)
- Francis Canon
- Synchrotron Soleil
- l'Orme des Merisiers
- 91192 Gif sur Yvette Cedex
- France
- UMR1324 Centre des Sciences du Goût et de l'Alimentation
| | | | - Laurent Nahon
- Synchrotron Soleil
- l'Orme des Merisiers
- 91192 Gif sur Yvette Cedex
- France
| | - Alexandre Giuliani
- Synchrotron Soleil
- l'Orme des Merisiers
- 91192 Gif sur Yvette Cedex
- France
- Uar1008
| |
Collapse
|
30
|
Pagès-Hélary S, Andriot I, Guichard E, Canon F. Retention effect of human saliva on aroma release and respective contribution of salivary mucin and α-amylase. Food Res Int 2014; 64:424-431. [DOI: 10.1016/j.foodres.2014.07.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/27/2014] [Accepted: 07/20/2014] [Indexed: 12/11/2022]
|
31
|
O'Brien JP, Li W, Zhang Y, Brodbelt JS. Characterization of native protein complexes using ultraviolet photodissociation mass spectrometry. J Am Chem Soc 2014; 136:12920-8. [PMID: 25148649 DOI: 10.1021/ja505217w] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ultraviolet photodissociation (UVPD) mass spectrometry (MS) was used to characterize the sequences of proteins in native protein-ligand and protein-protein complexes and to provide auxiliary information about the binding sites of the ligands and protein-protein interfaces. UVPD outperformed collisional induced dissociation (CID), higher-energy collisional dissociation (HCD), and electron transfer dissociation (ETD) in terms of yielding the most comprehensive diagnostic primary sequence information about the proteins in the complexes. UVPD also generated noncovalent fragment ions containing a portion of the protein still bound to the ligand which revealed some insight into the nature of the binding sites of myoglobin/heme, eIF4E/m(7)GTP, and human peptidyl-prolyl cis-trans isomerase 1 (Pin1) in complex with the peptide derived from the C-terminal domain of RNA polymerase II (CTD). Noncovalently bound protein-protein fragment ions from oligomeric β-lactoglobulin dimers and hexameric insulin complexes were also produced upon UVPD, providing some illumination of tertiary and quaternary protein structural features.
Collapse
Affiliation(s)
- John P O'Brien
- Department of Chemistry, ‡Department of Molecular Biosciences, and §Institute for Cellular and Molecular Biology, The University of Texas at Austin , 105 East 24th Street Stop A5300, Austin, Texas 78712, United States
| | | | | | | |
Collapse
|
32
|
Wang W, Li M, Wei Z, Wang Z, Bu X, Lai W, Yang S, Gong H, Zheng H, Wang Y, Liu Y, Li Q, Fang Q, Hu Z. Bimodal Imprint Chips for Peptide Screening: Integration of High-Throughput Sequencing by MS and Affinity Analyses by Surface Plasmon Resonance Imaging. Anal Chem 2014; 86:3703-7. [DOI: 10.1021/ac500465e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Weizhi Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Menglin Li
- Department
of Biomedical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zewen Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zihua Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiangli Bu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Wenjia Lai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Shu Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - He Gong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Hui Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuqiao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Ying Liu
- Beijing
Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Qin Li
- Department
of Biomedical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiaojun Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zhiyuan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Beijing
Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Institute for Systems Biology, 401 Terry Avenue N, Seattle, Washington 98109, United States
| |
Collapse
|