1
|
Rapid Scan Electron Paramagnetic Resonance Spectroscopy Is a Suitable Tool to Study Intermolecular Interactions of Intrinsically Disordered Protein. BIOLOGY 2023; 12:biology12010079. [PMID: 36671771 PMCID: PMC9856040 DOI: 10.3390/biology12010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
Intrinsically disordered proteins (IDPs) are involved in most crucial cellular processes. However, they lack a well-defined fold hampering the investigation of their structural ensemble and interactions. Suitable biophysical methods able to manage their inherent flexibility and broad conformational ensemble are scarce. Here, we used rapid scan (RS) electron paramagnetic resonance (EPR) spectroscopy to study the intermolecular interactions of the IDP α-synuclein (aS). aS aggregation and fibril deposition is the hallmark of Parkinson's disease, and specific point mutations, among them A30P and A53T, were linked to the early onset of the disease. To understand the pathological processes, research intensively investigates aS aggregation kinetics, which was reported to be accelerated in the presence of ethanol. Conventional techniques fail to capture these fast processes due to their limited time resolution and, thus, lose kinetic information. We have demonstrated that RS EPR spectroscopy is suitable for studying aS aggregation by resolving underlying kinetics and highlighting differences in fibrillization behavior. RS EPR spectroscopy outperforms traditional EPR methods in terms of sensitivity by a factor of 5 in our case while significantly reducing data acquisition time. Thus, we were able to sample short time intervals capturing single events taking place during the aggregation process. Further studies will therefore be able to shed light on biological processes proceeding on fast time scales.
Collapse
|
2
|
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Front Chem 2022; 10:886382. [PMID: 35646824 PMCID: PMC9133342 DOI: 10.3389/fchem.2022.886382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation into highly ordered, regularly repeated cross-β sheet structures called amyloid fibrils is closely associated to human disorders such as neurodegenerative diseases including Alzheimer's and Parkinson's diseases, or systemic diseases like type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have biological functions. High-resolution structures of amyloids fibrils from cryo-electron microscopy have very recently highlighted their ultrastructural organization and polymorphisms. However, the molecular mechanisms and the role of co-factors (posttranslational modifications, non-proteinaceous components and other proteins) acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be elucidated. Furthermore, such aberrant protein-protein interactions challenge the search of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this review, we describe how chemical biology tools contribute to new insights on the mode of action of amyloidogenic proteins and peptides, defining their structural signature and aggregation pathways by capturing their molecular details and conformational heterogeneity. Challenging the imagination of scientists, this constantly expanding field provides crucial tools to unravel mechanistic detail of amyloid formation such as semisynthetic proteins and small-molecule sensors of conformational changes and/or aggregation. Protein engineering methods and bioorthogonal chemistry for the introduction of protein chemical modifications are additional fruitful strategies to tackle the challenge of understanding amyloid formation.
Collapse
Affiliation(s)
- Isabelle Landrieu
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Elian Dupré
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Davy Sinnaeve
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Léa El Hajjar
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| |
Collapse
|
3
|
Schiemann O, Heubach CA, Abdullin D, Ackermann K, Azarkh M, Bagryanskaya EG, Drescher M, Endeward B, Freed JH, Galazzo L, Goldfarb D, Hett T, Esteban Hofer L, Fábregas Ibáñez L, Hustedt EJ, Kucher S, Kuprov I, Lovett JE, Meyer A, Ruthstein S, Saxena S, Stoll S, Timmel CR, Di Valentin M, Mchaourab HS, Prisner TF, Bode BE, Bordignon E, Bennati M, Jeschke G. Benchmark Test and Guidelines for DEER/PELDOR Experiments on Nitroxide-Labeled Biomolecules. J Am Chem Soc 2021; 143:17875-17890. [PMID: 34664948 PMCID: PMC11253894 DOI: 10.1021/jacs.1c07371] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Distance distribution information obtained by pulsed dipolar EPR spectroscopy provides an important contribution to many studies in structural biology. Increasingly, such information is used in integrative structural modeling, where it delivers unique restraints on the width of conformational ensembles. In order to ensure reliability of the structural models and of biological conclusions, we herein define quality standards for sample preparation and characterization, for measurements of distributed dipole-dipole couplings between paramagnetic labels, for conversion of the primary time-domain data into distance distributions, for interpreting these distributions, and for reporting results. These guidelines are substantiated by a multi-laboratory benchmark study and by analysis of data sets with known distance distribution ground truth. The study and the guidelines focus on proteins labeled with nitroxides and on double electron-electron resonance (DEER aka PELDOR) measurements and provide suggestions on how to proceed analogously in other cases.
Collapse
Affiliation(s)
- Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Caspar A Heubach
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Dinar Abdullin
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, U.K
| | - Mykhailo Azarkh
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Lavrentieva aven 9, 630090 Novosibirsk, Russia
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Burkhard Endeward
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, and ACERT, National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tobias Hett
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Laura Esteban Hofer
- Department of Chemistry and Applied Biosciences, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Luis Fábregas Ibáñez
- Department of Chemistry and Applied Biosciences, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Eric J Hustedt
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Svetlana Kucher
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, U.K
| | - Janet Eleanor Lovett
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews KY16 9SS, U.K
| | - Andreas Meyer
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sharon Ruthstein
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Christiane R Timmel
- Department of Chemistry, Centre for Advanced Electron Spin Resonance, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany
| | - Bela Ernest Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, U.K
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Skaanning LK, Santoro A, Skamris T, Martinsen JH, D’Ursi AM, Bucciarelli S, Vestergaard B, Bugge K, Langkilde AE, Kragelund BB. The Non-Fibrillating N-Terminal of α-Synuclein Binds and Co-Fibrillates with Heparin. Biomolecules 2020; 10:E1192. [PMID: 32824376 PMCID: PMC7464290 DOI: 10.3390/biom10081192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023] Open
Abstract
The intrinsically disordered protein α-synuclein (aSN) is, in its fibrillated state, the main component of Lewy bodies-hallmarks of Parkinson's disease. Additional Lewy body components include glycosaminoglycans, including heparan sulfate proteoglycans. In humans, heparan sulfate has, in an age-dependent manner, shown increased levels of sulfation. Heparin, a highly sulfated glycosaminoglycan, is a relevant mimic for mature heparan sulfate and has been shown to influence aSN fibrillation. Here, we decompose the underlying properties of the interaction between heparin and aSN and the effect of heparin on fibrillation. Via the isolation of the first 61 residues of aSN, which lacked intrinsic fibrillation propensity, fibrillation could be induced by heparin, and access to the initial steps in fibrillation was possible. Here, structural changes with shifts from disorder via type I β-turns to β-sheets were revealed, correlating with an increase in the aSN1-61/heparin molar ratio. Fluorescence microscopy revealed that heparin and aSN1-61 co-exist in the final fibrils. We conclude that heparin can induce the fibrillation of aSN1-61, through binding to the N-terminal with an affinity that is higher in the truncated form of aSN. It does so by specifically modulating the structure of aSN via the formation of type I β-turn structures likely critical for triggering aSN fibrillation.
Collapse
Affiliation(s)
- Line K. Skaanning
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
| | - Angelo Santoro
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark; (A.S.); (K.B.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Thomas Skamris
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
| | - Jacob Hertz Martinsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark; (A.S.); (K.B.)
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Saskia Bucciarelli
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark; (A.S.); (K.B.)
| | - Annette Eva Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
| | - Birthe B. Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark; (A.S.); (K.B.)
| |
Collapse
|
5
|
Structural heterogeneity of α-synuclein fibrils amplified from patient brain extracts. Nat Commun 2019; 10:5535. [PMID: 31797870 PMCID: PMC6893031 DOI: 10.1038/s41467-019-13564-w] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) and Multiple System Atrophy (MSA) are clinically distinctive diseases that feature a common neuropathological hallmark of aggregated α-synuclein. Little is known about how differences in α-synuclein aggregate structure affect disease phenotype. Here, we amplified α-synuclein aggregates from PD and MSA brain extracts and analyzed the conformational properties using fluorescent probes, NMR spectroscopy and electron paramagnetic resonance. We also generated and analyzed several in vitro α-synuclein polymorphs. We found that brain-derived α-synuclein fibrils were structurally different to all of the in vitro polymorphs analyzed. Importantly, there was a greater structural heterogeneity among α-synuclein fibrils from the PD brain compared to those from the MSA brain, possibly reflecting on the greater variability of disease phenotypes evident in PD. Our findings have significant ramifications for the use of non-brain-derived α-synuclein fibrils in PD and MSA studies, and raise important questions regarding the one disease-one strain hypothesis in the study of α-synucleinopathies. Parkinson’s disease (PD) and Multiple System Atrophy (MSA) are characterized by the pathological accumulation of α-synuclein. Here the authors employ fluorescent probes, electron microscopy and NMR spectroscopy to study the properties of α-synuclein aggregates that were amplified from patient brain extracts and observe a greater structural diversity among PD patients compared to MSA patients.
Collapse
|
6
|
Weismiller HA, Murphy R, Wei G, Ma B, Nussinov R, Margittai M. Structural disorder in four-repeat Tau fibrils reveals a new mechanism for barriers to cross-seeding of Tau isoforms. J Biol Chem 2018; 293:17336-17348. [PMID: 30242125 PMCID: PMC6231118 DOI: 10.1074/jbc.ra118.005316] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/11/2018] [Indexed: 12/14/2022] Open
Abstract
The intracellular deposition of fibrils composed of the microtubule-associated protein Tau is a characteristic feature of Alzheimer's disease (AD) and other fatal neurodegenerative disorders collectively known as tauopathies. Short Tau fibrils spread intracerebrally through transfer between interconnected neurons. Once taken up by a recipient cell, Tau fibrils recruit Tau monomers onto their ends. Based on the number of microtubule-binding repeats, there are two distinct groups of Tau isoforms: three-repeat (3R) Tau and four-repeat (4R) Tau. In AD, all Tau isoforms are deposited, whereas in other tauopathies, only 3R or 4R Tau isoforms are deposited. The molecular basis for these isoform-specific depositions is poorly understood, although conformation-based cross-seeding barriers are key. Here, we used sedimentation assays, EPR spectroscopy, and other structural readouts to better understand the cross-seeding barriers of 4R Tau fibrils. We observed that fibrils formed from truncated Tau (K18), but not full-length Tau (htau40), exhibit a barrier that inhibits 3R Tau recruitment. Investigating an array of differently sized fragments, we found that the Tau C terminus modulates the cross-seeding barrier and that the N terminus plays a synergistic role. Two disease-associated Tau variants, P301S and P301L, also established strong cross-seeding barriers. EPR analysis indicated that fibrils seeded with truncated and mutated Tau, but not htau40, are structurally disordered in the second half of repeat four and onward. These findings suggest that the disorder in this region diminishes the ability of 4R Tau fibrils to recruit 3R Tau monomers, revealing a new mechanism for Tau cross-seeding barriers.
Collapse
Affiliation(s)
- Hilary A Weismiller
- From the Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208
| | - Rachel Murphy
- From the Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208
| | - Guanghong Wei
- the Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Science, Ministry of Education, Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200433, China
| | - Buyong Ma
- the Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702, and
| | - Ruth Nussinov
- the Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702, and
- the Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Martin Margittai
- From the Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208,
| |
Collapse
|
7
|
Meyer V, Holden MR, Weismiller HA, Eaton GR, Eaton SS, Margittai M. Fracture and Growth Are Competing Forces Determining the Fate of Conformers in Tau Fibril Populations. J Biol Chem 2016; 291:12271-81. [PMID: 27080260 PMCID: PMC4933275 DOI: 10.1074/jbc.m116.715557] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 01/05/2023] Open
Abstract
Tau fibrils are pathological aggregates that can transfer between neurons and then recruit soluble Tau monomers by template-assisted conversion. The propagation of different fibril polymorphs is thought to be a contributing factor to phenotypic diversity in Alzheimer disease and other Tauopathies. We found that a homogeneous population of Tau fibrils composed of the truncated version K18 (residues 244-372) gradually converted to a new set of fibril conformers when subjected to multiple cycles of seeding and growth. Using double electron-electron resonance (DEER) spectroscopy, we observed that the distances between spin labels at positions 311 and 328 in the fibril core progressively decreased. The findings were corroborated by changes in turbidity, morphology, and protease sensitivity. Fibrils that were initially formed under stirring conditions exhibited an increased fragility compared with fibrils formed quiescently after multiple cycles of seeding. The quiescently formed fibrils were marked by accelerated growth. The difference in fragility and growth between the different conformers explains how the change in incubation condition could lead to the amplification of a minor subpopulation of fibrils. Under quiescent conditions where fibril breakage is minimal, faster growing fibrils have a selective advantage. The findings are of general importance as they suggest that changes in selective pressures during fibril propagation in the human brain could result in the emergence of new fibril conformers with varied clinicopathological consequences.
Collapse
Affiliation(s)
- Virginia Meyer
- From the Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208
| | - Michael R Holden
- From the Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208
| | - Hilary A Weismiller
- From the Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208
| | - Gareth R Eaton
- From the Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208
| | - Sandra S Eaton
- From the Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208
| | - Martin Margittai
- From the Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208
| |
Collapse
|
8
|
Meyer V, Margittai M. Spin Labeling and Characterization of Tau Fibrils Using Electron Paramagnetic Resonance (EPR). Methods Mol Biol 2016; 1345:185-199. [PMID: 26453213 DOI: 10.1007/978-1-4939-2978-8_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Template-assisted propagation of Tau fibrils is essential for the spreading of Tau pathology in Alzheimer's disease. In this process, small seeds of fibrils recruit Tau monomers onto their ends. The physical properties of the fibrils play an important role in their propagation. Here, we describe two different electron paramagnetic resonance (EPR) techniques that have provided crucial insights into the structure of Tau fibrils. Both techniques rely on the site-directed introduction of one or two spin labels into the protein monomer. Continuous-wave (CW) EPR provides information on which amino acid residues are contained in the fibril core and how they are stacked along the long fibril axis. Double electron-electron resonance (DEER) determines distances between two spin labels within a single protein and hence provides insights into their spatial arrangement in the fibril cross section. Because of the long distance range accessible to DEER (~2-5 nm) populations of distinct fibril conformers can be differentiated.
Collapse
Affiliation(s)
- Virginia Meyer
- Department of Chemistry and Biochemistry, University of Denver, 2190 East Iliff Ave, Denver, CO, 80208, USA
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, 2190 East Iliff Ave, Denver, CO, 80208, USA.
| |
Collapse
|
9
|
Tang S, Henne WM, Borbat PP, Buchkovich NJ, Freed JH, Mao Y, Fromme JC, Emr SD. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments. eLife 2015; 4:e12548. [PMID: 26670543 PMCID: PMC4720517 DOI: 10.7554/elife.12548] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 12/13/2015] [Indexed: 12/14/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRTs) constitute hetero-oligomeric machines that catalyze multiple topologically similar membrane-remodeling processes. Although ESCRT-III subunits polymerize into spirals, how individual ESCRT-III subunits are activated and assembled together into a membrane-deforming filament remains unknown. Here, we determine X-ray crystal structures of the most abundant ESCRT-III subunit Snf7 in its active conformation. Using pulsed dipolar electron spin resonance spectroscopy (PDS), we show that Snf7 activation requires a prominent conformational rearrangement to expose protein-membrane and protein-protein interfaces. This promotes the assembly of Snf7 arrays with ~30 Å periodicity into a membrane-sculpting filament. Using a combination of biochemical and genetic approaches, both in vitro and in vivo, we demonstrate that mutations on these protein interfaces halt Snf7 assembly and block ESCRT function. The architecture of the activated and membrane-bound Snf7 polymer provides crucial insights into the spatially unique ESCRT-III-mediated membrane remodeling.
Collapse
Affiliation(s)
- Shaogeng Tang
- Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - W Mike Henne
- Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Peter P Borbat
- National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Nicholas J Buchkovich
- Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Jack H Freed
- National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Yuxin Mao
- Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - J Christopher Fromme
- Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Scott D Emr
- Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| |
Collapse
|
10
|
Narkiewicz J, Giachin G, Legname G. In vitro aggregation assays for the characterization of α-synuclein prion-like properties. Prion 2015; 8:19-32. [PMID: 24552879 PMCID: PMC4116381 DOI: 10.4161/pri.28125] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aggregation of α-synuclein plays a crucial role in the pathogenesis of synucleinopathies, a group of neurodegenerative diseases including Parkinson disease (PD), dementia with Lewy bodies (DLB), diffuse Lewy body disease (DLBD) and multiple system atrophy (MSA). The common feature of these diseases is a pathological deposition of protein aggregates, known as Lewy bodies (LBs) in the central nervous system. The major component of these aggregates is α-synuclein, a natively unfolded protein, which may undergo dramatic structural changes resulting in the formation of β-sheet rich assemblies. In vitro studies have shown that recombinant α-synuclein protein may polymerize into amyloidogenic fibrils resembling those found in LBs. These aggregates may be uptaken and propagated between cells in a prion-like manner. Here we present the mechanisms and kinetics of α-synuclein aggregation in vitro, as well as crucial factors affecting this process. We also describe how PD-linked α-synuclein mutations and some exogenous factors modulate in vitro aggregation. Furthermore, we present a current knowledge on the mechanisms by which extracellular aggregates may be internalized and propagated between cells, as well as the mechanisms of their toxicity.
Collapse
|
11
|
Georgieva ER, Xiao S, Borbat PP, Freed JH, Eliezer D. Tau binds to lipid membrane surfaces via short amphipathic helices located in its microtubule-binding repeats. Biophys J 2015; 107:1441-52. [PMID: 25229151 DOI: 10.1016/j.bpj.2014.07.046] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/18/2014] [Accepted: 07/24/2014] [Indexed: 11/16/2022] Open
Abstract
Tau is a microtubule-associated protein that is genetically linked to dementia and linked to Alzheimer's disease via its presence in intraneuronal neurofibrillary tangle deposits, where it takes the form of aggregated paired helical and straight filaments. Although the precise mechanisms by which tau contributes to neurodegeneration remain unclear, tau aggregation is commonly considered to be a critical component of tau-mediated pathogenicity. Nevertheless, the context in which tau aggregation begins in vivo is unknown. Tau is enriched in membrane-rich neuronal structures such as axons and growth cones, and can interact with membranes both via intermediary proteins and directly via its microtubule-binding domain (MBD). Membranes efficiently facilitate tau aggregation in vitro, and may therefore provide a physiologically relevant context for nucleating tau aggregation in vivo. Furthermore, tau-membrane interactions may potentially play a role in tau's poorly understood normal physiological functions. Despite the potential importance of direct tau-membrane interactions for tau pathology and physiology, the structural mechanisms that underlie such interactions remain to be elucidated. Here, we employ electron spin resonance spectroscopy to investigate the secondary and long-range structural properties of the MBD of three-repeat tau isoforms when bound to lipid vesicles and membrane mimetics. We show that the membrane interactions of the tau MBD are mediated by short amphipathic helices formed within each of the MBD repeats in the membrane-bound state. To our knowledge, this is the first detailed elucidation of helical tau structure in the context of intact lipid bilayers. We further show, for the first time (to our knowledge), that these individual helical regions behave as independent membrane-binding sites linked by flexible connecting regions. These results represent the first (to our knowledge) detailed structural view of membrane-bound tau and provide insights into potential mechanisms for membrane-mediated tau aggregation. Furthermore, the results may have implications for the structural basis of tau-microtubule interactions and microtubule-mediated tau aggregation.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York
| | - Shifeng Xiao
- Department of Biochemistry, Weill Cornell Medical College, New York, New York; Program in Structural Biology, Weill Cornell Medical College, New York, New York
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York.
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, New York; Program in Structural Biology, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
12
|
Gophane DB, Sigurdsson ST. TEMPO-derived spin labels linked to the nucleobases adenine and cytosine for probing local structural perturbations in DNA by EPR spectroscopy. Beilstein J Org Chem 2015; 11:219-27. [PMID: 25815073 PMCID: PMC4362019 DOI: 10.3762/bjoc.11.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/15/2015] [Indexed: 02/04/2023] Open
Abstract
Three 2´-deoxynucleosides containing semi-flexible spin labels, namely (T)A, (U)A and (U)C, were prepared and incorporated into deoxyoligonucleotides using the phosphoramidite method. All three nucleosides contain 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) connected to the exocyclic amino group; (T)A directly and (U)A as well as (U)C through a urea linkage. (T)A and (U)C showed a minor destabilization of a DNA duplex, as registered by a small decrease in the melting temperature, while (U)A destabilized the duplex by more than 10 °C. Circular dichroism (CD) measurements indicated that all three labels were accommodated in B-DNA duplex. The mobility of the spin label (T)A varied with different base-pairing partners in duplex DNA, with the (T)A•T pair being the least mobile. Furthermore, (T)A showed decreased mobility under acidic conditions for the sequences (T)A•C and (T)A•G, to the extent that the EPR spectrum of the latter became nearly superimposable to that of (T)A•T. The reduced mobility of the (T)A•C and (T)A•G mismatches at pH 5 is consistent with the formation of (T)AH(+)•C and (T)AH(+)•G, in which protonation of N1 of A allows the formation of an additional hydrogen bond to N3 of C and N7 of G, respectively, with G in a syn-conformation. The urea-based spin labels (U)A and (U)C were more mobile than (T)A, but still showed a minor variation in their EPR spectra when paired with A, G, C or T in a DNA duplex. (U)A and (U)C had similar mobility order for the different base pairs, with the lowest mobility when paired with C and the highest when paired with T.
Collapse
Affiliation(s)
- Dnyaneshwar B Gophane
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Snorri Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| |
Collapse
|
13
|
Meyer V, Dinkel PD, Luo Y, Yu X, Wei G, Zheng J, Eaton GR, Ma B, Nussinov R, Eaton SS, Margittai M. Single mutations in tau modulate the populations of fibril conformers through seed selection. Angew Chem Int Ed Engl 2014; 53:1590-3. [PMID: 24453187 PMCID: PMC4083751 DOI: 10.1002/anie.201308473] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/13/2013] [Indexed: 12/20/2022]
Abstract
Seeded conversion of tau monomers into fibrils is a central step in the progression of tau pathology in Alzheimer's disease and other neurodegenerative disorders. Self-assembly is mediated by the microtubule binding repeats in tau. There are either three or four repeats present depending on the protein isoform. Here, double electron-electron resonance spectroscopy was used to investigate the conformational ensemble of four-repeat tau fibrils. Single point mutations at key positions in the protein (ΔK280, P301S, P312I, D314I) markedly change the distribution of fibril conformers after template-assisted growth, whereas other mutations in the protein (I308M, S320F, G323I, G326I, Q336R) do not. These findings provide unprecedented insights into the seed selection of tau disease mutants and establish conformational compatibility as an important driving force in tau fibril propagation.
Collapse
Affiliation(s)
- Virginia Meyer
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Paul D. Dinkel
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Yin Luo
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Xiang Yu
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Buyong Ma
- Basic Science Program, SAIC-Frederick, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
14
|
Meyer V, Dinkel PD, Luo Y, Yu X, Wei G, Zheng J, Eaton GR, Ma B, Nussinov R, Eaton SS, Margittai M. Single Mutations in Tau Modulate the Populations of Fibril Conformers through Seed Selection. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|