1
|
Yoshimoto S, Kato J, Sakamoto H, Minamoto H, Daicho K, Takamura K, Shimomoto N, Abe M. Electrochemical atomic force microscopy of two-dimensional trinuclear ruthenium clusters molecular assembly and dynamics under redox state control. NANOSCALE 2022; 14:8929-8933. [PMID: 35699477 DOI: 10.1039/d2nr01666d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mixed-valence ruthenium trinuclear clusters containing dichloroacetates were synthesized, and the self-assembly of a single molecular adlayer composed of these clusters on a graphite surface was investigated by atomic force microscopy (AFM). AFM clearly revealed the dynamics of two-dimensional (2D) structure formation as well as the molecular characteristics of the adlayers at different electrochemical interfaces. The results verified that the design of metal complexes is important not only for redox chemistry but also for molecular assembly and nanoarchitecture construction.
Collapse
Affiliation(s)
- Soichiro Yoshimoto
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Jinnosuke Kato
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hiroki Sakamoto
- Department of Applied Chemistry and Biochemistry, Faculty of Engineering Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hironori Minamoto
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Keita Daicho
- Graduate School of Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
| | - Kazuki Takamura
- Graduate School of Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
| | - Naoki Shimomoto
- Graduate School of Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
| | - Masaaki Abe
- Graduate School of Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
| |
Collapse
|
2
|
Czekner J, Wang LS. Observation of π-Backbonding in a Boronyl-Coordinated Transition Metal Complex TaBO –. J Phys Chem A 2020; 124:10001-10007. [DOI: 10.1021/acs.jpca.0c09196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph Czekner
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
3
|
Takao T, Seki K. Reversible Transformation of a μ3-η3-C3 Ring into μ3-η2-Ethyne and μ-Vinylidene Ligands at a Triruthenium Site upon Deprotonation and Protonation. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toshiro Takao
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Koichi Seki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
4
|
Kaneko T, Takao T. Reaction of a Triruthenium μ3-Borylene Complex with Benzonitrile: Formation of a μ3-η3-BCN Ring on a Cationic Ru3 Plane via Photo-Induced Intramolecular Borylene Transfer. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takeshi Kaneko
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Toshiro Takao
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
5
|
Kaneko T, Ninagawa H, Matsuoka M, Takao T. Synthesis and Properties of a Triruthenium Hydrido Complex Capped by a μ3-Oxoboryl Ligand. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takeshi Kaneko
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hayato Ninagawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Moe Matsuoka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Toshiro Takao
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
6
|
Mason JL, Harb H, Topolski JE, Hratchian HP, Jarrold CC. A Tale of Two Stabilities: How One Boron Atom Affects a Switch in Bonding Motifs in CeO2Bx– (x = 2, 3) Complexes. J Phys Chem A 2018; 122:9879-9885. [DOI: 10.1021/acs.jpca.8b10446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jarrett L. Mason
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Hassan Harb
- Department of Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Josey E. Topolski
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Hrant P. Hratchian
- Department of Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Gong S, Chen G, Li QS, Luo Q, Xie Y, King RB. Cyclopentadienyliron boronyl carbonyls as isoelectronic analogues of cyclopentadienylmanganese carbonyls except for boronyl ligand coupling reactions. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.07.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Redondo P, Rayón VM, Barrientos C, Largo A. Structural Trends in Monoboronyl Compounds: Analysis of the Interaction of Second-Row Elements with BO. J Phys Chem A 2018; 122:398-409. [PMID: 29227645 DOI: 10.1021/acs.jpca.7b10482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A theoretical study of the monoboronyl compounds of second-row elements, [XBO] (X = Na, Si, P, S, Cl), has been carried out. It is observed that the preference for the XBO arrangement is higher when moving to the right of the period. In the case of sodium monoboronyl three minima were characterized, all lying rather close in energy: linear NaBO, linear NaOB, and an L-shaped structure. Linear NaBO and the L-shaped structure are nearly isoenergetic, whereas linear NaOB is located 2.11 kcal/mol above linear NaBO. The barrier for the conversion of the L-shaped structure into linear NaBO is about 5.1 kcal/mol, suggesting that both species could be potential targets for experimental detection. For silicon monoboronyl, two minima, linear SiBO and linear SiOB, are found, the latter lying about 13 kcal/mol above SiBO. The barrier for the isomerization of SiOB into SiBO is estimated to be 11.4 kcal/mol. For phosphorus, sulfur, and chlorine monoboronyls the linear XBO isomer is clearly the most stable one, and the barriers for the conversion into XOB species are relatively high, suggesting that quite likely the linear XBO isomer should be the main experimental target. All studied monoboronyls are relatively stable, with dissociation energies increasing from left to right of the second-row (69.8 kcal/mol for NaBO and 118.98 kcal/mol for ClBO). An analysis of the bonding for second-row monoboronyls has been carried out, emphasizing the different characteristics of the X-B and X-O bonds along the second row.
Collapse
Affiliation(s)
- Pilar Redondo
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid Campus Miguel Delibes , Paseo de Belén 7, 47011 Valladolid, Spain
| | - Víctor M Rayón
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid Campus Miguel Delibes , Paseo de Belén 7, 47011 Valladolid, Spain
| | - Carmen Barrientos
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid Campus Miguel Delibes , Paseo de Belén 7, 47011 Valladolid, Spain
| | - Antonio Largo
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid Campus Miguel Delibes , Paseo de Belén 7, 47011 Valladolid, Spain
| |
Collapse
|
9
|
Takahashi Y, Nakajima Y, Suzuki H, Takao T. Synthesis of an Electron-Deficient Triruthenium Hydrido Complex Having a Bridging Carbonyl Ligand: Influence of a CO Ligand on the Properties and Reactivities of a Hydrido Cluster. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuta Takahashi
- Department
of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yumiko Nakajima
- Department
of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hiroharu Suzuki
- Department
of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Toshiro Takao
- Department
of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
- JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
10
|
Vega-Vega Á, Barrientos C, Largo A. Metallic monoboronyl compounds: Prediction of their structure and comparison with the cyanide analogues. J Comput Chem 2017; 38:807-815. [DOI: 10.1002/jcc.24752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Álvaro Vega-Vega
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias; Universidad de Valladolid; Campus Miguel Delibes, Paseo de Belén 7 47011 Valladolid Spain
| | - Carmen Barrientos
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias; Universidad de Valladolid; Campus Miguel Delibes, Paseo de Belén 7 47011 Valladolid Spain
| | - Antonio Largo
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias; Universidad de Valladolid; Campus Miguel Delibes, Paseo de Belén 7 47011 Valladolid Spain
| |
Collapse
|
11
|
Zhang Z, Pu L, Li QS, King RB. Controlling the Reactivity of the Boronyl Group in Platinum Complexes toward Cyclodimerization: A Theoretical Survey. Inorg Chem 2015; 54:10281-6. [DOI: 10.1021/acs.inorgchem.5b01597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhong Zhang
- College of Science, Northwest A&F University, Yangling, Shanxi 712100, People’s Republic of China
- Center for Computational Quantum Chemistry, South China Normal University, Guangzhou 510631, People’s Republic of China
| | - Liang Pu
- College of Science, Northwest A&F University, Yangling, Shanxi 712100, People’s Republic of China
| | - Qian-shu Li
- Center for Computational Quantum Chemistry, South China Normal University, Guangzhou 510631, People’s Republic of China
| | - R. Bruce King
- Department of Chemistry and
Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
12
|
Zhang Z, Pu L, Li QS, King RB. Pathways to the polymerization of boron monoxide dimer to give low-density porous materials containing six-membered boroxine rings. Inorg Chem 2015; 54:2910-5. [PMID: 25710351 DOI: 10.1021/ic503036b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional theory has been used to examine the key mechanistic details of the polymerization of boron monoxide (BO) via its O≡B-B≡O dimer to give ultimately low-density porous polymeric (BO)n materials. The structures of such materials consist of planar layers of six-membered boroxine (B3O3) rings linked by boron-boron bonds. Initial cyclooligomerization of B2O2 leads to a B4O4 dimer with a four-membered B2O2 ring, a B6O6 trimer containing a six-membered B3O3 (boroxine) ring, a B8O8 tetramer containing an eight-membered B4O4 ring, and even a B10O10 pentamer containing a ten-membered B5O5 ring. However, an isomeric B10O10 structure containing two boroxine rings linked by a B-B bond is a much lower energy structure by ∼31 kcal/mol owing to the special stability of the aromatic boroxine rings. Rotation of the boroxine rings around the central B-B bond in this B10O10 structure has a low rotation barrier suggesting that further oligomerization to give products containing either perpendicular or planar orientations of the B3O3 rings is possible. However, the planar oligomers are energetically more favorable since they have fewer high-energy external BO groups bonded to the network of boroxine rings. The pendant boronyl groups are reactive sites that can be used for further polymerization. Mechanistic aspects of the further oligomerization of (BO)x systems to give a B24O24 oligomer with a naphthalene-like arrangement of boroxine rings and a B84O84 structure with a coronene-like arrangement of boroxine rings have been examined. Further polymerization of these intermediates by similar processes is predicted to lead ultimately to polymers consisting of planar networks of boroxine rings. The holes between the boroxine rings in such polymers suggests that they will be porous low-density materials. Applications of such materials as absorbents for small molecules are anticipated.
Collapse
Affiliation(s)
- Zhong Zhang
- College of Science, Northwest A&F University , Yangling, Shanxi 712100, P. R. China
| | | | | | | |
Collapse
|
13
|
Zhang Z, Pu L, Li Q, King RB. The siliconyl, boronyl, and iminoboryl ligands as analogues of the well-known carbonyl ligand: predicted reactivity towards dipolar cyclooligomerization in iron/cobalt carbonyl complexes. RSC Adv 2015. [DOI: 10.1039/c5ra01903f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Fe(CO)4(SiO), Co(CO)4(BO), and Co(CO)4(BNSiMe3), complexes akin to the well-known Fe(CO)5 are predicted by density functional theory to undergo exothermic oligomerization to give the oligomers containing SinOn/BnOn/B2N2 rings with single bonds.
Collapse
Affiliation(s)
- Zhong Zhang
- College of Science
- Northwest A&F University
- Yangling
- P. R. China
- Center for Computational Quantum Chemistry
| | - Liang Pu
- College of Science
- Northwest A&F University
- Yangling
- P. R. China
| | - Qianshu Li
- Center for Computational Quantum Chemistry
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - R. Bruce King
- Department of Chemistry and Center for Computational Chemistry
- University of Georgia
- Athens
- USA
| |
Collapse
|