1
|
Dethe DH, Singh P, Joshi A, Biswas P. Ruthenium-Catalyzed Interrupted Transfer Hydrogenation: An Approach for Reductive Functionalization of Quinolinium and Napthyridinium Salts. J Org Chem 2024; 89:13167-13178. [PMID: 39258458 DOI: 10.1021/acs.joc.4c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Until now, a myriad of effective approaches have emerged for the functionalization of N-heteroaryl C-H bonds. In contrast, dearomatization and construction of fused heterocycles from activated heteroarenes is still a subject to explore. In this work, we present a refined approach for both dearomatization of N-heteroarenes and the synthesis of fused heterocycles from activated heteroarenes ruthenium catalysis using paraformaldehyde along with additive and base. Notably, quinolinium salts with a hydrogen at the C-4 position yield a methoxymethyl-substituted fused cyclic product through the Thorpe Ingold effect. An innovative aspect of this research is the dual functionality of paraformaldehyde as both a hydride donor and electrophile, utilizing readily available feedstock chemicals. A broad range of electron withdrawing and donating substituents was tolerable under standardized reaction conditions.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Prabhakar Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Asha Joshi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Proshanta Biswas
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
2
|
Ge JC, Wang Y, Guo FW, Kong X, Hu F, Li SS. Dearomatization of 3-Aminophenols for Synthesis of Spiro[chromane-3,1'-cyclohexane]-2',4'-dien-6'-ones via Hydride Transfer Strategy-Enabled [5+1] Annulations. Molecules 2024; 29:1012. [PMID: 38474524 DOI: 10.3390/molecules29051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The Sc(OTf)3-catalyzed dearomative [5+1] annulations between readily available 3-aminophenols and O-alkyl ortho-oxybenzaldehydes were developed for synthesis of spiro[chromane-3,1'-cyclohexane]-2',4'-dien-6'-ones. The "two-birds-with-one-stone" strategy was disclosed by the dearomatization of phenols and direct α-C(sp3)-H bond functionalization of oxygen through cascade condensation/[1,5]-hydride transfer/dearomative-cyclization process. In addition, the antifungal activity assay and derivatizations of products were conducted to further enrich the utility of the structure.
Collapse
Affiliation(s)
- Jia-Cheng Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Hailir Pesticides and Chemicals Group Co., Ltd., Qingdao 266109, China
| | - Yufeng Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Feng-Wei Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangyun Kong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Hailir Pesticides and Chemicals Group Co., Ltd., Qingdao 266109, China
| |
Collapse
|
3
|
Banerjee S, Vanka K. The Role of Aromatic Alcohol Additives on Asymmetric Organocatalysis Reactions: Insights from Theory. Chem Asian J 2024; 19:e202300997. [PMID: 38270228 DOI: 10.1002/asia.202300997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
The presence of an aromatic additive has been seen to enhance, often significantly, the enantioselectivity and yield in asymmetric organocatalysis. Considering their success across a dizzying range of organocatalysts and organic transformations, it would seem unlikely that a common principle exists for their functioning. However, the current investigations with DFT suggest a general principle: the phenolic additive sandwiches itself, through hydrogen bonding and π⋅⋅⋅π stacking, between the organocatalyst coordinated electrophile and nucleophile. This is seen for a wide range of experimentally reported systems. That such complex formation leads to enhanced stereoselectivity is then demonstrated for two cases: the cinchona alkaloid complex (BzCPD), catalysing thiocyanation (2-naphthol additive employed), as well as for L-pipecolicacid catalysing the asymmetric nitroaldol reaction with a range of nitro-substituted phenol additives. These findings, indicating that dual catalysis takes place when phenolic additives are employed, are likely to have a significant impact on the field of asymmetric organocatalysis.
Collapse
Affiliation(s)
- Subhrashis Banerjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr.Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr.Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Wang D, Xu L, Zheng S, Yang X. Transition‐Metal‐Free Regioselective Direct C2, C4 Difunctionalization and C2, C4, C6 Trifunctionalization of Pyridines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Shixin Zheng
- Tianjin University of Science and Technology CHINA
| | | |
Collapse
|
5
|
Han H, Wang L, Niu X, Li C, Xu Y, Wang Q. Diastereoselective construction of bridged piperidines through an interrupted dearomative reduction. Chem Commun (Camb) 2022; 58:7964-7967. [PMID: 35758071 DOI: 10.1039/d2cc02225g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An interrupted dearomative reduction strategy was developed to transform planar chalcone-based pyridinium salts into structurally intriguing bridged piperidines in a completely regio- and diastereoselective manner. This reaction proceeded successfully by using cheap and easily accessible NaBH4 as the reductant under mild conditions without exclusion of oxygen or use of special equipment.
Collapse
Affiliation(s)
- Huabin Han
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Lele Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Xinyue Niu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Chaoyang Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Yuanqing Xu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Qilin Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Zheng S, Wang D, Huang M, Yu P. Rapid Generation of Tetrahydropyridines and Tetrahydroquinolines by Dearomative Cyanation/Grignard Addition. Chem Asian J 2022; 17:e202200077. [PMID: 35322570 DOI: 10.1002/asia.202200077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/15/2022] [Indexed: 11/06/2022]
Abstract
A rapid, practical and scalable method for the reductant and tansition-metal-free synthesis of a variety of novel 2,4-disubstituted tetrahydropyridines and tetrahydroquinolines is disclosed. The method is based upon dearomative functionalization of pyridines or quinolines to generate amino nitrile intermediates as masked iminium ions, which then reacted rapidly with various Grignard reagents in complete stereocontrol.
Collapse
Affiliation(s)
- Shixin Zheng
- Tianjin University of Science and Technology, Department of Chemistry, Tianjin, CHINA
| | - Dong Wang
- Xinjiang University, College of Chemistry, No. 777, Hua Rui Street, Shui Mo Gou District, 830046, Urumqi, CHINA
| | - Mindong Huang
- Tianjin University of Science and Technology, Department of Chemistry, Tianjin, CHINA
| | - Peng Yu
- Tianjin University of Science and Technology, Department of Chemistry, Tianjin, CHINA
| |
Collapse
|
7
|
Yang P, Wang Q, Cui BH, Zhang XD, Liu H, Zhang YY, Liu JL, Huang WY, Liang RX, Jia YX. Enantioselective Dearomative [3 + 2] Umpolung Annulation of N-Heteroarenes with Alkynes. J Am Chem Soc 2022; 144:1087-1093. [PMID: 35007081 DOI: 10.1021/jacs.1c11092] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Enantioselective [3 + 2] annulation of N-heteroarenes with alkynes has been developed via a cobalt-catalyzed dearomative umpolung strategy in the presence of chiral ligand and reducing reagent. A variety of electron-deficient N-heteroarenes, including quinolines, isoquinolines, quinoxaline, and pyridines, and internal or terminal alkynes are employed in this reaction, showing a broad substrate scope and good functionality tolerance. Annulation of electron-rich indoles with alkynes is also developed. This protocol provides a straightforward access to a variety of N-spiroheterocyclic molecules in excellent enantioselectivities (76 examples, up to 99% ee).
Collapse
Affiliation(s)
- Peng Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Qiang Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Bing-Hui Cui
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Xiao-Dong Zhang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Hang Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Yue-Yuan Zhang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Jia-Liang Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Wen-Yu Huang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
8
|
Wang QY, Liu TF, Chu LF, Yao Y, Lu CD. Chiral spiro phosphoric acid-catalysed enantioselective reaction of ketenes with N-H pyrroles. Chem Commun (Camb) 2021; 57:11992-11995. [PMID: 34709250 DOI: 10.1039/d1cc05307h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the presence of a chiral spiro phosphoric acid catalyst, the asymmetric reaction of disubstituted ketenes with N-H pyrroles occurred to afford enantioenriched C-acylated pyrroles bearing α-stereogenic carbon centres. The described reaction constitutes a rare example of a catalytic asymmetric reaction of ketenes with carbon-based nucleophiles.
Collapse
Affiliation(s)
- Qian-Yi Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Teng-Fei Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Li-Feng Chu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Yun Yao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Chong-Dao Lu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
9
|
Pálvölgyi ÁM, Scharinger F, Schnürch M, Bica‐Schröder K. Chiral Phosphoric Acids as Versatile Tools for Organocatalytic Asymmetric Transfer Hydrogenations. European J Org Chem 2021; 2021:5367-5381. [PMID: 34819797 PMCID: PMC8597106 DOI: 10.1002/ejoc.202100894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/16/2021] [Indexed: 12/05/2022]
Abstract
Herein, recent developments in the field of organocatalytic asymmetric transfer hydrogenation (ATH) of C=N, C=O and C=C double bonds using chiral phosphoric acid catalysis are reviewed. This still rapidly growing area of asymmetric catalysis relies on metal-free catalysts in combination with biomimetic hydrogen sources. Chiral phosphoric acids have proven to be extremely versatile tools in this area, providing highly active and enantioselective alternatives for the asymmetric reduction of α,β-unsaturated carbonyl compounds, imines and various heterocycles. Eventually, such transformations are more and more often used in multicomponent/cascade reactions, which undoubtedly shows their great synthetic potential and the bright future of organocatalytic asymmetric transfer hydrogenations.
Collapse
Affiliation(s)
- Ádám Márk Pálvölgyi
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt Vienna, 9/1631060WienAustria
| | - Fabian Scharinger
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt Vienna, 9/1631060WienAustria
| | - Michael Schnürch
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt Vienna, 9/1631060WienAustria
| | | |
Collapse
|
10
|
Borah B, Dwivedi KD, Chowhan LR. Recent Advances in Metal‐ and Organocatalyzed Asymmetric Functionalization of Pyrroles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100427] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| | - Kartikey Dhar Dwivedi
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| | - L. Raju Chowhan
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| |
Collapse
|
11
|
Gaviña D, Escolano M, Torres J, Alzuet‐Piña G, Sánchez‐Roselló M, Pozo C. Organocatalytic Enantioselective Friedel‐Crafts Alkylation Reactions of Pyrroles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Daniel Gaviña
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| | - Marcos Escolano
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| | - Javier Torres
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| | - Gloria Alzuet‐Piña
- Department of Inorganic Chemistry University of Valencia E-46100 Burjassot Spain
| | | | - Carlos Pozo
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| |
Collapse
|
12
|
Lin X, Wang L, Han Z, Chen Z. Chiral Spirocyclic Phosphoric Acids and Their Growing Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000446] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xufeng Lin
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Lei Wang
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Zhao Han
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Zhouli Chen
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
13
|
Koay WL, Mei GJ, Lu Y. Facile access to benzofuran-fused tetrahydropyridines via catalytic asymmetric [4 + 2] cycloaddition of aurone-derived 1-azadienes with 3-vinylindoles. Org Chem Front 2021. [DOI: 10.1039/d0qo01236j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective [4 + 2] cycloaddition reaction of 1-azadienes with 3-vinylindoles, catalyzed by chiral phosphoric acid has been developed to furnish a range of benzofuran-fused tetrahydropyridines with three contiguous stereogenic centers.
Collapse
Affiliation(s)
- Wai Lean Koay
- Department of Chemistry
- National University of Singapore
- Singapore
- NUS Graduate School for Integrative Sciences & Engineering (NGS)
- National University of Singapore
| | - Guang-Jian Mei
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Yixin Lu
- Department of Chemistry
- National University of Singapore
- Singapore
- NUS Graduate School for Integrative Sciences & Engineering (NGS)
- National University of Singapore
| |
Collapse
|
14
|
Miao H, Bai X, Wang L, Yu J, Bu Z, Wang Q. Diastereoselective construction of cage-like and bridged azaheterocycles through dearomative maximization of the reactive sites of azaarenes. Org Chem Front 2021. [DOI: 10.1039/d0qo01196g] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A highly diastereoselective multicomponent dearomative multifunctionalization of N-alkyl activated azaarenes with 1,5-diazapentadienium salts has been developed to access structurally rigid and synthetically challenging cage-like and bridged azaheterocycles.
Collapse
Affiliation(s)
- Hongjie Miao
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Xuguan Bai
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Lele Wang
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Junhui Yu
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Zhanwei Bu
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Qilin Wang
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| |
Collapse
|
15
|
Marinic B, Hepburn HB, Grozavu A, Dow M, Donohoe TJ. Single point activation of pyridines enables reductive hydroxymethylation. Chem Sci 2020; 12:742-746. [PMID: 34163807 PMCID: PMC8178984 DOI: 10.1039/d0sc05656a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The single point activation of pyridines, using an electron-deficient benzyl group, facilitates the ruthenium-catalysed dearomative functionalisation of a range of electronically diverse pyridine derivatives. This transformation delivers hydroxymethylated piperidines in good yields, allowing rapid access to medicinally relevant small heterocycles. A noteworthy feature of this work is that paraformaldehyde acts as both a hydride donor and an electrophile in the reaction, enabling the use of cheap and readily available feedstock chemicals. Removal of the activating group can be achieved readily, furnishing the free NH compound in only 2 steps. The synthetic utility of the method was illustrated with a synthesis of (±)-Paroxetine. Pyridines can be activated at a single point with a new benzyl group, followed by dearomative functionalisation at C3 using formaldehyde.![]()
Collapse
Affiliation(s)
- Bruno Marinic
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Hamish B Hepburn
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Alexandru Grozavu
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Mark Dow
- AstraZeneca Silk Road Macclesfield SK10 2NA UK
| | - Timothy J Donohoe
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
16
|
Cao Y, Zhang S, Antilla JC. Catalytic Asymmetric 1,4-Reduction of α-Branched 2-Vinyl-azaarenes by a Chiral SPINOL-Derived Borophosphate. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Cao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Shouqi Zhang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jon C. Antilla
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- School of Sciences, Zhejiang Sci-Tech University, Hangzhou City, Zhejiang Province 310018, P. R. China
| |
Collapse
|
17
|
Dong L, Ma X, Fan Y, Wang D. A One‐Pot Dearomative Approach to C4‐Alkylated Tetrahydropyridines and Tetrahydroquinolines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Linru Dong
- College of Biotechnology Tianjin University of Science and Technology No. 29, 13th Avenue, TEDA Tianjin 300457 China
| | - Xinyue Ma
- College of Biotechnology Tianjin University of Science and Technology No. 29, 13th Avenue, TEDA Tianjin 300457 China
| | - Yu Fan
- College of Biotechnology Tianjin University of Science and Technology No. 29, 13th Avenue, TEDA Tianjin 300457 China
| | - Dong Wang
- College of Biotechnology Tianjin University of Science and Technology No. 29, 13th Avenue, TEDA Tianjin 300457 China
| |
Collapse
|
18
|
Gribble MW, Liu RY, Buchwald SL. Evidence for Simultaneous Dearomatization of Two Aromatic Rings under Mild Conditions in Cu(I)-Catalyzed Direct Asymmetric Dearomatization of Pyridine. J Am Chem Soc 2020; 142:11252-11269. [PMID: 32453952 DOI: 10.1021/jacs.0c04486] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bis(phosphine) copper hydride complexes are uniquely able to catalyze direct dearomatization of unactivated pyridines with carbon nucleophiles, but the mechanistic basis for this result has been unclear. Here we show that, contrary to our initial hypotheses, the catalytic mechanism is monometallic and proceeds via dearomative rearrangement of the phenethylcopper nucleophile to a Cpara-metalated form prior to reaction at heterocycle C4. Our studies support an unexpected heterocycle-promoted pathway for this net 1,5-Cu-migration beginning with a doubly dearomative imidoyl-Cu-ene reaction. Kinetics, substituent effects, computational modeling, and spectroscopic studies support the involvement of this unusual process. In this pathway, the CuL2 fragment subsequently mediates a stepwise Cope rearrangement of the doubly dearomatized intermediate to the give the C4-functionalized 1,4-dihydropyridine, lowering a second barrier that would otherwise prohibit efficient asymmetric catalysis.
Collapse
Affiliation(s)
- Michael W Gribble
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Richard Y Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Wang D, Jiang Y, Dong L, Li G, Sun B, Désaubry L, Yu P. One-Pot Selective Saturation and Functionalization of Heteroaromatics Leading to Dihydropyridines and Dihydroquinolines. J Org Chem 2020; 85:5027-5037. [PMID: 32154711 DOI: 10.1021/acs.joc.0c00314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A one-pot regioselective two C-C-bond-forming dearomatization of pyridines and quinolines is disclosed. Two 3,4-betaines are identified for the first time as very useful organic synthons in heterocyclic chemistry. Furthermore, the chemical reactivity of the prepared trifluoromethyl ketones, a new type of push-pull enones, has been explored to develop straightforward methods for their functionalization. This protocol represents a breakthrough in the dearomatization of heteroaromatics as both the selective saturation and functionalization of heteroaromatics are achieved in high efficiency by the attachment of two substituents, including the valuable trifluoromethyl ketone group.
Collapse
Affiliation(s)
- Dong Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuanyang Jiang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Linru Dong
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Gaoyu Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Baoying Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Laurent Désaubry
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.,Laboratory of Medicinal Chemistry and Cardio-Oncology, FRE2033, CNRS, Institut Le Bel, F-67081 Strasbourg, France
| | - Peng Yu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
20
|
Pan Z, Liu Y, Hu F, Liu Q, Shang W, Ji X, Xia C. Enantioselective Synthesis of Spiroindolines via Cascade Isomerization/Spirocyclization/Dearomatization Reaction. Org Lett 2020; 22:1589-1593. [PMID: 31990194 DOI: 10.1021/acs.orglett.0c00181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The spiroindoline skeleton featured with 2,7-diazaspiro[4.4]nonane exists in various structurally intricate and biologically active monoterpene indole alkaloids. A catalytic asymmetric cascade enamine isomerization/spirocyclization/dearomatization succession to construct the spiroindoline was developed, which employed the indolyl dihydropyridine as a substrate under catalysis of the chiral phosphoric acid. This cascade reaction provided various spiroindolines in both diastereoselective and enantionselective fashions.
Collapse
Affiliation(s)
- Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Yuchang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Fengchi Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Qinglong Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Wenbin Shang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Xu Ji
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| |
Collapse
|
21
|
Abstract
The activation of pyridinium salts with electron-withdrawing heterocycles enables an iridium-catalyzed reductive hydroxymethylation reaction to proceed smoothly, facilitating the preparation of useful 3D heteroaryl-substituted functionalized piperidines. The methodology is used to prepare 3-hydroxymethylated analogues of pharmaceutical agents. Mechanistically, formaldehyde acts as both a hydride donor and the electrophile, leading to the formation of two new carbon-hydrogen bonds and one new carbon-carbon bond under relatively mild conditions.
Collapse
Affiliation(s)
- Hamish B Hepburn
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Timothy J Donohoe
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
22
|
Leitch JA, Rogova T, Duarte F, Dixon DJ. Dearomative Photocatalytic Construction of Bridged 1,3‐Diazepanes. Angew Chem Int Ed Engl 2020; 59:4121-4130. [DOI: 10.1002/anie.201914390] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/04/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Jamie A. Leitch
- Department of Chemistry Chemical Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Tatiana Rogova
- Department of Chemistry Chemical Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Fernanda Duarte
- Department of Chemistry Chemical Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Darren J. Dixon
- Department of Chemistry Chemical Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| |
Collapse
|
23
|
Leitch JA, Rogova T, Duarte F, Dixon DJ. Dearomative Photocatalytic Construction of Bridged 1,3‐Diazepanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jamie A. Leitch
- Department of Chemistry Chemical Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Tatiana Rogova
- Department of Chemistry Chemical Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Fernanda Duarte
- Department of Chemistry Chemical Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Darren J. Dixon
- Department of Chemistry Chemical Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| |
Collapse
|
24
|
Xia ZL, Xu-Xu QF, Zheng C, You SL. Chiral phosphoric acid-catalyzed asymmetric dearomatization reactions. Chem Soc Rev 2020; 49:286-300. [DOI: 10.1039/c8cs00436f] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We summarize in this review the recent development of chiral phosphoric acid (CPA)-catalyzed asymmetric dearomatization reactions.
Collapse
Affiliation(s)
- Zi-Lei Xia
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Qing-Feng Xu-Xu
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
25
|
Reeves BM, Hepburn HB, Grozavu A, Lindsay‐Scott PJ, Donohoe TJ. Transition-Metal-Free Reductive Hydroxymethylation of Isoquinolines. Angew Chem Int Ed Engl 2019; 58:15697-15701. [PMID: 31486205 PMCID: PMC6856840 DOI: 10.1002/anie.201908857] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/23/2019] [Indexed: 01/18/2023]
Abstract
A transition-metal-free reductive hydroxymethylation reaction has been developed, enabling the preparation of tetrahydroisoquinolines bearing C4-quaternary centers from the corresponding isoquinolines. Deuterium labelling studies and control experiments enable a potential mechanism to be elucidated which features a key Cannizzaro-type reduction followed by an Evans-Tishchenko reaction. When isoquinolines featuring a proton at the 4-position are used, a tandem methylation-hydroxymethylation occurs, leading to the formation of 2 new C-C bonds in one pot.
Collapse
Affiliation(s)
- Benjamin M. Reeves
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Hamish B. Hepburn
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Alexandru Grozavu
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | | | - Timothy J. Donohoe
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
26
|
Reeves BM, Hepburn HB, Grozavu A, Lindsay‐Scott PJ, Donohoe TJ. Transition‐Metal‐Free Reductive Hydroxymethylation of Isoquinolines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Benjamin M. Reeves
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Hamish B. Hepburn
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Alexandru Grozavu
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | | | - Timothy J. Donohoe
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
27
|
Xie E, Huang S, Lin X. Design of Planar Chiral Phosphoric Acids with a [2.2]Paracyclophanyl Backbone as Organocatalysts for the Highly Enantioselective Aza-Friedel–Crafts Reaction. Org Lett 2019; 21:3682-3686. [DOI: 10.1021/acs.orglett.9b01127] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- En Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shaoying Huang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xufeng Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
28
|
Miyagawa M, Yoshida M, Kiyota Y, Akiyama T. Enantioselective Friedel–Crafts Alkylation Reaction of Heteroarenes with N‐Unprotected Trifluoromethyl Ketimines by Means of Chiral Phosphoric Acid. Chemistry 2019; 25:5677-5681. [DOI: 10.1002/chem.201901020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Masamichi Miyagawa
- Department of ChemistryFaculty of ScienceGakushuin University, Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Masaru Yoshida
- Department of ChemistryFaculty of ScienceGakushuin University, Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Yuki Kiyota
- Department of ChemistryFaculty of ScienceGakushuin University, Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Takahiko Akiyama
- Department of ChemistryFaculty of ScienceGakushuin University, Mejiro Toshima-ku Tokyo 171-8588 Japan
| |
Collapse
|
29
|
Heravi MM, Zadsirjan V, Heydari M, Masoumi B. Organocatalyzed Asymmetric Friedel‐Crafts Reactions: An Update. CHEM REC 2019. [DOI: 10.1002/tcr.201800190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Majid M. Heravi
- Department of ChemistrySchool of ScienceAlzahra University POBox 1993891176, Vanak Tehran Iran Tel.: +98 21 88044051 fax: +98 21 88041344
| | - Vahideh Zadsirjan
- Department of ChemistrySchool of ScienceAlzahra University POBox 1993891176, Vanak Tehran Iran Tel.: +98 21 88044051 fax: +98 21 88041344
| | - Masumeh Heydari
- Department of ChemistrySchool of ScienceAlzahra University POBox 1993891176, Vanak Tehran Iran Tel.: +98 21 88044051 fax: +98 21 88041344
| | - Baharak Masoumi
- Department of ChemistrySchool of ScienceAlzahra University POBox 1993891176, Vanak Tehran Iran Tel.: +98 21 88044051 fax: +98 21 88041344
| |
Collapse
|
30
|
Yin L, Xing J, Wang Y, Shen Y, Lu T, Hayashi T, Dou X. Enantioselective Synthesis of 3,3′‐Diaryl‐SPINOLs: Rhodium‐Catalyzed Asymmetric Arylation/BF
3
‐Promoted Spirocyclization Sequence. Angew Chem Int Ed Engl 2019; 58:2474-2478. [DOI: 10.1002/anie.201812266] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Long Yin
- Department of Chemistry and State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing 211198 China
| | - Junhao Xing
- Department of Chemistry and State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing 211198 China
| | - Yuhan Wang
- Department of Chemistry and State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing 211198 China
| | - Yue Shen
- Department of Chemistry and State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing 211198 China
| | - Tao Lu
- Department of Chemistry and State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing 211198 China
| | - Tamio Hayashi
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Xiaowei Dou
- Department of Chemistry and State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing 211198 China
| |
Collapse
|
31
|
Rahman A, Xie E, Lin X. Organocatalytic asymmetric synthesis of benzazepinoindole derivatives with trifluoromethylated quaternary stereocenters by chiral phosphoric acid catalysts. Org Biomol Chem 2019; 16:1367-1374. [PMID: 29406543 DOI: 10.1039/c8ob00055g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An enantioselective aza-Friedel-Crafts reaction of trifluoromethyl dihydrobenzoazepinoindoles with pyrroles catalyzed by a chiral spirocyclic phosphoric acid was developed. This methodology provides a facile route to CF3- and pyrrole-containing benzazepinoindoles bearing quaternary stereocenters in good yields and with moderate to excellent enantioselectivities (up to 93% ee). Indoles were also investigated as electron-rich aromatic substrates to afford the corresponding chiral heterocycles with good yields and considerable enantioselectivities. The introduction of CF3 shows a remarkable fluorine effect and increases the activation and stereoinduction.
Collapse
Affiliation(s)
- Abdul Rahman
- Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | | | | |
Collapse
|
32
|
Yin L, Xing J, Wang Y, Shen Y, Lu T, Hayashi T, Dou X. Enantioselective Synthesis of 3,3′-Diaryl-SPINOLs: Rhodium-Catalyzed Asymmetric Arylation/BF3
-Promoted Spirocyclization Sequence. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Long Yin
- Department of Chemistry and State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 211198 China
| | - Junhao Xing
- Department of Chemistry and State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 211198 China
| | - Yuhan Wang
- Department of Chemistry and State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 211198 China
| | - Yue Shen
- Department of Chemistry and State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 211198 China
| | - Tao Lu
- Department of Chemistry and State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 211198 China
| | - Tamio Hayashi
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Xiaowei Dou
- Department of Chemistry and State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 211198 China
| |
Collapse
|
33
|
Campbell JP, Rajappan SC, Jaynes TJ, Sharafi M, Ma Y, Li J, Schneebeli ST. Enantioselective Electrophilic Aromatic Nitration: A Chiral Auxiliary Approach. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Joseph P. Campbell
- Department of Chemistry The University of Vermont Burlington VT 05405 USA
| | - Sinu C. Rajappan
- Department of Chemistry The University of Vermont Burlington VT 05405 USA
| | - Tyler J. Jaynes
- Department of Chemistry The University of Vermont Burlington VT 05405 USA
| | - Mona Sharafi
- Department of Chemistry The University of Vermont Burlington VT 05405 USA
| | - Yong‐Tao Ma
- Department of Chemistry The University of Vermont Burlington VT 05405 USA
| | - Jianing Li
- Department of Chemistry The University of Vermont Burlington VT 05405 USA
| | | |
Collapse
|
34
|
The reductive C3 functionalization of pyridinium and quinolinium salts through iridium-catalysed interrupted transfer hydrogenation. Nat Chem 2018; 11:242-247. [PMID: 30559370 DOI: 10.1038/s41557-018-0178-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/24/2018] [Indexed: 01/07/2023]
Abstract
Aromatic rings are ubiquitous in organic chemistry and form the basis of many commercial products. Despite the numerous routes available for the preparation of aromatic compounds, there remain few methods that allow their conversion into synthetically useful partially saturated derivatives and even fewer that allow new C-C bonds to be formed at the same time. Here we set out to address this problem and uncover a unique catalytic partial reduction reaction that forms partially saturated azaheterocycles from aromatic precursors. In this reaction, methanol and formaldehyde are used for the reductive functionalization of pyridines and quinolines using catalytic iridium; thus, inexpensive and renewable feedstocks are utilized in the formation of complex N-heterocycles. By harnessing the formation of a nucleophilic enamine intermediate, the C-C bond-forming process reverses the normal pattern of reactivity and allows access to the C3 position of the arene. Mechanistic investigations using D-labelling experiments reveal the source of hydride added to the ring and show the reversible nature of the iridium-hydride addition.
Collapse
|
35
|
Campbell JP, Rajappan SC, Jaynes TJ, Sharafi M, Ma Y, Li J, Schneebeli ST. Enantioselective Electrophilic Aromatic Nitration: A Chiral Auxiliary Approach. Angew Chem Int Ed Engl 2018; 58:1035-1040. [DOI: 10.1002/anie.201811517] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/26/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Joseph P. Campbell
- Department of Chemistry The University of Vermont Burlington VT 05405 USA
| | - Sinu C. Rajappan
- Department of Chemistry The University of Vermont Burlington VT 05405 USA
| | - Tyler J. Jaynes
- Department of Chemistry The University of Vermont Burlington VT 05405 USA
| | - Mona Sharafi
- Department of Chemistry The University of Vermont Burlington VT 05405 USA
| | - Yong‐Tao Ma
- Department of Chemistry The University of Vermont Burlington VT 05405 USA
| | - Jianing Li
- Department of Chemistry The University of Vermont Burlington VT 05405 USA
| | | |
Collapse
|
36
|
Salih EYA, Julkunen-Tiitto R, Lampi AM, Kanninen M, Luukkanen O, Sipi M, Lehtonen M, Vuorela H, Fyhrquist P. Terminalia laxiflora and Terminalia brownii contain a broad spectrum of antimycobacterial compounds including ellagitannins, ellagic acid derivatives, triterpenes, fatty acids and fatty alcohols. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:82-96. [PMID: 29733942 DOI: 10.1016/j.jep.2018.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/07/2017] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia laxiflora Engl. & Diels, (Sudanese Arabic name: Darout الدروت) and Terminalia brownii Fresen (Sudanese Arabic name: Alshaf ألشاف) (Combretaceae) are used in Sudanese traditional folk medicine and in other African countries for treatment of infectious diseases, TB and its symptoms, such as cough, bronchitis and chest pain. AIM OF STUDY Because of the frequent use of T. laxiflora and T. brownii in African traditional medicine and due to the absence of studies regarding their antimycobacterial potential there was a need to screen extracts of T. laxiflora and T. brownii for their growth inhibitory potential and to study the chemical composition and compounds in growth inhibitory extracts. MATERIALS AND METHODS The plant species were collected in Sudan (Blue Nile Forest, Ed Damazin Forestry areas) and selected according to their uses in traditional medicine for the treatment of bacterial infections, including TB. Eighty extracts and fractions of the stem bark, stem wood, roots, leaves and fruits of T. laxiflora and T. brownii and nine pure compounds present in the active extracts were screened against Mycobacterium smegmatis ATCC 14468 using agar diffusion and microplate dilution methods. Inhibition zones and MIC values were estimated and compared to rifampicin. HPLC-UV/DAD, GC/MS and UHPLC/Q-TOF MS were employed to identify the compounds in the growth inhibitory extracts. RESULTS The roots of T. laxiflora and T. brownii gave the best antimycobacterial effects (IZ 22-27 mm) against Mycobacterium smegmatis. The lowest MIC of 625 µg/ml was observed for an acetone extract of the root of T. laxiflora followed by methanol and ethyl acetate extracts, both giving MIC values of 1250 µg/ml. Sephadex LH-20 column chromatography purification of T. brownii roots resulted in low MIC values of 62.5 µg/ml and 125 µg/ml for acetone and ethanol fractions, respectively, compared to 5000 µg/ml for the crude methanol extract. Methyl (S)-flavogallonate is suggested to be the main active compound in the Sephadex LH- 20 acetone fraction, while ellagic acid xyloside and methyl ellagic acid xyloside are suggested to give good antimycobacterial activity in the Sephadex LH-20 ethanol fraction. RP-18 TLC purifications of an ethyl acetate extract of T. laxiflora roots resulted in the enrichment of punicalagin in one of the fractions (Fr5). This fraction gave a five times smaller MIC (500 µg/ml) than the crude ethyl acetate extract (2500 µg/ml) and this improved activity is suggested to be mostly due to punicalagin. 1,18-octadec-9-ene-dioate, stigmast-4-en-3-one, 5α-stigmastan-3,6-dione, triacontanol, sitostenone and β-sitosterol were found in antimycobacterial hexane extracts of the stem bark of both studied species. Of these compounds, 1,18-octadec-9-ene-dioate, stigmast-4-en-3-one, 5α-stigmastan-3,6-dione, triacontanol, sitostenone have not been previously identified in T. brownii and T. laxiflora. Moreover, both plant species contained friedelin, betulinic acid, β-amyrine and two unknown oleanane-type triterpenoids. Of the listed compounds, friedelin, triacontanol and sitostenone gave a MIC of 250 µg/ml against M. smegmatis, whereas stigmasterol and β-sitosterol gave MIC values of 500 µg/ml. CONCLUSIONS Our results show that T. laxiflora and T. brownii contain antimycobacterial compounds of diverse polarities and support the traditional uses of various parts of T. laxiflora and T.brownii as decoctions for treatment of tuberculosis. Further investigations are warranted to explore additional (new) antimycobacterial compounds in the active extracts of T. laxiflora and T. brownii.
Collapse
Affiliation(s)
- Enass Y A Salih
- Faculty of Agriculture and Forestry, Department of Forest Sciences, Viikki Tropical Resources Institute, University of Helsinki, P.O. Box 27, FIN-00014, Finland; Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Viikki Biocenter, University of Helsinki, P.O. Box 56, FIN-00014, Finland.
| | - Riitta Julkunen-Tiitto
- Faculty of Science and Forestry, Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Anna-Maija Lampi
- Faculty of Agriculture and Forestry, Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 27, Latokartanonkaari 11, FI-00014 Helsinki, Finland
| | - Markku Kanninen
- Faculty of Agriculture and Forestry, Department of Forest Sciences, Viikki Tropical Resources Institute, University of Helsinki, P.O. Box 27, FIN-00014, Finland
| | - Olavi Luukkanen
- Faculty of Agriculture and Forestry, Department of Forest Sciences, Viikki Tropical Resources Institute, University of Helsinki, P.O. Box 27, FIN-00014, Finland
| | - Marketta Sipi
- Faculty of Agriculture and Forestry, Department of Forest Sciences, Viikki Tropical Resources Institute, University of Helsinki, P.O. Box 27, FIN-00014, Finland
| | - Mari Lehtonen
- Faculty of Agriculture and Forestry, Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 27, Latokartanonkaari 11, FI-00014 Helsinki, Finland
| | - Heikki Vuorela
- Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Viikki Biocenter, University of Helsinki, P.O. Box 56, FIN-00014, Finland
| | - Pia Fyhrquist
- Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Viikki Biocenter, University of Helsinki, P.O. Box 56, FIN-00014, Finland.
| |
Collapse
|
37
|
Choi S, Kim SG. Enantioselective Aza-Friedel-Crafts Reaction of Pyrroles with Cyclic N
-Sulfimines Catalyzed by Chiral BINOL-Phosphoric Acid. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sunyoung Choi
- Department of Chemistry; Kyonggi University; Suwon 16227 Republic of Korea
| | - Sung-Gon Kim
- Department of Chemistry; Kyonggi University; Suwon 16227 Republic of Korea
| |
Collapse
|
38
|
Shan H, Pan R, Lin X. Synthesis and application of a new chiral monodentate spiro phosphoramidite ligand based on hexamethyl-1,1'-spirobiindane backbone in asymmetric hydroamination/arylation of alkenes. Org Biomol Chem 2018; 16:6183-6186. [PMID: 30113062 DOI: 10.1039/c8ob01785a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The design and synthesis of a new chiral monodentate spiro phosphoramidite ligand based on a hexamethyl-1,1'-spirobiindane scaffold has been accomplished. The ligand could serve as an elegant chiral monodentate ligand in the Pd-catalyzed asymmetric hydroamination/arylation of alkenes leading to chiral imidazolidin-2-ones with good enantioselectivities.
Collapse
Affiliation(s)
- Huanyu Shan
- Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | | | | |
Collapse
|
39
|
Wang L, Rahman A, Lin X. Enantioselective synthesis of cyclic quaternary α-amino acid derivatives by chiral phosphoric acid catalysis. Org Biomol Chem 2018; 15:6033-6041. [PMID: 28681891 DOI: 10.1039/c7ob01149k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A highly enantioselective aza-Friedel-Crafts reaction of N-sulfonyl cyclic ketimines with indoles catalyzed by chiral phosphoric acids has been developed. This methodology provides an efficient and facile route to indole-containing chiral cyclic α-amino acid derivatives bearing a quaternary stereocenter in high yields and up to 98% enantioselectivity.
Collapse
Affiliation(s)
- Lei Wang
- Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | | | | |
Collapse
|
40
|
Chang S, Wang L, Lin X. Synthesis and application of a new hexamethyl-1,1′-spirobiindane-based chiral bisphosphine (HMSI-PHOS) ligand in asymmetric allylic alkylation. Org Biomol Chem 2018. [DOI: 10.1039/c8ob00279g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of hexamethyl-1,1′-spirobiindane-based chiral bisphosphine ligand was synthesized and used in Pd-catalyzed asymmetric allylic alkylation reactions.
Collapse
Affiliation(s)
- Shirui Chang
- Laboratory of Asymmetric Catalysis and Synthesis
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Lei Wang
- Laboratory of Asymmetric Catalysis and Synthesis
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Xufeng Lin
- Laboratory of Asymmetric Catalysis and Synthesis
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
41
|
Rahman A, Zhou Q, Lin X. Asymmetric organocatalytic synthesis of chiral 3,3-disubstituted oxindolesviaa 1,6-conjugate addition reaction. Org Biomol Chem 2018; 16:5301-5309. [DOI: 10.1039/c8ob01169a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The chiral spirocyclic phosphoric acid-catalyzed enantioselective 1,6-conjugate addition reaction ofpara-quinone methides derived fromN-unprotected isatins with indoles was developed.
Collapse
Affiliation(s)
- Abdul Rahman
- Laboratory of Asymmetric Catalysis and Synthesis
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Qiaoxia Zhou
- Laboratory of Asymmetric Catalysis and Synthesis
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Xufeng Lin
- Laboratory of Asymmetric Catalysis and Synthesis
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
42
|
Recent Advances in the Synthesis of Piperidines: Functionalization of Preexisting Ring Systems. ADVANCES IN HETEROCYCLIC CHEMISTRY 2018. [DOI: 10.1016/bs.aihch.2017.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
Shen HQ, Liu C, Zhou J, Zhou YG. Enantioselective palladium-catalyzed C–H functionalization of pyrroles using an axially chiral 2,2′-bipyridine ligand. Org Chem Front 2018. [DOI: 10.1039/c7qo00815e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enantioselective palladium-catalyzed C–H functionalization of pyrroles with diazoacetates has been developed with up to 90% of enantioselectivity.
Collapse
Affiliation(s)
- Hong-Qiang Shen
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Cong Liu
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Ji Zhou
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| |
Collapse
|
44
|
Rahman A, Lin X. Development and application of chiral spirocyclic phosphoric acids in asymmetric catalysis. Org Biomol Chem 2018; 16:4753-4777. [DOI: 10.1039/c8ob00900g] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review describes the synthetic methods for the preparation of chiral spirocyclic phosphoric acids (SPAs), and their dynamically developing application for catalytic enantioselective transformations.
Collapse
Affiliation(s)
- Abdul Rahman
- Laboratory of Asymmetric Catalysis and Synthesis
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Xufeng Lin
- Laboratory of Asymmetric Catalysis and Synthesis
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
45
|
Parmar D, Sugiono E, Raja S, Rueping M. Addition and Correction to Complete Field Guide to Asymmetric BINOL-Phosphate Derived Brønsted Acid and Metal Catalysis: History and Classification by Mode of Activation; Brønsted Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates. Chem Rev 2017; 117:10608-10620. [DOI: 10.1021/acs.chemrev.7b00197] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Huang L, Cai Y, Zheng C, Dai LX, You SL. Iridium-Catalyzed Enantioselective Synthesis of Pyrrole-Annulated Medium-Sized-Ring Compounds. Angew Chem Int Ed Engl 2017; 56:10545-10548. [DOI: 10.1002/anie.201705068] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Lin Huang
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Yue Cai
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Li-Xin Dai
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin China
| |
Collapse
|
47
|
Huang L, Cai Y, Zheng C, Dai LX, You SL. Iridium-Catalyzed Enantioselective Synthesis of Pyrrole-Annulated Medium-Sized-Ring Compounds. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lin Huang
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Yue Cai
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Li-Xin Dai
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin China
| |
Collapse
|
48
|
Wang SG, Xia ZL, Xu RQ, Liu XJ, Zheng C, You SL. Construction of Chiral Tetrahydro-β-Carbolines: Asymmetric Pictet-Spengler Reaction of Indolyl Dihydropyridines. Angew Chem Int Ed Engl 2017; 56:7440-7443. [PMID: 28466512 DOI: 10.1002/anie.201703178] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 11/10/2022]
Abstract
A highly efficient synthesis of the enantioenriched tetrahydro-β-carbolines was developed by using a chiral phosphoric acid catalyzed Pictet-Spengler reaction of indolyl dihydropyridines. The reaction proceeds under mild reaction conditions to afford the desired chiral tetrahydro-β-carbolines in good to excellent yields (up to 96 %) and high enantioselectivities (up to 99 % ee). With this method, a formal synthesis of tangutorine and a total synthesis of deplancheine were achieved in a highly efficient manner.
Collapse
Affiliation(s)
- Shou-Guo Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Zi-Lei Xia
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Ren-Qi Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Xi-Jia Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
49
|
Wang SG, Xia ZL, Xu RQ, Liu XJ, Zheng C, You SL. Construction of Chiral Tetrahydro-β-Carbolines: Asymmetric Pictet-Spengler Reaction of Indolyl Dihydropyridines. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703178] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shou-Guo Wang
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Zi-Lei Xia
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Ren-Qi Xu
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Xi-Jia Liu
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300072 China
| |
Collapse
|
50
|
Bertuzzi G, Sinisi A, Pecorari D, Caruana L, Mazzanti A, Bernardi L, Fochi M. Nucleophilic Dearomatization of Pyridines under Enamine Catalysis: Regio-, Diastereo-, and Enantioselective Addition of Aldehydes to Activated N-Alkylpyridinium Salts. Org Lett 2017; 19:834-837. [PMID: 28128963 DOI: 10.1021/acs.orglett.6b03824] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Catalytic addition of chiral enamines to azinium salts is a powerful tool for the synthesis of enantioenriched heterocycles. An unprecedented asymmetric dearomative addition of aldehydes to activated N-alkylpyridinium salts is presented. The process exhibits complete C-4 regioselectivity along with high levels of diastereo- and enantiocontrol, achieving a high-yielding synthesis of a broad range of optically active 1,4-dihydropyridines. Moreover, the presented methodology enables the synthesis of functionalized octahydropyrrolo[2,3-c]pyridines, the core structure of anticancer peptidomimetics.
Collapse
Affiliation(s)
- Giulio Bertuzzi
- Department of Industrial Chemistry "Toso Montanari" and INSTM RU Bologna, Alma Mater Studiorum-University of Bologna , Via Risorgimento 4, 40136 Bologna, Italy
| | - Alessandro Sinisi
- Department of Industrial Chemistry "Toso Montanari" and INSTM RU Bologna, Alma Mater Studiorum-University of Bologna , Via Risorgimento 4, 40136 Bologna, Italy
| | - Daniel Pecorari
- Department of Industrial Chemistry "Toso Montanari" and INSTM RU Bologna, Alma Mater Studiorum-University of Bologna , Via Risorgimento 4, 40136 Bologna, Italy
| | - Lorenzo Caruana
- Department of Industrial Chemistry "Toso Montanari" and INSTM RU Bologna, Alma Mater Studiorum-University of Bologna , Via Risorgimento 4, 40136 Bologna, Italy
| | - Andrea Mazzanti
- Department of Industrial Chemistry "Toso Montanari" and INSTM RU Bologna, Alma Mater Studiorum-University of Bologna , Via Risorgimento 4, 40136 Bologna, Italy
| | - Luca Bernardi
- Department of Industrial Chemistry "Toso Montanari" and INSTM RU Bologna, Alma Mater Studiorum-University of Bologna , Via Risorgimento 4, 40136 Bologna, Italy
| | - Mariafrancesca Fochi
- Department of Industrial Chemistry "Toso Montanari" and INSTM RU Bologna, Alma Mater Studiorum-University of Bologna , Via Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|