1
|
Liu Y, Ji P, Zou G, Liu Y, Yang BM, Zhao Y. Dynamic Asymmetric Diamination of Allylic Alcohols through Borrowing Hydrogen Catalysis: Diastereo-Divergent Synthesis of Tetrahydrobenzodiazepines. Angew Chem Int Ed Engl 2024:e202410351. [PMID: 39305276 DOI: 10.1002/anie.202410351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Indexed: 11/03/2024]
Abstract
We present herein a catalytic enantioconvergent diamination of racemic allylic alcohols with the construction of two C-N bonds and 1,3-nonadjacent stereocenters. This iridium/chiral phosphoric acid cooperative catalytic system operates through an atom-economical borrowing hydrogen amination/aza-Michael cascade, and converts readily available phenylenediamines and racemic allylic alcohols to 1,5-tetrahydrobenzodiazepines in high enantioselectivity. An intriguing solvent-dependent switch of diastereoselectivity was also observed. Mechanistic studies suggested a dynamic kinetic resolution process involving racemization through a reversible Michael addition, making the last step of asymmetric imine reduction the enantiodetermining step of this cascade process.
Collapse
Affiliation(s)
- Yufeng Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Peng Ji
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Gongfeng Zou
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Yongbing Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, 050024, Shijiazhuang, China
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, Lanzhou, China
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| |
Collapse
|
2
|
Alexandridis A, Rancon T, Halliday A, Kochem A, Quintard A. Iron- and Organo-Catalyzed Borrowing Hydrogen for the Stereoselective Construction of Tetrahydropyrans. Org Lett 2024; 26:5788-5793. [PMID: 38935856 DOI: 10.1021/acs.orglett.4c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Stereocontrolled oxa-Michael additions are challenging, given the high reversibility of the process, which ultimately leads to racemization of the newly formed stereocenters. When iron-catalyzed borrowing hydrogen from allylic alcohols was combined with a stereocontrolled organocatalytic oxa-Michael addition, a wide array of chiral tetrahydropyrans were efficiently prepared. The reaction could be performed in a diastereoselective manner from pre-existing stereocenters or enantioselectively from achiral substrates. The key to success was the reactivity of the iron complex, which was selective for allylic alcohol dehydrogenation and irreversibly led the reaction to the final product.
Collapse
Affiliation(s)
| | - Thibault Rancon
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | | | - Amélie Kochem
- Université Grenoble Alpes, CNRS, CEA, LCBM (UMR 5249), F-38000 Grenoble, France
| | - Adrien Quintard
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| |
Collapse
|
3
|
Grandi E, Feyza Özgen F, Schmidt S, Poelarends GJ. Enzymatic Oxy- and Amino-Functionalization in Biocatalytic Cascade Synthesis: Recent Advances and Future Perspectives. Angew Chem Int Ed Engl 2023; 62:e202309012. [PMID: 37639631 DOI: 10.1002/anie.202309012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Biocatalytic cascades are a powerful tool for building complex molecules containing oxygen and nitrogen functionalities. Moreover, the combination of multiple enzymes in one pot offers the possibility to minimize downstream processing and waste production. In this review, we illustrate various recent efforts in the development of multi-step syntheses involving C-O and C-N bond-forming enzymes to produce high value-added compounds, such as pharmaceuticals and polymer precursors. Both in vitro and in vivo examples are discussed, revealing the respective advantages and drawbacks. The use of engineered enzymes to boost the cascades outcome is also addressed and current co-substrate and cofactor recycling strategies are presented, highlighting the importance of atom economy. Finally, tools to overcome current challenges for multi-enzymatic oxy- and amino-functionalization reactions are discussed, including flow systems with immobilized biocatalysts and cascades in confined nanomaterials.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Fatma Feyza Özgen
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
4
|
Yus M, Nájera C, Foubelo F, Sansano JM. Metal-Catalyzed Enantioconvergent Transformations. Chem Rev 2023; 123:11817-11893. [PMID: 37793021 PMCID: PMC10603790 DOI: 10.1021/acs.chemrev.3c00059] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 10/06/2023]
Abstract
Enantioconvergent catalysis has expanded asymmetric synthesis to new methodologies able to convert racemic compounds into a single enantiomer. This review covers recent advances in transition-metal-catalyzed transformations, such as radical-based cross-coupling of racemic alkyl electrophiles with nucleophiles or racemic alkylmetals with electrophiles and reductive cross-coupling of two electrophiles mainly under Ni/bis(oxazoline) catalysis. C-H functionalization of racemic electrophiles or nucleophiles can be performed in an enantioconvergent manner. Hydroalkylation of alkenes, allenes, and acetylenes is an alternative to cross-coupling reactions. Hydrogen autotransfer has been applied to amination of racemic alcohols and C-C bond forming reactions (Guerbet reaction). Other metal-catalyzed reactions involve addition of racemic allylic systems to carbonyl compounds, propargylation of alcohols and phenols, amination of racemic 3-bromooxindoles, allenylation of carbonyl compounds with racemic allenolates or propargyl bromides, and hydroxylation of racemic 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Miguel Yus
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Carmen Nájera
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Francisco Foubelo
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - José M. Sansano
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| |
Collapse
|
5
|
Gao Y, Hong G, Yang BM, Zhao Y. Enantioconvergent transformations of secondary alcohols through borrowing hydrogen catalysis. Chem Soc Rev 2023; 52:5541-5562. [PMID: 37519093 DOI: 10.1039/d3cs00424d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Direct substitution of readily available alcohols is recognized as a key research area in green chemical synthesis. Starting from simple racemic secondary alcohols, the achievement of catalytic enantioconvergent transformations of the substrates will be highly desirable for efficient access to valuable enantiopure compounds. To accomplish such attractive yet challenging transformations, the strategy of the enantioconvergent borrowing hydrogen methodology has proven to be uniquely effective and versatile. This review aims to provide an overview of the impressive progress made on this topic of research that has only thrived in the past decade. In particular, the conversion of racemic secondary alcohols to enantioenriched chiral amines, N-heterocycles, higher-order alcohols and ketones will be discussed in detail.
Collapse
Affiliation(s)
- Yaru Gao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
| | - Guorong Hong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
| |
Collapse
|
6
|
Al-Romaizan AN, Gangwar MK, Verma A, Bawaked SM, Saleh TS, Al-Ammari RH, Butcher RJ, Siddiqui IR, Mostafa MMM. Catalytic Acceptorless Dehydrogenation (CAD) of Secondary Benzylic Alcohols into Value-Added Ketones Using Pd(II)-NHC Complexes. Molecules 2023; 28:4992. [PMID: 37446653 PMCID: PMC10343575 DOI: 10.3390/molecules28134992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
For the creation of adaptable carbonyl compounds in organic synthesis, the oxidation of alcohols is a crucial step. As a sustainable alternative to the harmful traditional oxidation processes, transition-metal catalysts have recently attracted a lot of interest in acceptorless dehydrogenation reactions of alcohols. Here, using well-defined, air-stable palladium(II)-NHC catalysts (A-F), we demonstrate an effective method for the catalytic acceptorless dehydrogenation (CAD) reaction of secondary benzylic alcohols to produce the corresponding ketones and molecular hydrogen (H2). Catalytic acceptorless dehydrogenation (CAD) has been successfully used to convert a variety of alcohols, including electron-rich/electron-poor aromatic secondary alcohols, heteroaromatic secondary alcohols, and aliphatic cyclic alcohols, into their corresponding value-added ketones while only releasing molecular hydrogen as a byproduct.
Collapse
Affiliation(s)
- Abeer Nasser Al-Romaizan
- Department of Chemistry, Faculty of Science, King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.N.A.-R.); (S.M.B.); (R.H.A.-A.)
| | - Manoj Kumar Gangwar
- Department of Chemistry, Faculty of Science, University of Allahabad (AoU), Prayagraj 211002, Uttar Pradesh, India; (M.K.G.); (A.V.); (I.R.S.)
| | - Ankit Verma
- Department of Chemistry, Faculty of Science, University of Allahabad (AoU), Prayagraj 211002, Uttar Pradesh, India; (M.K.G.); (A.V.); (I.R.S.)
| | - Salem M. Bawaked
- Department of Chemistry, Faculty of Science, King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.N.A.-R.); (S.M.B.); (R.H.A.-A.)
| | - Tamer S. Saleh
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21959, Saudi Arabia
| | - Rahmah H. Al-Ammari
- Department of Chemistry, Faculty of Science, King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.N.A.-R.); (S.M.B.); (R.H.A.-A.)
| | - Ray J. Butcher
- Department of Chemistry, Howard University, Washington, DC 20059, USA;
| | - Ibadur Rahman Siddiqui
- Department of Chemistry, Faculty of Science, University of Allahabad (AoU), Prayagraj 211002, Uttar Pradesh, India; (M.K.G.); (A.V.); (I.R.S.)
| | - Mohamed Mokhtar M. Mostafa
- Department of Chemistry, Faculty of Science, King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.N.A.-R.); (S.M.B.); (R.H.A.-A.)
| |
Collapse
|
7
|
Liu Y, Diao H, Hong G, Edward J, Zhang T, Yang G, Yang BM, Zhao Y. Iridium-Catalyzed Enantioconvergent Borrowing Hydrogen Annulation of Racemic 1,4-Diols with Amines. J Am Chem Soc 2023; 145:5007-5016. [PMID: 36802615 DOI: 10.1021/jacs.2c09958] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
We present an enantioconvergent access to chiral N-heterocycles directly from simple racemic diols and primary amines, through a highly economical borrowing hydrogen annulation. The identification of a chiral amine-derived iridacycle catalyst was the key for achieving high efficiency and enantioselectivity in the one-step construction of two C-N bonds. This catalytic method enabled a rapid access to a wide range of diversely substituted enantioenriched pyrrolidines including key precursors to valuable drugs such as aticaprant and MSC 2530818.
Collapse
Affiliation(s)
- Yongbing Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Huanlin Diao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Guorong Hong
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Jonathan Edward
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Tao Zhang
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Guoqiang Yang
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| |
Collapse
|
8
|
Lucie G, Marian P, Florence P, Maïwenn J. 1,4-d-Sorbitan: A Promising Biobased-Platform for the Synthesis of Chiral Amines. J Org Chem 2023; 88:2642-2647. [PMID: 36715414 DOI: 10.1021/acs.joc.2c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The regio- and diastereoselective synthesis of chiral amines derived from 1,4-d-sorbitan has been developed via the borrowing hydrogen reaction using a cooperative catalysis between an achiral iridium catalyst and diphenylphosphoric acid. The different reactivities of the four hydroxyl groups on the 1,4-d-sorbitan scaffold have also been highlighted.
Collapse
Affiliation(s)
- Grand Lucie
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, Villeurbanne 69621 Cedex, France
| | - Powderly Marian
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, Villeurbanne 69621 Cedex, France
| | - Popowycz Florence
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, Villeurbanne 69621 Cedex, France
| | - Jacolot Maïwenn
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, Villeurbanne 69621 Cedex, France
| |
Collapse
|
9
|
Dai L, Liu Y, Xu Q, Wang M, Zhu Q, Yu P, Zhong G, Zeng X. A Dynamic Kinetic Resolution Approach to Axially Chiral Diaryl Ethers by Catalytic Atroposelective Transfer Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202216534. [PMID: 36536515 DOI: 10.1002/anie.202216534] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Diaryl ethers are widespread in biologically active compounds, ligands and catalysts. It is known that the diaryl ether skeleton may exhibit atropisomerism when both aryl rings are unsymmetrically substituted with bulky groups. Despite recent advances, only very few catalytic asymmetric methods have been developed to construct such axially chiral compounds. We describe herein a dynamic kinetic resolution approach to axially chiral diaryl ethers via a Brønsted acid catalyzed atroposelective transfer hydrogenation (ATH) reaction of dicarbaldehydes with anilines. The desired diaryl ethers could be obtained in moderate to good chemical yields (up to 79 %) and high enantioselectivities (up to 95 % ee) under standard reaction conditions. Such structural motifs are interesting precursors for further transformations and may have potential applications in the synthesis of chiral ligands or catalysts.
Collapse
Affiliation(s)
- Linlong Dai
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China.,Department of Chemistry, Eastern Institute for Advanced Study, Ningbo, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Yuheng Liu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Qing Xu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Meifang Wang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Qiaohong Zhu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Peiyuan Yu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Guofu Zhong
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Xiaofei Zeng
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
10
|
Mohan TV, Nallagangula M, Kala K, Hernandez-Tamargo CE, De Leeuw NH, Namitharan K, Bhat VT, Sasidharan (LM, Selvam P. Pyridinic-nitrogen on ordered mesoporous carbon: A versatile NAD(P)H mimic for borrowing-hydrogen reactions. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
11
|
Ng TW, Tao R, See WWL, Poh SB, Zhao Y. Economical Access to Diverse Enantiopure Tetrahydropyridines and Piperidines Enabled by Catalytic Borrowing Hydrogen. Angew Chem Int Ed Engl 2023; 62:e202212528. [PMID: 36374610 DOI: 10.1002/anie.202212528] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/16/2022]
Abstract
We disclose herein a catalytic borrowing hydrogen method that enables an unprecedented, economical one-pot access to enantiopure tetrahydropyridines with minimal reagent use or waste formation. This method couples a few classes of readily available substrates with commercially available 1,3-amino alcohols, and delivers the valuable tetrahydropyridines of different substitution patterns free of N-protection. Such transformations are highly challenging to achieve, as multiple redox steps need to be realized in a cascade and numerous side reactions including a facile aromatization have to be overcome. Highly diastereoselective functionalizations of tetrahydropyridines also result in a general access to enantiopure di- and tri-substituted piperidines, which ranks the topmost frequent N-heterocycle in commercial drugs.
Collapse
Affiliation(s)
- Teng Wei Ng
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Ran Tao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore.,Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Willy Wei Li See
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Si Bei Poh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| |
Collapse
|
12
|
Chen F, Jin MY, Wang DZ, Xu C, Wang J, Xing X. Simultaneous Access to Two Enantio-enriched Alcohols by a Single Ru-Catalyst: Asymmetric Hydrogen Transfer from Racemic Alcohols to Matching Ketones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fumin Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Yu Jin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | | | - Chen Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianchun Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangyou Xing
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
13
|
Pan J, Li J, Xia XF, Zeng W, Wang D. High Active Palladium Composite and Catalytic Applications on the Synthesis of Substituted Aminopyridine Derivatives Through Borrowing Hydrogen Strategy. Catal Letters 2022. [DOI: 10.1007/s10562-022-04024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Chang X, Cheng X, Liu X, Fu C, Wang W, Wang C. Stereodivergent Construction of 1,4‐Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206517. [DOI: 10.1002/anie.202206517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Xin Chang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Xiang Cheng
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Xue‐Tao Liu
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Cong Fu
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Wei‐Yi Wang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Chun‐Jiang Wang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
15
|
Chang X, Cheng X, Liu XT, Fu C, Wang WY, Wang CJ. Stereodivergent Construction of 1,4‐Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Chang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Xiang Cheng
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Xue-Tao Liu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Cong Fu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Wei-Yi Wang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Chun-Jiang Wang
- Wuhan University Department of Chemistry Bayi road 430072 wuhan CHINA
| |
Collapse
|
16
|
Zhang X, Ma W, Zhang J, Tang W, Xue D, Xiao J, Sun H, Wang C. Asymmetric Ruthenium‐Catalyzed Hydroalkylation of Racemic Allylic Alcohols for the Synthesis of Chiral Amino Acid Derivatives. Angew Chem Int Ed Engl 2022; 61:e202203244. [DOI: 10.1002/anie.202203244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Wei Ma
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
- School of Basic Medical Science Ningxia Medical University Yinchuan 750004 China
| | - Jinyu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
17
|
Podyacheva E, Afanasyev OI, Vasilyev DV, Chusov D. Borrowing Hydrogen Amination Reactions: A Complex Analysis of Trends and Correlations of the Various Reaction Parameters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Evgeniya Podyacheva
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Oleg I. Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Dmitry V. Vasilyev
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstr. 3, 91058 Erlangen, Germany
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| |
Collapse
|
18
|
Kumar KN, Reddy MM, Panchami H, Velayutham R, Dhaked DK, Swain SP. Thiourea as oxyanion stabilizer for Iridium catalyzed, base free green synthesis of amines: Synthesis of cardiovascular drug ticlopidine. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Zhang X, Ma W, Zhang J, Tang W, Xue D, Xiao J, Sun H, Wang C. Asymmetric Ruthenium‐Catalyzed Hydroalkylation of Racemic Allylic Alcohols for the Synthesis of Chiral Amino Acid Derivatives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Wei Ma
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
- School of Basic Medical Science Ningxia Medical University Yinchuan 750004 China
| | - Jinyu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
20
|
Zhuang X, Zhu M, Hong CM, Luo Z, Li WF, Li QH, Luo QL, Liu TL. Alkynyl Borrowing: Silver-Catalyzed Amination of Secondary Propargylic Alcohols via C(sp 3)-C(sp) Bond Cleavage. J Org Chem 2022; 87:5395-5403. [PMID: 35385662 DOI: 10.1021/acs.joc.2c00297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The silver-catalyzed alkynyl borrowing amination of secondary propargyl alcohols via C(sp3)-C(sp) bond cleavage has been developed. This new strategy was based on the β-alkynyl elimination of propargyl alcohols and alkynyl as the borrowing subject. This alkynyl borrowing amination featured high atom economy, wide functional group tolerance, and high efficiency.
Collapse
Affiliation(s)
- Xin Zhuang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Min Zhu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wan-Fang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qun-Li Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
21
|
Zubar V, Brzozowska A, Sklyaruk J, Rueping M. Dehydrogenative and Redox-Neutral N-Heterocyclization of Aminoalcohols Catalyzed by Manganese Pincer Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Viktoriia Zubar
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Aleksandra Brzozowska
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Jan Sklyaruk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Chen DF, Gong LZ. Organo/Transition-Metal Combined Catalysis Rejuvenates Both in Asymmetric Synthesis. J Am Chem Soc 2022; 144:2415-2437. [DOI: 10.1021/jacs.1c11408] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dian-Feng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
23
|
Jin MY, Zhou Y, Xiao D, You Y, Zhen Q, Tao G, Yu P, Xing X. Simultaneous Kinetic Resolution and Asymmetric Induction within a Borrowing Hydrogen Cascade Mediated by a Single Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ming Yu Jin
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Yali Zhou
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Dengmengfei Xiao
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Yipeng You
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Qianqian Zhen
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Guanyu Tao
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xiangyou Xing
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
24
|
Hong CM, Zhuang X, Luo Z, Xiong SQ, Liu ZQ, Li QL, Zou FF, Li QH, Liu TL. Copper-catalyzed transfer methylenation via C(sp 3)–C(sp 3) bond cleavage of alcohols. Org Chem Front 2022. [DOI: 10.1039/d2qo01373h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Transfer Methylenation: A copper-catalyzed transfer methylenation via the cleavage of unstrained C(sp3)-C(sp3) bonds is developted. This is a de novo report for transfer hydrocarbylation between alcohols and carbonyl compounds.
Collapse
Affiliation(s)
- Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xin Zhuang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Si-Qi Xiong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zheng-Qiang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing-Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fei-Fei Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
25
|
Fan T, Liu Y. Recent Advances in Synthesis of Chiral Tertiary Amines via Asymmetric Catalysis Involving Metal-Hydride Species. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Hong CM, Zou FF, Zhuang X, Luo Z, Liu ZQ, Ren LQ, Li QH, Liu TL. 2-Pyridinylmethyl borrowing: base-promoted C-alkylation of (pyridin-2-yl)-methyl alcohols with ketones via cleavage of unstrained C(sp3)–C(sp3) bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01446c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
2-Pyridinylmethyl Borrowing: Transition-metal-free 2-pyridinylmethyl borrowing C-alkylation of alcohols access to ketones is developed. This unstrained C(sp3)–C(sp3) bonds cleavage of unactivated alcohols avoids the use of transition metals.
Collapse
Affiliation(s)
- Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fei-Fei Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xin Zhuang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zheng-Qiang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Li-Qing Ren
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
27
|
Chang S, Liu H, Shi G, Xia XF, Wang D, Duan ZC. Copper–cobalt coordination polymers and catalytic applications on borrowing hydrogen reactions. NEW J CHEM 2022. [DOI: 10.1039/d2nj01763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A porous copper–cobalt polymer was synthesized and achieved applications for the N-alkylation of sulfonamides with alcohols, and carboxamides with alcohols.
Collapse
Affiliation(s)
- Shaoze Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongqiang Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- China Synchem Technology Co., Ltd., Bengbu, Anhui, 233000, China
| | - Gang Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zheng-Chao Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
28
|
Bottari G, Afanasenko A, Castillo‐Garcia AA, Feringa BL, Barta K. Synthesis of Enantioenriched Amines by Iron‐Catalysed Amination of Alcohols Employing at Least One Achiral Substrate. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Giovanni Bottari
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Anastasiia Afanasenko
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | | | - Ben L. Feringa
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Katalin Barta
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Institute of Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
29
|
Xu X, Peng L, Chang X, Guo C. Ni/Chiral Sodium Carboxylate Dual Catalyzed Asymmetric O-Propargylation. J Am Chem Soc 2021; 143:21048-21055. [PMID: 34860020 DOI: 10.1021/jacs.1c11044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A highly enantioselective O-propargylation catalyzed by combining a phosphine-nickel complex and an axially chiral sodium dicarboxylate has been developed. The transformation features mild reaction conditions, a broad substrate scope, and excellent functional group tolerance, offering an efficient approach to an array of enantioenriched O-propargyl hydroxylamines. Mechanistic studies support the presumed role of the chiral carboxylate as a counterion for nickel catalysis enabling the discovery of highly stereoselective transformations. The power of this reaction is illustrated by its application in the asymmetric total synthesis of potent firefly luciferase inhibitors and (S)-dihydroyashabushiketol.
Collapse
Affiliation(s)
- Xianghong Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lingzi Peng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xihao Chang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang Guo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
30
|
Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green Chemistry in the Synthesis of Pharmaceuticals. Chem Rev 2021; 122:3637-3710. [PMID: 34910451 DOI: 10.1021/acs.chemrev.1c00631] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The principles of green chemistry (GC) can be comprehensively implemented in green synthesis of pharmaceuticals by choosing no solvents or green solvents (preferably water), alternative reaction media, and consideration of one-pot synthesis, multicomponent reactions (MCRs), continuous processing, and process intensification approaches for atom economy and final waste reduction. The GC's execution in green synthesis can be performed using a holistic design of the active pharmaceutical ingredient's (API) life cycle, minimizing hazards and pollution, and capitalizing the resource efficiency in the synthesis technique. Thus, the presented review accounts for the comprehensive exploration of GC's principles and metrics, an appropriate implication of those ideas in each step of the reaction schemes, from raw material to an intermediate to the final product's synthesis, and the final execution of the synthesis into scalable industry-based production. For real-life examples, we have discussed the synthesis of a series of established generic pharmaceuticals, starting with the raw materials, and the intermediates of the corresponding pharmaceuticals. Researchers and industries have thoughtfully instigated a green synthesis process to control the atom economy and waste reduction to protect the environment. We have extensively discussed significant reactions relevant for green synthesis, one-pot cascade synthesis, MCRs, continuous processing, and process intensification, which may contribute to the future of green and sustainable synthesis of APIs.
Collapse
Affiliation(s)
- Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Hans Sanderson
- Department of Environmental Science, Section for Toxicology and Chemistry, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.,Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
31
|
Koller S, Klein P, Reinhardt K, Ochmann L, Seitz A, Jandl C, Pöthig A, Hintermann L. New Access Routes to Privileged and Chiral Ligands for Transition‐Metal Catalyzed Hydrogen Autotransfer (Borrowing Hydrogen), Dehydrogenative Condensation, and Alkene Isomerization Reactions. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sebastian Koller
- Department Chemie Technische Universität München Lichtenbergstraße 4 DE-85748 Garching bei München Germany
- TUM Catalysis Research Center Ernst-Otto-Fischer-Straße 1 DE-85748 Garching bei München Germany
| | - Philippe Klein
- Department Chemie Technische Universität München Lichtenbergstraße 4 DE-85748 Garching bei München Germany
- TUM Catalysis Research Center Ernst-Otto-Fischer-Straße 1 DE-85748 Garching bei München Germany
| | - Katja Reinhardt
- Department Chemie Technische Universität München Lichtenbergstraße 4 DE-85748 Garching bei München Germany
- TUM Catalysis Research Center Ernst-Otto-Fischer-Straße 1 DE-85748 Garching bei München Germany
| | - Lukas Ochmann
- Department Chemie Technische Universität München Lichtenbergstraße 4 DE-85748 Garching bei München Germany
- TUM Catalysis Research Center Ernst-Otto-Fischer-Straße 1 DE-85748 Garching bei München Germany
| | - Antonia Seitz
- Department Chemie Technische Universität München Lichtenbergstraße 4 DE-85748 Garching bei München Germany
- TUM Catalysis Research Center Ernst-Otto-Fischer-Straße 1 DE-85748 Garching bei München Germany
| | - Christian Jandl
- Department Chemie Technische Universität München Lichtenbergstraße 4 DE-85748 Garching bei München Germany
- TUM Catalysis Research Center Ernst-Otto-Fischer-Straße 1 DE-85748 Garching bei München Germany
| | - Alexander Pöthig
- Department Chemie Technische Universität München Lichtenbergstraße 4 DE-85748 Garching bei München Germany
- TUM Catalysis Research Center Ernst-Otto-Fischer-Straße 1 DE-85748 Garching bei München Germany
| | - Lukas Hintermann
- Department Chemie Technische Universität München Lichtenbergstraße 4 DE-85748 Garching bei München Germany
- TUM Catalysis Research Center Ernst-Otto-Fischer-Straße 1 DE-85748 Garching bei München Germany
| |
Collapse
|
32
|
Jin MY, Zhou Y, Xiao D, You Y, Zhen Q, Tao G, Yu P, Xing X. Simultaneous Kinetic Resolution and Asymmetric Induction within a Borrowing Hydrogen Cascade Mediated by a Single Catalyst. Angew Chem Int Ed Engl 2021; 61:e202112993. [PMID: 34626073 DOI: 10.1002/anie.202112993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 01/20/2023]
Abstract
The mechanistic uniqueness and versatility of borrowing hydrogen catalysis provides an opportunity to investigate the controllability of a cascade reaction, and more importantly, to realize either one or both of chiral recognition and chiral induction simultaneously. Here we report that, in a borrowing hydrogen cascade starting from racemic allylic alcohols, one of the enantiomers could be kinetically resolved, while the other enantiomer could be purposely converted to various targeted products, including α,β-unsaturated ketones, β-functionalized ketones and γ-functionalized alcohols. By employing a robust Ru-catalyst, both kinetic resolution and asymmetric induction were achieved with remarkable levels of efficiency and enantioselectivity. Density functional theory (DFT) calculations suggest that corresponding catalyst-substrate π-π interactions are pivotal to realize the observed stereochemical diversity.
Collapse
Affiliation(s)
- Ming Yu Jin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yali Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dengmengfei Xiao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yipeng You
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qianqian Zhen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guanyu Tao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiangyou Xing
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
33
|
Liu Y, Tao R, Lin ZK, Yang G, Zhao Y. Redox-enabled direct stereoconvergent heteroarylation of simple alcohols. Nat Commun 2021; 12:5035. [PMID: 34413301 PMCID: PMC8376995 DOI: 10.1038/s41467-021-25268-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
The direct transformation of racemic feedstock materials to valuable enantiopure compounds is of significant importance for sustainable chemical synthesis. Toward this goal, the radical mechanism has proven uniquely effective in stereoconvergent carbon-carbon bond forming reactions. Here we report a mechanistically distinct redox-enabled strategy for an efficient enantioconvergent coupling of pyrroles with simple racemic secondary alcohols. In such processes, chirality is removed from the substrate via dehydrogenation and reinstalled in the catalytic reduction of a key stabilized cationic intermediate. This strategy provides significant advantage of utilizing simple pyrroles to react with feedstock alcohols without the need for leaving group incorporation. This overall redox-neutral transformation is also highly economical with no additional reagent nor waste generation other than water. In our studies, oxime-derived iridacycle complexes are introduced, which cooperate with a chiral phosphoric acid to enable heteroarylation of alcohols, accessing a wide range of valuable substituted pyrroles in high yield and enantioselectivity. Synthesizing complex structures of high enantiomeric excess from racemic feedstock is an enduring challenge. Here, the authors couple racemic secondary alcohols with pyrroles to form enantioenriched 2-substituted heteroarenes, via a borrowing hydrogen mechanism using the combination of an iridium catalyst and chiral phosphoric acid.
Collapse
Affiliation(s)
- Yongbing Liu
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Ran Tao
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Zhi-Keng Lin
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China
| | - Guoqiang Yang
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore.
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China.
| |
Collapse
|
34
|
Yang G, Pan J, Ke Y, Liu Y, Zhao Y. Tandem Catalytic Indolization/Enantioconvergent Substitution of Alcohols by Borrowing Hydrogen to Access Tricyclic Indoles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jiaoting Pan
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Ya‐Ming Ke
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Yongbing Liu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
35
|
Cai Y, Shi SL. Enantioconvergent Arylation of Racemic Secondary Alcohols to Chiral Tertiary Alcohols Enabled by Nickel/N-Heterocyclic Carbene Catalysis. J Am Chem Soc 2021; 143:11963-11968. [PMID: 34324325 DOI: 10.1021/jacs.1c06614] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The direct upgrading reaction of simple and readily available achiral alcohols via C-H functionalization is an ideal strategy to prepare value-added chiral higher alcohols. Herein, we disclose the first enantioconvergent upgrading reaction of simple racemic secondary alcohols to enantioenriched tertiary alcohols. An N-heterocyclic carbene (NHC)-nickel catalyst was leveraged to enable this highly efficient formal asymmetric alcohol α-C-H arylation via a dehydrogenation using phenyl triflate as a mild oxidant followed by asymmetric addition of arylboronic esters to the transient ketones. Mechanistic studies and control experiments were conducted to reveal the possible reasons for the exceptional control over chemo- and enantioselectivity.
Collapse
Affiliation(s)
- Yuan Cai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
36
|
Zhu G, Zhao J, Duan T, Wang L, Wang D. Unsymmetrical Pyrazoly‐Pyridinyl‐Triazole Promoted High Active Copper Composites on Mesoporous Materials and Catalytic Applications. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Guanxin Zhu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
| | - Jiaxin Zhao
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
- The Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials College of Materials and Chemical Engineering China Three Gorges University Yichang 443002 P. R. China
| | - Tianbo Duan
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
| | - Long Wang
- The Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials College of Materials and Chemical Engineering China Three Gorges University Yichang 443002 P. R. China
| | - Dawei Wang
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
37
|
Pan HJ, Lin Y, Gao T, Lau KK, Feng W, Yang B, Zhao Y. Catalytic Diastereo- and Enantioconvergent Synthesis of Vicinal Diamines from Diols through Borrowing Hydrogen. Angew Chem Int Ed Engl 2021; 60:18599-18604. [PMID: 34125475 DOI: 10.1002/anie.202101517] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/13/2021] [Indexed: 01/23/2023]
Abstract
We present herein an unprecedented diastereoconvergent synthesis of vicinal diamines from diols through an economical, redox-neutral process. Under cooperative ruthenium and Lewis acid catalysis, readily available anilines and 1,2-diols (as a mixture of diastereomers) couple to forge two C-N bonds in an efficient and diastereoselective fashion. By identifying an effective chiral iridium/phosphoric acid co-catalyzed procedure, the first enantioconvergent double amination of racemic 1,2-diols has also been achieved, resulting in a practical access to highly valuable enantioenriched vicinal diamines.
Collapse
Affiliation(s)
- Hui-Jie Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Yamei Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Taotao Gao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Kai Kiat Lau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Wei Feng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Binmiao Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
38
|
Pan H, Lin Y, Gao T, Lau KK, Feng W, Yang B, Zhao Y. Catalytic Diastereo‐ and Enantioconvergent Synthesis of Vicinal Diamines from Diols through Borrowing Hydrogen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hui‐Jie Pan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yamei Lin
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University 1 Wenyuan Road Nanjing 210023 P. R. China
| | - Taotao Gao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Kai Kiat Lau
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Wei Feng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Binmiao Yang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yu Zhao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| |
Collapse
|
39
|
Yang G, Pan J, Ke YM, Liu Y, Zhao Y. Tandem Catalytic Indolization/Enantioconvergent Substitution of Alcohols by Borrowing Hydrogen to Access Tricyclic Indoles. Angew Chem Int Ed Engl 2021; 60:20689-20694. [PMID: 34236747 DOI: 10.1002/anie.202106514] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Indexed: 12/24/2022]
Abstract
An efficient tandem catalysis method is achieved for the direct conversion of alcohol-containing alkynyl anilines to valuable chiral 2,3-fused tricyclic indoles. This method relies on a tandem indolization followed by enantioconvergent substitution of alcohols via borrowing hydrogen to construct two rings in one step, enabled by relay and cooperative catalysis of a chiral iridium complex with a chiral phosphoric acid. Highly diastereoselective transformations of the tricyclic indole products also provide efficient access to a diverse array of complex polycyclic indoline compounds.
Collapse
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jiaoting Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Ya-Ming Ke
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yongbing Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
40
|
Yan T, Feringa BL, Barta K. Direct Catalytic N-Alkylation of α-Amino Acid Esters and Amides Using Alcohols with High Retention of Stereochemistry. CHEMSUSCHEM 2021; 14:2303-2307. [PMID: 33961350 PMCID: PMC8252633 DOI: 10.1002/cssc.202100373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/25/2021] [Indexed: 06/12/2023]
Abstract
The direct functionalization of naturally abundant chiral scaffolds such as α-amino acid esters or amides with widely abundant alcohols, without any racemization, is a demanding transformation that is of central importance for the synthesis of bio-active compounds. Herein a robust and general method was developed for the direct N-alkylation of α-amino acid esters and amides with alcohols. This powerful ruthenium-catalyzed methodology is atom-economic, base-free, and allowed for excellent retention of stereochemical integrity. The use of diphenylphosphate as additive was crucial for significantly enhancing reactivity and product selectivity. Notably, the only by-product was water and both substrates could be potentially derived from renewable resources.
Collapse
Affiliation(s)
- Tao Yan
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningen (TheNetherlands
| | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningen (TheNetherlands
| | - Katalin Barta
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningen (TheNetherlands
- Institute for ChemistryUniversity of GrazHeinrichstrasse 28/II8010GrazAustria
| |
Collapse
|
41
|
Chen Z, Kacmaz A, Xiao J. Recent Development in the Synthesis and Catalytic Application of Iridacycles. CHEM REC 2021; 21:1506-1534. [PMID: 33939250 DOI: 10.1002/tcr.202100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Cyclometallated complexes are well-known and have found many applications. This article provides a short review on the progress made in the synthesis and application to catalysis of cyclometallated half-sandwich Cp*Ir(III) complexes (Cp*: pentamethylcyclopentadienyl) since 2017. Covered in the review are iridacycles featuring conventional C,N chelates and less common metallocene and carbene-derived C,N and C,C ligands. This is followed by an overview of the studies of their applications in catalysis ranging from asymmetric hydrogenation, transfer hydrogenation, hydrosilylation to dehydrogenation.
Collapse
Affiliation(s)
- Zhenyu Chen
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Aysecik Kacmaz
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.,Department of Chemistry, Faculty of Engineering, Istanbul University - Cerrahpasa, Avcilar, Istanbul, 34320, Turkey
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| |
Collapse
|
42
|
Reed-Berendt B, Latham DE, Dambatta MB, Morrill LC. Borrowing Hydrogen for Organic Synthesis. ACS CENTRAL SCIENCE 2021; 7:570-585. [PMID: 34056087 PMCID: PMC8155478 DOI: 10.1021/acscentsci.1c00125] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Indexed: 05/03/2023]
Abstract
Borrowing hydrogen is a process that is used to diversify the synthetic utility of commodity alcohols. A catalyst first oxidizes an alcohol by removing hydrogen to form a reactive carbonyl compound. This intermediate can undergo a diverse range of subsequent transformations before the catalyst returns the "borrowed" hydrogen to liberate the product and regenerate the catalyst. In this way, alcohols may be used as alkylating agents whereby the sole byproduct of this one-pot reaction is water. In recent decades, significant advances have been made in this area, demonstrating many effective methods to access valuable products. This outlook highlights the diversity of metal and biocatalysts that are available for this approach, as well as the various transformations that can be performed, focusing on a selection of the most significant and recent advances. By succinctly describing and conveying the versatility of borrowing hydrogen chemistry, we anticipate its uptake will increase across a wider scientific audience, expanding opportunities for further development.
Collapse
|
43
|
Zhu G, Duan ZC, Zhu H, Qi M, Wang D. Iridium and copper supported on silicon dioxide as chemoselective catalysts for dehydrogenation and borrowing hydrogen reactions. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Cao F, Duan ZC, Zhu H, Wang D. Deoxygenative coupling of 2-aryl-ethanols catalyzed by unsymmetrical pyrazolyl-pyridinyl-triazole ruthenium. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Guérin V, Legault CY. Synthesis of NHC-Iridium(III) Complexes Based on N-Iminoimidazolium Ylides and Their Use for the Amine Alkylation by Borrowing Hydrogen Catalysis. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Vincent Guérin
- University of Sherbrooke, Department of Chemistry, Centre in Green Chemistry and Catalysis,2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Claude Y. Legault
- University of Sherbrooke, Department of Chemistry, Centre in Green Chemistry and Catalysis,2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
46
|
Cao F, Mao A, Yang B, Ge C, Wang D. The preparation of a Co@C 3N 4 catalyst and applications in the synthesis of quinolines from 2-aminobenzyl alcohols with ketones. NEW J CHEM 2021. [DOI: 10.1039/d0nj05767c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A Co@C3N4 composite was synthesized through Co-doping of C3N4 and revealed high catalytic activity for the synthesis of quinolines.
Collapse
Affiliation(s)
- Fei Cao
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Anruo Mao
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Bobin Yang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Chenyang Ge
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
47
|
Tian AQ, Luo XH, Ren ZL, Zhao J, Wang L. The synthesis and structure of an amazing and stable carbonized material Cu-PC@OFM and its catalytic applications in water with mechanism explorations. NEW J CHEM 2021. [DOI: 10.1039/d1nj00861g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An amazing and stable carbonized octahedral frame material Cu-PC@OFM was synthesized and characterized through HRTEM, SEM, XRD, XPS, and Raman spectroscopy and nitrogen adsorption/desorption analysis.
Collapse
Affiliation(s)
- An-Qi Tian
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials
- College of Materials and Chemical Engineering
- China Three Gorges University
- Yichang
- China
| | - Xiang-Hao Luo
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials
- College of Materials and Chemical Engineering
- China Three Gorges University
- Yichang
- China
| | - Zhi-Lin Ren
- College of Chemical Engineering
- Hubei University of Arts and Science
- Xiangyang
- China
| | - Jun Zhao
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials
- College of Materials and Chemical Engineering
- China Three Gorges University
- Yichang
- China
| | - Long Wang
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials
- College of Materials and Chemical Engineering
- China Three Gorges University
- Yichang
- China
| |
Collapse
|
48
|
Hu X, Tan Z, Liu Z, Chen F, Jiang H, Zeng W. Rh(iii)-Catalyzed sulfonylamination of α-indolyl alcohols via Csp2–Csp3 bond cleavage. Org Chem Front 2021. [DOI: 10.1039/d0qo01426e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh(iii)-catalyzed beta-carbon amination of α-aryl alcohols with sulfonyl azides has been developed. This transformation features unstrained Csp2–Csp3 σ bond amination via C–C bond cleavage, and provides a direct approach to complex 2-aminoindoles.
Collapse
Affiliation(s)
- Xinwei Hu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Zheng Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Zhipeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Fengjuan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
49
|
Yi X, Chen Y, Huang A, Song D, He J, Ling F, Zhong W. Design of chiral ferrocenylphosphine-spiro phosphonamidite ligands for ruthenium-catalyzed highly enantioselective coupling of 1,2-diols with amines. Org Chem Front 2021. [DOI: 10.1039/d1qo01443a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A series of chiral ferrocene-backbone phosphines-spiro phosphonamidite ligands was developed for ruthenium-catalyzed enantioselective access to a broad range of β-amino alcohols from 1,2-diols and amines via the borrowing-hydrogen prciniple.
Collapse
Affiliation(s)
- Xiao Yi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yirui Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - An Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dingguo Song
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiaying He
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Fei Ling
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Weihui Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
50
|
Mishra AA, Bhanage BM. Ru-Tethered ( R,R)-TsDPEN with DMAB as an efficient catalytic system for high enantioselective one-pot synthesis of chiral β-aminol via asymmetric transfer hydrogenation. NEW J CHEM 2021. [DOI: 10.1039/d0nj06108e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reflects Ru-tethered-TsDPEN as an active chiral catalyst for one pot selective synthesis of optically active α-substituted alcohols and its derivatives from α-bromo ketones in the presence of dimethylamine borane (DMAB) as the hydrogen source.
Collapse
Affiliation(s)
- Ashish A. Mishra
- Department of Chemistry
- Institute of Chemical Technology
- Nathalal Parekh Marg
- Mumbai 400019
- India
| | - Bhalchandra M. Bhanage
- Department of Chemistry
- Institute of Chemical Technology
- Nathalal Parekh Marg
- Mumbai 400019
- India
| |
Collapse
|