1
|
Bhunia M, Sandoval-Pauker C, Fehn D, Grant LN, Senthil S, Gau MR, Ozarowski A, Krzystek J, Telser J, Pinter B, Meyer K, Mindiola DJ. Divalent Titanium via Reductive N-C Coupling of a Ti IV Nitrido with π-Acids. Angew Chem Int Ed Engl 2024; 63:e202404601. [PMID: 38619509 DOI: 10.1002/anie.202404601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The nitrido-ate complex [(PN)2Ti(N){μ2-K(OEt2)}]2 (1) (PN-=(N-(2-PiPr2-4-methylphenyl)-2,4,6-Me3C6H2) reductively couples CO and isocyanides in the presence of DME or cryptand (Kryptofix222), to form rare, five-coordinate TiII complexes having a linear cumulene motif, [K(L)][(PN)2Ti(NCE)] (E=O, L=Kryptofix222, (2); E=NAd, L=3 DME, (3); E=NtBu, L=3 DME, (4); E=NAd, L=Kryptofix222, (5)). Oxidation of 2-5 with [Fc][OTf] afforded an isostructural TiIII center containing a neutral cumulene, [(PN)2Ti(NCE)] (E=O, (6); E=NAd (7), NtBu (8)) and characterization by CW X-band EPR spectroscopy, revealed unpaired electron to be metal centric. Moreover, 1e- reduction of 6 and 7 in the presence of Kryptofix222cleanly reformed corresponding discrete TiII complexes 2 and 5, which were further characterized by solution magnetization measurements and high-frequency and -field EPR (HFEPR) spectroscopy. Furthermore, oxidation of 7 with [Fc*][B(C6F5)4] resulted in a ligand disproportionated TiIV complex having transoid carbodiimides, [(PN)2Ti(NCNAd)2] (9). Comparison of spectroscopic, structural, and computational data for the divalent, trivalent, and tetravalent systems, including their 15N enriched isotopomers demonstrate these cumulenes to decrease in order of backbonding as TiII→TiIII→TiIV and increasing order of π-donation as TiII→TiIII→TiIV, thus displaying more covalency in TiIII species. Lastly, we show a synthetic cycle whereby complex 1 can deliver an N-atom to CO and CNAd.
Collapse
Affiliation(s)
- Mrinal Bhunia
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Dominik Fehn
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander- Universität Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Lauren N Grant
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuruthi Senthil
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310, USA
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310, USA
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois, 60605, USA
| | - Balazs Pinter
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander- Universität Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Zhuo Q, Yang J, Zhou X, Shima T, Luo Y, Hou Z. Dinitrogen Cleavage and Multicoupling with Isocyanides in a Dititanium Dihydride Framework. J Am Chem Soc 2024; 146:10984-10992. [PMID: 38578866 DOI: 10.1021/jacs.4c02905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Dinitrogen (N2) activation and functionalization through N-N bond cleavage and N-C bond formation are of great interest and importance but remain highly challenging. We report here for the first time N2 cleavage and selective multicoupling with isocyanides in a dititanium dihydride framework. The reaction of a dinitrogen dititanium dihydride complex [{(acriPNP)Ti}2(μ-η1:η2-N2)(μ-H)2] (1) with an excess (four or more equivalents) of p-methoxyphenyl isocyanide at room temperature gave a novel amidoamidinatoguanidinate complex [(acriPNP)Ti{NC(═NR)NC(═NR)CH2NR}Ti(acriPNP)(CNR)] (2, acriPNP = 4,5-bis(diisopropylphosphino)-2,7,9,9-tetramethyl-9H-acridin-10-ide; R = p-MeOC6H4) through N2 splitting and coupling with three isocyanide molecules. When 1 equiv of p-methoxyphenyl isocyanide was used to react with 1 at -30 °C, the hydrogenation of the isocyanide unit by the two hydride ligands in 1 took place, affording an amidomethylene-bridged dititanium dinitrogen complex [{(acriPNP)Ti}2(μ-η1:η2-N2){μ-η1:η2-CH2N(p-MeOC6H4)}] (3), which upon reaction with another equivalent of p-methoxyphenyl isocyanide at room temperature gave an amidomethylene/nitrido/carbodiimido complex [(acriPNP)Ti(N═C═NR)(μ-N)(μ-η1:η2-CH2NR)Ti(acriPNP)] (4) through N2 cleavage and N═C bond formation. Further reaction of 4 with 1 equiv of p-methoxyphenyl isocyanide led to an unprecedented four-component (carbodiimido, nitrido, isocyanide, and amidomethylene) coupling, yielding an amidoamidinatoguanidinate complex [{(acriPNP)Ti}2{NC(═NR)NC(═NR)CH2NR}] (5), which on reaction with another equivalent of p-methoxyphenyl isocyanide afforded the isocyanide-coordinated analogue 2. The reaction of 1 with 2-naphthyl isocyanide also took place in a similar multicoupling fashion. Moreover, the cross-coupling reactions of the p-methoxyphenyl isocyanide-derived amidomethylene/nitrido/carbodiimido complex 4 with 2-naphthyl isocyanide, cyclohexyl isocyanide, and tert-butyl isocyanide were also achieved, which afforded the corresponding amidoamidinatoguanidinate products consisting of two different isocyanides. Density functional theory (DFT) calculations further elucidated the mechanistic details.
Collapse
Affiliation(s)
- Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jimin Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoxi Zhou
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takanori Shima
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Zhaomin Hou
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
3
|
Bresciani G, Zacchini S, Pampaloni G, Bortoluzzi M, Marchetti F. Diiron Aminocarbyne Complexes with NCE− Ligands (E = O, S, Se). Molecules 2023; 28:molecules28073251. [PMID: 37050013 PMCID: PMC10096932 DOI: 10.3390/molecules28073251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023] Open
Abstract
Diiron μ-aminocarbyne complexes [Fe2Cp2(NCMe)(CO)(μ-CO){μ-CN(Me)(R)}]CF3SO3 (R = Xyl, [1aNCMe]CF3SO3; R = Me, [1bNCMe]CF3SO3; R = Cy, [1cNCMe]CF3SO3; R = CH2Ph, [1dNCMe]CF3SO3), freshly prepared from tricarbonyl precursors [1a–d]CF3SO3, reacted with NaOCN (in acetone) and NBu4SCN (in dichloromethane) to give [Fe2Cp2(kN-NCO)(CO)(μ-CO){μ-CN(Me)(R)}] (R = Xyl, 2a; Me, 2b; Cy, 2c) and [Fe2Cp2(kN-NCS)(CO)(μ-CO){μ-CN(Me)(CH2Ph)}], 3 in 67–81% yields via substitution of the acetonitrile ligand. The reaction of [1aNCMe–1cNCMe]CF3SO3 with KSeCN in THF at reflux temperature led to the cyanide complexes [Fe2Cp2(CN)(CO)(μ-CO){μ-CNMe(R)}], 6a–c (45–67%). When the reaction of [1aNCMe]CF3SO3 with KSeCN was performed in acetone at room temperature, subsequent careful chromatography allowed the separation of moderate amounts of [Fe2Cp2(kSe-SeCN)(CO)(μ-CO){μ-CN(Me)(Xyl)}], 4a, and [Fe2Cp2(kN-NCSe)(CO)(μ-CO){μ-CN(Me)(Xyl)}], 5a. All products were fully characterized by elemental analysis, IR, and multinuclear NMR spectroscopy; moreover, the molecular structure of trans-6b was ascertained by single crystal X-ray diffraction. DFT calculations were carried out to shed light on the coordination mode and stability of the {NCSe-} fragment.
Collapse
Affiliation(s)
- Giulio Bresciani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Stefano Zacchini
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Marco Bortoluzzi
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
- Department of Molecular Science and Nanosystems, University of Venezia “Ca’ Foscari”, Via Torino 155, I-30170 Mestre, Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| |
Collapse
|
4
|
Bhutto SM, Hooper RX, Mercado BQ, Holland PL. Mechanism of Nitrogen-Carbon Bond Formation from Iron(IV) Disilylhydrazido Intermediates during N 2 Reduction. J Am Chem Soc 2023; 145:4626-4637. [PMID: 36794981 DOI: 10.1021/jacs.2c12382] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We recently reported a reaction sequence that activates C-H bonds in simple arenes as well as the N-N triple bond in N2, delivering the aryl group to N2 to form a new N-C bond (Nature 2020, 584, 221). This enables the transformation of abundant feedstocks (arenes and N2) into N-containing organic compounds. The key N-C bond forming step occurs upon partial silylation of N2. However, the pathway through which reduction, silylation, and migration occurred was unknown. Here, we describe synthetic, structural, magnetic, spectroscopic, kinetic, and computational studies that elucidate the steps of this transformation. N2 must be silylated twice at the distal N atom before aryl migration can occur, and sequential silyl radical and silyl cation addition is a kinetically competent pathway to a formally iron(IV)-NN(SiMe3)2 intermediate that can be isolated at low temperature. Kinetic studies show its first-order conversion to the migrated product, and DFT calculations indicate a concerted transition state for migration. The electronic structure of the formally iron(IV) intermediate is examined using DFT and CASSCF calculations, which reveal contributions from iron(II) and iron(III) resonance forms with oxidized NNSi2 ligands. The depletion of electron density from the Fe-coordinated N atom makes it electrophilic enough to accept the incoming aryl group. This new pathway for the N-C bond formation offers a method for functionalizing N2 using organometallic chemistry.
Collapse
Affiliation(s)
- Samuel M Bhutto
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, United States
| | - Reagan X Hooper
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, United States
| |
Collapse
|
5
|
Zhuo Q, Zhou X, Shima T, Hou Z. Dinitrogen Activation and Addition to Unsaturated C-E (E=C, N, O, S) Bonds Mediated by Transition Metal Complexes. Angew Chem Int Ed Engl 2023; 62:e202218606. [PMID: 36744517 DOI: 10.1002/anie.202218606] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
Dinitrogen (N2 ) activation and functionalization is of fundamental interest and practical importance. This review focuses on N2 activation and addition to unsaturated substrates, including carbon monoxide, carbon dioxide, heteroallenes, aldehydes, ketones, acid halides, nitriles, alkynes, and allenes, mediated by transition metal complexes, which afforded a variety of N-C bond formation products. Emphases are placed on the reaction modes and mechanisms. We hope that this work would stimulate further explorations in this challenging field.
Collapse
Affiliation(s)
- Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaoxi Zhou
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takanori Shima
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Bhunia M, Sandoval‐Pauker C, Jafari MG, Grant LN, Gau MR, Pinter B, Mindiola DJ. Terminal and Super‐Basic Parent Imides of Hafnium. Angew Chem Int Ed Engl 2022; 61:e202209122. [DOI: 10.1002/anie.202209122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Mrinal Bhunia
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | | | | | - Lauren N. Grant
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Michael R. Gau
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Balazs Pinter
- Department of Chemistry and Biochemistry University of Texas at El Paso El Paso TX 79968 USA
| | - Daniel J. Mindiola
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
7
|
Bhunia M, Sandoval-Pauker C, Jafari MG, Grant LN, Gau MR, Pinter B, Mindiola DJ. Terminal and Super‐Basic Parent Imides of Hafnium. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mrinal Bhunia
- University of Pennsylvania Department of Chemistry Chemistry UNITED STATES
| | | | | | - Lauren N. Grant
- University of Pennsylvania Department of Chemistry Chemistry UNITED STATES
| | - Michael R. Gau
- University of Pennsylvania Department of Chemistry Chemistry UNITED STATES
| | - Balazs Pinter
- The University of Texas at El Paso Chemistry UNITED STATES
| | - Daniel J. Mindiola
- University of Pennsylvania Department of Chemistry Chemistry 231 S. 34 Street 19104 Philadelphia UNITED STATES
| |
Collapse
|
8
|
Zhuo Q, Yang J, Mo Z, Zhou X, Shima T, Luo Y, Hou Z. Dinitrogen Cleavage and Functionalization with Carbon Dioxide in a Dititanium Dihydride Framework. J Am Chem Soc 2022; 144:6972-6980. [PMID: 35380823 DOI: 10.1021/jacs.2c01851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The activation and functionalization of dinitrogen (N2) with carbon dioxide (CO2) are of great interest and importance but highly challenging. We report here for the first time the reaction of N2 with CO2 in a dititanium dihydride framework, which leads to N-C bond formation and N-N and C-O bond cleavage. Exposure of a dinitrogen dititanium hydride complex {[(acriPNP)Ti]2(μ2-η1:η2-N2)(μ2-H)2} (1) (acriPNP = 4,5-bis(diisopropylphosphino)-2,7,9,9-tetramethyl-9H-acridin-10-ide) to a CO2 atmosphere at room temperature rapidly yielded a nitrido/N,N-dicarboxylamido complex {[(acriPNP)Ti]2(μ2-N)[μ2-N(CO2)2]} (2, 28%) and a diisocyanato/dioxo complex {[(acriPNP)Ti]2(NCO)2(μ2-O)2} (3, 52%) with release of H2. When the reaction of 1 with CO2 (1 atm) was carried out at -50 °C, complex 2 was selectively formed in 82% yield within 5 min. Heating 2 at 80 °C under 1 atm CO2 for 30 min afforded 3 in 67% yield. When 1 was allowed to react with 1.5 equiv of CO2 at room temperature, an isocyanato/nitrido/oxo complex {[(acriPNP)Ti]2(NCO)(μ2-N)(μ2-O)} (4) was exclusively formed in 89% yield within 5 min. The reaction of 4 with CO2 at room temperature almost quantitatively yielded the dioxo/diisocyanato complex 3 within 5 min. The mechanistic details were clarified by the 15N- and 13C-labeled experiments and density functional theory (DFT) calculations, providing unprecedented insights into the reaction of N2 with CO2. A titanium-mediated cycle for the synthesis of trimethylsilyl isocyanate Me3SiNCO from N2, CO2, and Me3SiCl using H2 as a reducing agent was also established.
Collapse
Affiliation(s)
- Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jimin Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhenbo Mo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaoxi Zhou
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takanori Shima
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.,PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Zhaomin Hou
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Barluzzi L, Falcone M, Mazzanti M. Small molecule activation by multimetallic uranium complexes supported by siloxide ligands. Chem Commun (Camb) 2019; 55:13031-13047. [PMID: 31608910 DOI: 10.1039/c9cc05605j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis and reactivity of uranium compounds supported by the tris-tert-butoxysiloxide ligand is surveyed. The multiple binding modes of the tert-butoxysiloxide ligand have proven very well suited to stabilize highly reactive homo- and heteropolymetallic complexes of uranium that have shown an unusual high reactivity towards small molecules such as CO2, CS2, chalcogens and azides. Moreover, these ligands have allowed the isolation of dinuclear nitride and oxide bridged complexes of uranium in various oxidation states. The ability of the tris-tert-butoxysiloxide ligands to trap alkali ions in these nitride or oxide complexes leads to unprecedented ligand based and metal based reduction and functionalization of N2, CO, CO2 and H2.
Collapse
Affiliation(s)
- Luciano Barluzzi
- I Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Marta Falcone
- I Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Marinella Mazzanti
- I Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
10
|
Palumbo CT, Barluzzi L, Scopelliti R, Zivkovic I, Fabrizio A, Corminboeuf C, Mazzanti M. Tuning the structure, reactivity and magnetic communication of nitride-bridged uranium complexes with the ancillary ligands. Chem Sci 2019; 10:8840-8849. [PMID: 31803458 PMCID: PMC6853081 DOI: 10.1039/c9sc02149c] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/06/2019] [Indexed: 11/23/2022] Open
Abstract
The reactivity of the nitride ligand is increased in complexes of uranium(iv) when bound by the OSi(OtBu)3 ligand as opposed to N(SiMe3)2, but magnetic exchange coupling is decreased.
Molecular uranium nitride complexes were prepared to relate their small molecule reactivity to the nature of the U
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
N
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
U bonding imposed by the supporting ligand. The U4+–U4+ nitride complexes, [NBu4][{((tBuO)3SiO)3U}2(μ-N)], [NBu4]-1, and [NBu4][((Me3Si)2N)3U}2(μ-N)], 2, were synthesised by reacting NBu4N3 with the U3+ complexes, [U(OSi(OtBu)3)2(μ-OSi(OtBu)3)]2 and [U(N(SiMe3)2)3], respectively. Oxidation of 2 with AgBPh4 gave the U4+–U5+ analogue, [((Me3Si)2N)3U}2(μ-N)], 4. The previously reported methylene-bridged U4+–U4+ nitride [Na(dme)3][((Me3Si)2)2U(μ-N)(μ-κ2-C,N-CH2SiMe2NSiMe3)U(N(SiMe3)2)2] (dme = 1,2-dimethoxyethane), [Na(dme)3]-3, provided a versatile precursor for the synthesis of the mixed-ligand U4+–U4+ nitride complex, [Na(dme)3][((Me3Si)2N)3U(μ-N)U(N(SiMe3)2)(OSi(OtBu)3)], 5. The reactivity of the 1–5 complexes was assessed with CO2, CO, and H2. Complex [NBu4]-1 displays similar reactivity to the previously reported heterobimetallic complex, [Cs{((tBuO)3SiO)3U}2(μ-N)], [Cs]-1, whereas the amide complexes 2 and 4 are unreactive with these substrates. The mixed-ligand complexes 3 and 5 react with CO and CO2 but not H2. The nitride complexes [NBu4]-1, 2, 4, and 5 along with their small molecule activation products were structurally characterized. Magnetic data measured for the all-siloxide complexes [NBu4]-1 and [Cs]-1 show uncoupled uranium centers, while strong antiferromagnetic coupling was found in complexes containing amide ligands, namely 2 and 5 (with maxima in the χ versus T plot of 90 K and 55 K). Computational analysis indicates that the U(μ-N) bond order decreases with the introduction of oxygen-based ligands effectively increasing the nucleophilicity of the bridging nitride.
Collapse
Affiliation(s)
- Chad T Palumbo
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Luciano Barluzzi
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism , Institute of Physics , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Alberto Fabrizio
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Clémence Corminboeuf
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| |
Collapse
|
11
|
Barluzzi L, Chatelain L, Fadaei-Tirani F, Zivkovic I, Mazzanti M. Facile N-functionalization and strong magnetic communication in a diuranium(v) bis-nitride complex. Chem Sci 2019; 10:3543-3555. [PMID: 30996946 PMCID: PMC6438153 DOI: 10.1039/c8sc05721d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/08/2019] [Indexed: 11/21/2022] Open
Abstract
Uranium nitride complexes are of high interest because of their ability to effect dinitrogen reduction and functionalization and to promote magnetic communication, but studies of their properties and reactivity remain rare. Here we have prepared in 73% yield the diuranium(v) bis-nitride complex [K2{[U(OSi(O t Bu)3)3]2(μ-N)2}], 4, from the thermal decomposition of the nitride-, azide-bridged diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-N3)}], 3. The bis-nitride 4 reacts in ambient conditions with 1 equiv. of CS2 and 1 equiv. of CO2 resulting in N-C bond formation to afford the diuranium(v) complexes [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-S)(μ-NCS)}], 5 and [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-O)(μ-NCO)}], 6, respectively. Both nitrides in 4 react with CO resulting in oxidative addition of CO to one nitride and CO cleavage by the second nitride to afford the diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-CN)(μ-O)(μ-NCO)}], 7. Complex 4 also effects the remarkable oxidative cleavage of H2 in mild conditions to afford the bis-imido bridged diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-NH)2}], 8 that can be further protonated to afford ammonia in 73% yield. Complex 8 provides a good model for hydrogen cleavage by metal nitrides in the Haber-Bosch process. The measured magnetic data show an unusually strong antiferromagnetic coupling between uranium(v) ions in the complexes 4 and 6 with Neel temperatures of 77 K and 60 K respectively, demonstrating that nitrides are attractives linkers for promoting magnetic communication in uranium complexes.
Collapse
Affiliation(s)
- Luciano Barluzzi
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Lucile Chatelain
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism , Institute of Physics , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| |
Collapse
|
12
|
Grant LN, Pinter B, Gu J, Mindiola DJ. Molecular Zirconium Nitride Super Base from a Mononuclear Parent Imide. J Am Chem Soc 2018; 140:17399-17403. [DOI: 10.1021/jacs.8b11198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lauren N. Grant
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Balazs Pinter
- Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Jun Gu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel J. Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
13
|
Chantarojsiri T, Reath AH, Yang JY. Cationic Charges Leading to an Inverse Free‐Energy Relationship for N−N Bond Formation by Mn
VI
Nitrides. Angew Chem Int Ed Engl 2018; 57:14037-14042. [DOI: 10.1002/anie.201805832] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/15/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Teera Chantarojsiri
- Department of Chemistry University of California Irvine CA USA
- Department of Chemistry Faculty of Science Mahidol University Bangkok Thailand
| | | | - Jenny Y. Yang
- Department of Chemistry University of California Irvine CA USA
| |
Collapse
|
14
|
Chantarojsiri T, Reath AH, Yang JY. Cationic Charges Leading to an Inverse Free‐Energy Relationship for N−N Bond Formation by Mn
VI
Nitrides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Teera Chantarojsiri
- Department of Chemistry University of California Irvine CA USA
- Department of Chemistry Faculty of Science Mahidol University Bangkok Thailand
| | | | - Jenny Y. Yang
- Department of Chemistry University of California Irvine CA USA
| |
Collapse
|
15
|
|
16
|
Du MR, Zhang XB, Si SM, Wang L. Theoretical insights into the reaction of Cp*(Cl)Hf(diene) with isonitriles. RSC Adv 2017. [DOI: 10.1039/c7ra08981c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The reaction of Cp*(Cl)Hf(2,3-dimethylbutadiene) with isonitriles is theoretically investigated, and detailed elementary reactions and the substitution effects are examined.
Collapse
Affiliation(s)
- Ming-Ran Du
- School of Chemical Engineering
- Anhui University of Science and Technology
- Huainan
- People's Republic of China
| | - Xiang-Biao Zhang
- School of Chemical Engineering
- Anhui University of Science and Technology
- Huainan
- People's Republic of China
| | - Sheng-Meng Si
- School of Chemical Engineering
- Anhui University of Science and Technology
- Huainan
- People's Republic of China
| | - Lei Wang
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- People's Republic of China
| |
Collapse
|
17
|
Guru MM, Shima T, Hou Z. Conversion of Dinitrogen to Nitriles at a Multinuclear Titanium Framework. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Murali Mohan Guru
- Advanced Catalysis Research Group; RIKEN, Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Takanori Shima
- Advanced Catalysis Research Group; RIKEN, Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory; RIKEN; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group; RIKEN, Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory; RIKEN; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| |
Collapse
|
18
|
Guru MM, Shima T, Hou Z. Conversion of Dinitrogen to Nitriles at a Multinuclear Titanium Framework. Angew Chem Int Ed Engl 2016; 55:12316-20. [DOI: 10.1002/anie.201607426] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Murali Mohan Guru
- Advanced Catalysis Research Group; RIKEN, Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Takanori Shima
- Advanced Catalysis Research Group; RIKEN, Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory; RIKEN; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group; RIKEN, Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory; RIKEN; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| |
Collapse
|
19
|
Plundrich GT, Wadepohl H, Clot E, Gade LH. η(6) -Arene-Zirconium-PNP-Pincer Complexes: Mechanism of Their Hydrogenolytic Formation and Their Reactivity as Zirconium(II) Synthons. Chemistry 2016; 22:9283-92. [PMID: 27258989 DOI: 10.1002/chem.201601213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Indexed: 11/08/2022]
Abstract
The cyclometalated monobenzyl complexes [(Cbzdiphos(R) -CH)ZrBnX] 1 (iPr) Cl and 1 (Ph) I reacted with dihydrogen (10 bar) to yield the η(6) -toluene complexes [(Cbzdiphos(R) )Zr(η(6) -tol)X] 2 (iPr) Cl and 2 (Ph) I (cbzdiphos=1,8-bis(phosphino)-3,6-di-tert-butyl-9H-carbazole). The arene complexes were also found to be directly accessible from the triiodide [(Cbzdiphos(Ph) )ZrI3 ] through an in situ reaction with a dibenzylmagnesium reagent and subsequent hydrogenolysis, as exemplified for the η(6) -mesitylene complex [(Cbzdiphos(Ph) )Zr(η(6) -mes)I] (3 (Ph) I). The tolyl-ring in 2 (iPr) Cl adopts a puckered arrangement (fold angle 23.3°) indicating significant arene-1,4-diido character. Deuterium labeling experiments were consistent with an intramolecular reaction sequence after the initial hydrogenolysis of a Zr-C bond by a σ-bond metathesis. A DFT study of the reaction sequence indicates that hydrogenolysis by σ-bond metathesis first occurs at the cyclometalated ancillary ligand giving a hydrido-benzyl intermediate, which subsequently reductively eliminates toluene that then coordinates to the Zr atom as the reduced arene ligand. Complex 2 (Ph) I was reacted with 2,6-diisopropylphenyl isocyanide giving the deep blue, diamagnetic Zr(II) -diisocyanide complex [(Cbzdiphos(Ph) )Zr(CNDipp)2 I] (4 (Ph) I). DFT modeling of 4 (Ph) I demonstrated that the HOMO of the complex is primarily located as a "lone pair on zirconium", with some degree of back-bonding into the C≡N π* bond, and the complex is thus most appropriately described as a zirconium(II) species. Reaction of 2 (Ph) I with trimethylsilylazide (N3 TMS) and 2 (iPr) Cl with 1-azidoadamantane (N3 Ad) resulted in the formation of the imido complexes [(Cbzdiphos(R) )Zr=NR'(X)] 5 (iPr) Cl-NAd and 5 (Ph) I-NTMS, respectively. Reaction of 2 (iPr) Cl with azobenzene led to N-N bond scission giving 6 (iPr) Cl, in which one of the NPh-fragments is coupled with the carbazole nitrogen to form a central η(2) -bonded hydrazide(-1), whereas the other NPh-fragment binds to zirconium acting as an imido-ligand. Finally, addition of pyridine to 2 (iPr) Cl yielded the dark purple complex [(Cbzdiphos(iPr) )Zr(bpy)Cl] (7 (iPr) Cl) through a combination of CH-activation and C-C-coupling. The structural data and UV/Vis spectroscopic properties of 7 (iPr) Cl indicate that the bpy (bipyridine) may be regarded as a (dianionic) diamido-type ligand.
Collapse
Affiliation(s)
- Gudrun T Plundrich
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Eric Clot
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, Université de Montpellier, cc 1501, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France.
| | - Lutz H Gade
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.
| |
Collapse
|
20
|
Falcone M, Chatelain L, Mazzanti M. Nucleophilic Reactivity of a Nitride-Bridged Diuranium(IV) Complex: CO2 and CS2 Functionalization. Angew Chem Int Ed Engl 2016; 55:4074-8. [PMID: 26914732 DOI: 10.1002/anie.201600158] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Indexed: 11/07/2022]
Abstract
Thermolysis of the nitride-bridged diuranium(IV) complex Cs{(μ-N)[U(OSi(O(t) Bu)3)3]2} (1) showed that the bridging nitride behaves as a strong nucleophile, promoting N-C bond formation by siloxide ligand fragmentation to yield an imido-bridged siloxide/silanediolate diuranium(IV) complex, Cs{(μ-N(t) Bu)(μ-O2 Si(O(t) Bu)2)U2 (OSi(O(t) Bu)3)5}. Complex 1 displayed reactivity towards CS2 and CO2 at room temperature that is unprecedented in f-element chemistry, affording diverse N-functionalized products depending on the reaction stoichiometry. The reaction of 1 with two equivalents of CS2 yielded the thiocyanate/thiocarbonate complex Cs{(μ-NCS)(μ-CS3 )[U(OSi(O(t)Bu)3)3]2} via a putative NCS(-)/S(2-) intermediate. The reaction of 1 with one equivalent of CO2 resulted in deoxygenation and N-C bond formation, yielding the cyanate/oxo complex Cs{(μ-NCO)(μ-O)[U(OSi(O(t) Bu)3 )3]2}. Addition of excess CO2 to 1 led to the unprecedented dicarbamate product Cs{(μ-NC2O4)[U(OSi(O(t) Bu)3)3]2}.
Collapse
Affiliation(s)
- Marta Falcone
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Lucile Chatelain
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
21
|
Falcone M, Chatelain L, Mazzanti M. Nucleophilic Reactivity of a Nitride-Bridged Diuranium(IV) Complex: CO2
and CS2
Functionalization. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marta Falcone
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Lucile Chatelain
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| |
Collapse
|
22
|
Walter M. Recent Advances in Transition Metal-Catalyzed Dinitrogen Activation. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2016. [DOI: 10.1016/bs.adomc.2016.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
23
|
Semproni SP, Chirik PJ. N–H and N–C Bond Formation with an N2-Derived Dihafnium μ-Nitrido Complex. Organometallics 2014. [DOI: 10.1021/om500393n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Scott P. Semproni
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
24
|
Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Kamaru N, Yoshizawa K, Nishibayashi Y. Catalytic Formation of Ammonia from Molecular Dinitrogen by Use of Dinitrogen-Bridged Dimolybdenum–Dinitrogen Complexes Bearing PNP-Pincer Ligands: Remarkable Effect of Substituent at PNP-Pincer Ligand. J Am Chem Soc 2014; 136:9719-31. [DOI: 10.1021/ja5044243] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Shogo Kuriyama
- Institute
of Engineering Innovation, School of Engineering, The University of Tokyo, Yayoi,
Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuya Arashiba
- Institute
of Engineering Innovation, School of Engineering, The University of Tokyo, Yayoi,
Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazunari Nakajima
- Institute
of Engineering Innovation, School of Engineering, The University of Tokyo, Yayoi,
Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiromasa Tanaka
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Nobuaki Kamaru
- Institute
for Materials Chemistry and Engineering and International Research
Center for Molecular System, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
- Institute
for Materials Chemistry and Engineering and International Research
Center for Molecular System, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiaki Nishibayashi
- Institute
of Engineering Innovation, School of Engineering, The University of Tokyo, Yayoi,
Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
25
|
Arashiba K, Nakajima K, Nishibayashi Y. Synthesis and Reactivity of Molybdenum-Dinitrogen Complexes Bearing PNN-Type Pincer Ligand. Z Anorg Allg Chem 2014. [DOI: 10.1002/zaac.201400117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|