1
|
Zhu L, Cui C, Xiao X, Zhang J, Kuang X, Liu H, Zhou Z, Qi F. Online Compositional Analysis of Complex Oligomers in Biomass Degradation by High-Pressure Flow-Through Reactor Coupled with High-Resolution Mass Spectrometry. Anal Chem 2024; 96:8657-8664. [PMID: 38738643 DOI: 10.1021/acs.analchem.4c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Online analysis of the composition and evolution of complex oligomeric intermediates in biomass degradation is highly desirable to elucidate the mechanism of bond cleavage and study the effect of conditions on the selective conversion of feedstocks. However, harsh reaction conditions and complicated conversion systems pose tremendous challenges for conventional, state-of-the-art analytical techniques. Herein, we introduce a continuous and rapid compositional analysis strategy coupling a high-pressure flow-through reactor with online high-resolution mass spectrometry, which enables the molecular-level characterization of most biomass-related products throughout the conversion for over 2 h. Catalytic depolymerization of one model compound was studied, and temperature-dependent data of over 50 intermediates as well as recondensation dimers and oligomers were obtained, which have rarely been reported in the literature. Thousands of products during the flow-through conversion of birch wood with molecular weights up to 1000 Da were presented, and 8 typical lignin dimers and oligomers with various interunit linkages were identified at the molecular level, demonstrating the potential to analyze more complicated systems far beyond conventional methods, especially for complex oligomers. The continuous evolutions of different components and typical products were unveiled for the first time, providing valuable insights into the investigation of the structure, composition, and decomposition mechanism of lignocellulose as well as the influence of reaction conditions. This method leads to the previously unattained ability to probe and reveal complicated chemical compositions in high-pressure reactions and can be applied to all other high-pressure heterogeneous aqueous reactions.
Collapse
Affiliation(s)
- Linyu Zhu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Cunhao Cui
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xintong Xiao
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Jing Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xun Kuang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Haoran Liu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zhongyue Zhou
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Fei Qi
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
2
|
Zach T, Geyer F, Kiendl B, Mößeler J, Nguyen O, Schmidpeter T, Schuster P, Nagel C, Schatzschneider U. Electrospray Mass Spectrometry to Study Combinatorial iClick Reactions and Multiplexed Kinetics of [Ru(N 3)(N∧N)(terpy)]PF 6 with Alkynes of Different Steric and Electronic Demand. Inorg Chem 2023; 62:2982-2993. [PMID: 36745056 DOI: 10.1021/acs.inorgchem.2c03377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In a combinatorial approach, a family of ruthenium(II) azido complexes [Ru(N3)(N∧N)(terpy)]PF6 with terpy = 2,2':6',2″-terpyridine and N∧N as a bidentate chelator derived from 2,2'-biypridine and its 4,4'-disubstituted derivatives, 2,2'-bipyrimidine, and 1,10-phenanthroline were reacted with different internal and terminal alkynes to give access to a total of 7 × 7 = 49 triazolato complexes in a room-temperature catalyst-free iClick reaction. The reactants were mixed in a repurposed high-performance liquid chromatography (HPLC) autosampler, and the reaction progress was monitored by direct injection into an electrospray mass spectrometer. The ratio of the peak intensities of [Ru(N3)(N∧N)(terpy)]+ and [Ru(triazolato)(N∧N)(terpy)]+ was converted to a colored heat map for facile visual inspection of the conversion ratio. By automated multiple injections of the reaction mixture in fixed time intervals and plotting peak intensities over reaction time, pseudo-first-order rate constants were easily determined. Finally, nonoverlapping isotope patterns of the azido starting materials and triazolato products enabled multiplexed parallel determination of rate constants for four different ruthenium(II) azido complexes from a single sample vial, thereby reducing experiment time by 75%.
Collapse
Affiliation(s)
- Tristan Zach
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Florian Geyer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Benjamin Kiendl
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Jan Mößeler
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Olivier Nguyen
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Thomas Schmidpeter
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Patrick Schuster
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Christoph Nagel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| |
Collapse
|
3
|
Zhu L, Cui C, Liu H, Zhou Z, Qi F. Thermochemical depolymerization of lignin: Process analysis with state-of-the-art soft ionization mass spectrometry. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.982126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lignin valorization via thermochemical approaches has the potential to produce renewable fuels and value-added chemicals, which are of great significance to the sustainable development of human beings. During the thermochemical depolymerization which involves acid-catalyzed, alkali-catalyzed, oxidative, reductive, pyrolytic, and other reactions, the lignin structure will undergo a series of bond cleavage, condensation, and functional group changes, while the mechanism is still unclear. To improve the efficiency, the analysis of the evolution of intermediates during depolymerization is very important, among which soft ionization mass spectrometry plays a vital role. This review aims to summarize the research progress of process analysis of lignin depolymerization in both gas-phase, typically thermal and catalytic pyrolysis, and liquid-phase via online mass spectrometry. The challenges and our insights into the future development of the lignin valorization as well as soft ionization mass spectrometry methods are also discussed.
Collapse
|
4
|
Chen X, Wei Z, Huang KH, Uehling M, Wleklinski M, Krska S, Makarov AA, Nowak T, Cooks RG. Pd Reaction Intermediates in Suzuki-Miyaura Cross-Coupling Characterized by Mass Spectrometry. Chempluschem 2022; 87:e202100545. [PMID: 35112808 DOI: 10.1002/cplu.202100545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/22/2022] [Indexed: 01/05/2023]
Abstract
Palladium-catalyzed Suzuki-Miyaura (SM) coupling is widely utilized in the construction of carbon-carbon bonds. In this study, nanoelectrospray ionization mass spectrometry (nanoESI-MS) is applied to simultaneously monitor precatalysts, catalytic intermediates, reagents, and products of the SM cross-coupling reaction of 3-Br-5-Ph-pyridine and phenylboronic acid. A set of Pd cluster ions related to the monoligated Pd (0) active catalyst is detected, and its deconvoluted isotopic distribution reveals contributions from two neutral molecules. One is assigned to the generally accepted Pd(0) active catalyst, seen in MS as the protonated molecule, while the other is tentatively assigned to an oxidized catalyst which was found to increase as the reaction proceeds. Oxidative stress testing of a synthetic model catalyst 1,5-cyclooctadiene Pd XPhos (COD-Pd-XPhos) performed using FeCl3 supported this assignment. The formation and conversion of the oxidative addition intermediate during the catalytic cycle was monitored to provide information on the progress of the transmetalation step.
Collapse
Affiliation(s)
- Xingshuo Chen
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA
| | - Zhenwei Wei
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA
| | - Kai-Hung Huang
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | - R Graham Cooks
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Sun J, Yin Y, Li W, Jin O, Na N. CHEMICAL REACTION MONITORING BY AMBIENT MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2022; 41:70-99. [PMID: 33259644 DOI: 10.1002/mas.21668] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Chemical reactions conducted in different media (liquid phase, gas phase, or surface) drive developments of versatile techniques for the detection of intermediates and prediction of reasonable reaction pathways. Without sample pretreatment, ambient mass spectrometry (AMS) has been applied to obtain structural information of reactive molecules that differ in polarity and molecular weight. Commercial ion sources (e.g., electrospray ionization, atmospheric pressure chemical ionization, and direct analysis in real-time) have been reported to monitor substrates and products by offline reaction examination. While the interception or characterization of reactive intermediates with short lifetime are still limited by the offline modes. Notably, online ionization technologies, with high tolerance to salt, buffer, and pH, can achieve direct sampling and ionization of on-going reactions conducted in different media (e.g., liquid phase, gas phase, or surface). Therefore, short-lived intermediates could be captured at unprecedented timescales, and the reaction dynamics could be studied for mechanism examinations without sample pretreatments. In this review, via various AMS methods, chemical reaction monitoring and mechanism elucidation for different classifications of reactions have been reviewed. The developments and advances of common ionization methods for offline reaction monitoring will also be highlighted.
Collapse
Affiliation(s)
- Jianghui Sun
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Yiyan Yin
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Weixiang Li
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Ouyang Jin
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
6
|
Iazzetti A, Mazzoccanti G, Bencivenni G, Righi P, Calcaterra A, Villani C, Ciogli A. Primary Amine Catalyzed Activation of Carbonyl Compounds: A Study on Reaction Pathways and Reactive Intermediates by Mass Spectrometry. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Antonia Iazzetti
- Department of Basic Biotechnological Sciences Intensivological and perioperative clinics Catholic University of Sacred Heart L. go F. Vito 1 00168 Rome Italy
| | - Giulia Mazzoccanti
- Department of Chemistry and Drug Technology Sapienza University of Rome Piazzale A. Moro 5 00185 Rome Italy
| | - Giorgio Bencivenni
- Department of Industrial Chemistry “Toso Montanari” University of Bologna Viale del Risorgimento 4 40136 Bologna Italy
| | - Paolo Righi
- Department of Industrial Chemistry “Toso Montanari” University of Bologna Viale del Risorgimento 4 40136 Bologna Italy
| | - Andrea Calcaterra
- Department of Chemistry and Drug Technology Sapienza University of Rome Piazzale A. Moro 5 00185 Rome Italy
| | - Claudio Villani
- Department of Chemistry and Drug Technology Sapienza University of Rome Piazzale A. Moro 5 00185 Rome Italy
| | - Alessia Ciogli
- Department of Chemistry and Drug Technology Sapienza University of Rome Piazzale A. Moro 5 00185 Rome Italy
| |
Collapse
|
7
|
Lu H, Yin Y, Sun J, Li W, Shen X, Feng X, Ouyang J, Na N. Accelerated plasma degradation of organic pollutants in milliseconds and examinations by mass spectrometry. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Cui C, Chen X, Liu C, Zhu Y, Zhu L, Ouyang J, Shen Y, Zhou Z, Qi F. In Situ Reactor-Integrated Electrospray Ionization Mass Spectrometry for Heterogeneous Catalytic Reactions and Its Application in the Process Analysis of High-Pressure Liquid-Phase Lignin Depolymerization. Anal Chem 2021; 93:12987-12994. [PMID: 34520172 DOI: 10.1021/acs.analchem.1c02710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Process analysis of heterogeneous catalytic reactions such as lignin depolymerization is essential to understand the reaction mechanism at the molecular level, but it is always challenging due to harsh conditions. Herein, we report an operando process analysis strategy by combining a microbatch reactor with high-resolution mass spectrometry (MS) via a reactor-integrated electrospray ionization (R-ESI) technique. R-ESI-MS expands the applications of traditional in situ MS to a heterogeneous and high-pressure liquid-phase system. With this strategy, we present the evolution of a series of monomers, dimers, and oligomers during lignin depolymerization under operando conditions (methanol solvent, 260 °C, ∼8 MPa), which is the first experimental elucidation of a progressive depolymerization pathway and evidence of repolymerization of active monomers. The proposed R-ESI-MS is crucial in probing depolymerization intermediates of lignin; it also provides a flexible strategy for process analysis of heterogeneous catalytic reactions under operando conditions.
Collapse
Affiliation(s)
- Cunhao Cui
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Xiamin Chen
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Chunjiang Liu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yanan Zhu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Linyu Zhu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Jianfeng Ouyang
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yang Shen
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Zhongyue Zhou
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Fei Qi
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
9
|
Sun J, Fan X, Lu H, Tan H, Zhang Y, Wang Y, Zhao Y, Ouyang J, Na N. Observation of intermediates by online mass spectrometry to demonstrate the multiple mechanisms of dye-sensitized photocatalysis. Chem Commun (Camb) 2021; 57:3921-3924. [PMID: 33871525 DOI: 10.1039/d1cc00908g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Online mass spectrometry was applied to reveal multiple mechanisms of visible-light irradiated dye-sensitized photocatalysis for o-phenylenediamine oxidation. The reactants, products and short-lived intermediates were recorded and dynamically tracked. Dimer and unexpected trimer intermediates were observed to deduce the stepwise aerobic photooxidation mechanism with multiple routes, which was supported by theoretical calculations.
Collapse
Affiliation(s)
- Jianghui Sun
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| | - Xuchan Fan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| | - Hua Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| | - Hongwei Tan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| | - Ying Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| | - Yan Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| | - Yunling Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| | - Jin Ouyang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| | - Na Na
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| |
Collapse
|
10
|
Li Y, Mehari TF, Wei Z, Liu Y, Cooks RG. Reaction Acceleration at Solid/Solution Interfaces: Katritzky Reaction Catalyzed by Glass Particles. Angew Chem Int Ed Engl 2021; 60:2929-2933. [PMID: 33164315 DOI: 10.1002/anie.202014613] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Indexed: 11/08/2022]
Abstract
The Katritzky reaction in bulk solution at room temperature is accelerated significantly by the surface of a glass container compared to a plastic container. Remarkably, the reaction rate is increased by more than two orders of magnitude upon the addition of glass particles with the rate increasing linearly with increasing amounts of glass. A similar phenomenon is observed when glass particles are added to levitated droplets, where large acceleration factors are seen. Evidence shows that glass acts as a "green" heterogeneous catalyst: it participates as a base in the deprotonation step and is recovered unchanged from the reaction mixture. Reaction acceleration at two separate interfaces is recognized in this study: i) air/solution phase acceleration, as is well known in microdroplets; ii) solid/solution phase, where such acceleration appears to be a new phenomenon.
Collapse
Affiliation(s)
- Yangjie Li
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Tsdale F Mehari
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Zhenwei Wei
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Yong Liu
- Department of Analytical Sciences, MRL, Merck & Co., Inc., 126 East Lincoln Ave, Rahway, NJ, 07065, USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
11
|
Reaction Acceleration at Solid/Solution Interfaces: Katritzky Reaction Catalyzed by Glass Particles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Ma Z, Li J, Hu X, Cai Z, Dou X. Ultrasensitive, Specific, and Rapid Fluorescence Turn-On Nitrite Sensor Enabled by Precisely Modulated Fluorophore Binding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002991. [PMID: 33344140 PMCID: PMC7740093 DOI: 10.1002/advs.202002991] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/13/2020] [Indexed: 05/04/2023]
Abstract
The precise regulation of fluorophore binding sites in an organic probe is of great significance toward the design of fluorescent sensing materials with specific functions. In this study, a probe with specific fluorescence properties and nitrite detection ability is designed by precisely modulating benzothiazole binding sites. Only the fluorophore bond at the ortho-position of the aniline moiety can specifically recognize nitrite, which ensures that the reaction products displays a robust green emission. The unique 2-(2-amino-4-carboxyphenyl) benzothiazole (ortho-BT) shows superior nitrite detection performance, including a low detection limit (2.2 fg), rapid detection time (<5 s), and excellent specificity even in the presence of >40 types of strong redox active, colored substances, nitro compounds, and metal ions. Moreover, the probe is highly applicable for the rapid on-site and semiquantitative measurement of nitrite. The proposed probe design strategy is expected to start a new frontier for the exploration of probe design methodology.
Collapse
Affiliation(s)
- Zhiwei Ma
- Xinjiang Key Laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryKey Laboratory of Functional Materials and Devices for Special EnvironmentsChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiguang Li
- Xinjiang Key Laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryKey Laboratory of Functional Materials and Devices for Special EnvironmentsChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiaoyun Hu
- Xinjiang Key Laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryKey Laboratory of Functional Materials and Devices for Special EnvironmentsChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Zhenzhen Cai
- Xinjiang Key Laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryKey Laboratory of Functional Materials and Devices for Special EnvironmentsChinese Academy of SciencesUrumqi830011China
| | - Xincun Dou
- Xinjiang Key Laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryKey Laboratory of Functional Materials and Devices for Special EnvironmentsChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
13
|
Yang Y, Liu J, Chen Z, Niu W, Li R, Niu L, Yang P, Mu X, Tang B. A High-Throughput Screening Method for Determining the Optimized Synthesis Conditions of Quinoxaline Derivatives Using Microdroplet Reaction. Front Chem 2020; 8:789. [PMID: 33195024 PMCID: PMC7533680 DOI: 10.3389/fchem.2020.00789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 11/30/2022] Open
Abstract
Quinoxaline derivatives demonstrate many distinguished chemical, biological, and physical properties and have a wide application in dyes, electroluminescent material, organic semiconductors, biological agents, etc. However, the synthesis of quinoxaline still suffers from several drawbacks, for instance, longer reaction time, unsatisfactory yields, and use of metal catalysts. Here, utilizing microdroplet-assisted reaction, we demonstrate the successive synthesis of several important quinoxaline derivatives. For case studies of 1H-indeno [1, 2-b] quinoxaline and 3,5-dimethyl-2-phenylquinoxaline, the present microdroplet approach can complete in milliseconds and the conversion rate reached 90% without adding any catalyst, which is considerably quicker and higher than conversional bulk-phase reactions. When combined with MS detection, high-throughput screening of the optimal reaction conditions can be achieved. Several impacts of droplet volume, reaction flow rate, distance from the MS inlet, spray voltage, and flow rate of the auxiliary gas can be screened on-site quickly for enhanced reaction speed and yields. More importantly, this platform is capable to be used for the scaled-up microdroplet synthesis of quinoxaline diversities. Considering the facile, economic, and environmentally friendly features of the microdroplet approach, we sincerely hope that the current strategy can effectively promote the academic research and industrial fabrications of functional quinoxaline substances for chemical, biological, and pharmaceutical application developments.
Collapse
Affiliation(s)
- Yanmei Yang
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| | - Junmin Liu
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| | - Zhenzhen Chen
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| | - Weihua Niu
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| | - Ran Li
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| | - Le Niu
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| | - Peng Yang
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| | - Xiaoyan Mu
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| | - Bo Tang
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, China
| |
Collapse
|
14
|
Wei Z, Li Y, Cooks RG, Yan X. Accelerated Reaction Kinetics in Microdroplets: Overview and Recent Developments. Annu Rev Phys Chem 2020; 71:31-51. [PMID: 32312193 DOI: 10.1146/annurev-physchem-121319-110654] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Various organic reactions, including important synthetic reactions involving C-C, C-N, and C-O bond formation as well as reactions of biomolecules, are accelerated when the reagents are present in sprayed or levitated microdroplets or in thin films. The reaction rates increase by orders of magnitude with decreasing droplet size or film thickness. The effect is associated with reactions at the solution-air interface. A key factor is partial solvation of the reagents at the interface, which reduces the critical energy for reaction. This phenomenon is of intrinsic interest and potentially of practical value as a simple, rapid method of performing small-scale synthesis.
Collapse
Affiliation(s)
- Zhenwei Wei
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Yangjie Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA;
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA;
| |
Collapse
|
15
|
Accelerating Electrochemical Reactions in a Voltage‐Controlled Interfacial Microreactor. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Ai W, Yang Q, Gao Y, Liu X, Liu H, Bai Y. In Situ Laser Scattering Electrospray Ionization Mass Spectrometry and Its Application in the Mechanism Study of Photoinduced Direct C-H Arylation of Heteroarenes. Anal Chem 2020; 92:11967-11972. [PMID: 32786502 DOI: 10.1021/acs.analchem.0c02384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An in situ laser scattering electrospray ionization mass spectrometry (LS-ESI-MS) was developed, where the laser scattering was simply achieved through the laser radiation of the "media" modified on the capillary. The laser scattering extended the reaction window and powerfully promoted the reaction yield of the photoinduced organic reaction, which enables the trace intermediates to be efficiently tracked in real time. For instance, the key radical cation in the photoinduced direct C-H arylation of heteroarenes was captured inventively, which provided direct experimental evidence for the verification of the reaction mechanism. Together with the characterization of oxidative photocatalytic Ru(III) intermediate, the integral insight into the process of visible-light-mediated direct C-H arylation of heteroarenes was confirmed. This approach is facile, powerful, and promising in the mechanism study of organic reaction.
Collapse
Affiliation(s)
- Wanpeng Ai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Qirong Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yunpeng Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
17
|
Cheng H, Tang S, Yang T, Xu S, Yan X. Accelerating Electrochemical Reactions in a Voltage-Controlled Interfacial Microreactor. Angew Chem Int Ed Engl 2020; 59:19862-19867. [PMID: 32725670 DOI: 10.1002/anie.202007736] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Indexed: 11/10/2022]
Abstract
Microdroplet chemistry is attracting increasing attention for accelerated reactions at the solution-air interface. We report herein a voltage-controlled interfacial microreactor that enables acceleration of electrochemical reactions which are not observed in bulk or conventional electrochemical cells. The microreactor is formed at the interface of the Taylor cone in an electrospray emitter with a large orifice, thus allowing continuous contact of the electrode and the reactants at/near the interface. As a proof-of-concept, electrooxidative C-H/N-H coupling and electrooxidation of benzyl alcohol were shown to be accelerated by more than an order of magnitude as compared to the corresponding bulk reactions. The new electrochemical microreactor has unique features that allow i) voltage-controlled acceleration of electrochemical reactions by voltage-dependent formation of the interfacial microreactor; ii) "reversible" electrochemical derivatization; and iii) in situ mechanistic study and capture of key radical intermediates when coupled with mass spectrometry.
Collapse
Affiliation(s)
- Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA.,College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA
| | - Tingyuan Yang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA
| | - Shiqing Xu
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA
| |
Collapse
|
18
|
Porwol L, Kowalski DJ, Henson A, Long D, Bell NL, Cronin L. An Autonomous Chemical Robot Discovers the Rules of Inorganic Coordination Chemistry without Prior Knowledge. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luzian Porwol
- School of Chemistry The University of Glasgow Glasgow G12 8QQ UK
| | | | - Alon Henson
- School of Chemistry The University of Glasgow Glasgow G12 8QQ UK
| | - De‐Liang Long
- School of Chemistry The University of Glasgow Glasgow G12 8QQ UK
| | - Nicola L. Bell
- School of Chemistry The University of Glasgow Glasgow G12 8QQ UK
| | - Leroy Cronin
- School of Chemistry The University of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
19
|
Reactive carbon fiber ionization-mass spectrometry for characterization of unsaturated hydrocarbons from plant aroma. Anal Bioanal Chem 2020; 412:5489-5497. [PMID: 32583215 DOI: 10.1007/s00216-020-02769-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/17/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022]
Abstract
Carbon fiber ionization (CFI)-mass spectrometry (MS) is an ambient technique that can be used to detect samples in gas, liquid, and solid forms simply by using a piece of carbon fiber as the ionization emitter. Reactive MS can be performed to selectively detect target analytes by conducting fast reactions during ionization. Most ambient ionization MS techniques used to monitor chemical reactions are limited to liquid-phase reactions. Herein, we develop reactive CFI-MS to be a suitable tool for monitoring of reaction products derived from volatile unsaturated hydrocarbons in the gas phase. Hydroamination is a fast reaction that can form a carbon-nitrogen bond through the addition of an amine to unsaturated hydrocarbons. In this study, reactive CFI-MS was used to selectively characterize aroma molecules, which are unsaturated hydrocarbons derived from plants, through hydroamination. A piece of carbon fiber was placed close (~ 1 mm) to the inlet of the mass spectrometer and deposited with dried methylamine. The sample in either liquid or solid form was placed underneath the carbon fiber. The volatiles derived from the sample reacted with amine on the carbon fiber were simultaneously determined once the mass spectrometer was switched on. For proof of concept, ethylene glycol dimethacrylate, which has double bonds and is highly volatile, was initially selected as the model sample to demonstrate the feasibility of using reactive CFI-MS to detect its hydroamination derivative. Banana, garlic, and ginger, which possess aroma molecules with unsaturated hydrocarbons, were selected as real-world samples. Graphical abstract.
Collapse
|
20
|
Porwol L, Kowalski DJ, Henson A, Long DL, Bell NL, Cronin L. An Autonomous Chemical Robot Discovers the Rules of Inorganic Coordination Chemistry without Prior Knowledge. Angew Chem Int Ed Engl 2020; 59:11256-11261. [PMID: 32419277 PMCID: PMC7384156 DOI: 10.1002/anie.202000329] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Indexed: 12/25/2022]
Abstract
We present a chemical discovery robot for the efficient and reliable discovery of supramolecular architectures through the exploration of a huge reaction space exceeding ten billion combinations. The system was designed to search for areas of reactivity found through autonomous selection of the reagent types, amounts, and reaction conditions aiming for combinations that are reactive. The process consists of two parts where reagents are mixed together, choosing from one type of aldehyde, one amine and one azide (from a possible family of two amines, two aldehydes and four azides) with different volumes, ratios, reaction times, and temperatures, whereby the reagents are passed through a copper coil reactor. Next, either cobalt or iron is added, again from a large number of possible quantities. The reactivity was determined by evaluating differences in pH, UV‐Vis, and mass spectra before and after the search was started. The algorithm was focused on the exploration of interesting regions, as defined by the outputs from the sensors, and this led to the discovery of a range of 1‐benzyl‐(1,2,3‐triazol‐4‐yl)‐N‐alkyl‐(2‐pyridinemethanimine) ligands and new complexes: [Fe(L1)2](ClO4)2 (1); [Fe(L2)2](ClO4)2 (2); [Co2(L3)2](ClO4)4 (3); [Fe2(L3)2](ClO4)4 (4), which were crystallised and their structure confirmed by single‐crystal X‐ray diffraction determination, as well as a range of new supramolecular clusters discovered in solution using high‐resolution mass spectrometry.
Collapse
Affiliation(s)
- Luzian Porwol
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Daniel J Kowalski
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Alon Henson
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - De-Liang Long
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Nicola L Bell
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Leroy Cronin
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
21
|
Wang LY, Gu GG, Ren BH, Yue TJ, Lu XB, Ren WM. Intramolecularly Cooperative Catalysis for Copolymerization of Cyclic Thioanhydrides and Epoxides: A Dual Activation Strategy to Well-Defined Polythioesters. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00906] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li-Yang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ge-Ge Gu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
22
|
Sun J, Jiang Y, Liu H, Huang X, Xiong C, Nie Z. Ultrafast Photocatalytic Reaction Screening by Mass Spectrometry. Anal Chem 2020; 92:6564-6570. [PMID: 32286049 DOI: 10.1021/acs.analchem.0c00201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report a semiconductor-assisted laser desorption/ionization mass spectrometry (SA-LDI MS) platform to monitor photocatalytic reactions online and apply it for ultrafast reaction screening. In this method, we use photocatalytic nanomaterials as the substrate for LDI and then initiate and monitor the reactions simultaneously. The features of our method include the following: (i) It has a reaction acceleration effect: only seconds are needed in our interfacial reactions vs hours in conventional bulk phase. (ii) The reaction trend in our system agrees with that in bulk phase. (iii) By adding a stable analogue of reactant as internal standard, a quantification of the reaction can be achieved. (iv) The sensitivity is high: for 500 amol of reactant, the photocatalytic reaction can still be initiated and detected. This platform has advantages in ultrafast reaction screening (e.g., screening of nine catalysts requires 24 h by the UPLC-MS system but only 10 min by SA-LDI MS). Furthermore, the high specificity of MS enables the screening of catalytic selectivity of A-TiO2 nanoparticles for a methyl red (MR) and acid yellow (AY) mixture, whose absorption wavelengths are overlapped and thus cannot be discriminated by conventional optical methods. Furthermore, by using SA-LDI MS, we also monitored reductive debrominations during the degradation process of polybrominated diphenyl ethers (PBDEs), which is a type of important pollutant that is difficult to degrade and detect in liquid phase, and the photocatalytic reduction of CO2. Overall, SA-LDI MS realizes ultrafast photocatalytic reaction screening for the first time and provides practical analytical value in the field of catalyst screening.
Collapse
Affiliation(s)
- Jie Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China.,University of CAS, Beijing 100049, China
| | - Yuming Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China.,University of CAS, Beijing 100049, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
| | - Xi Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China.,University of CAS, Beijing 100049, China
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China.,University of CAS, Beijing 100049, China
| |
Collapse
|
23
|
Zhang H, Qiao L, Wang W, He J, Yu K, Yang M, You H, Jiang J. Nebulization prior to ionization for mechanistic studies of chemical reactions. Anal Chim Acta 2020; 1107:107-112. [PMID: 32200884 DOI: 10.1016/j.aca.2020.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 10/25/2022]
Abstract
Many important chemical transformations proceed by way of ionic and/or neutral intermediates. Great effort has been expended to understand the mechanism, with only minimum attention given to separate associated ionic and neutral intermediates. Herein, we present a nebulization method followed by on-line ionization to isolate and characterize the ionic and neutral intermediates. The separation of nebulization and ionization and electrical deflection of ionic species guarantee that only neutrals undergo the subsequent on-line ionization. We present data that show the formation of neutral intermediates and iminium ions with short lifetime in Eschweiler-Clarke methylation of di-n-butylamine, as well as data that provide evidence for the formation of carbocation and its isomer lactone products resulting from copper-mediated oxidative cyclization of 4-phenylbutyric acid. Experiments in which dissociation behavior of these two isomers varied at the same collision energy confirmed the carbocation during the cyclization. The nature of this process, which online isolates the ionic and neutral intermediates prior to ionization, greatly advances in mechanistic studies.
Collapse
Affiliation(s)
- Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lina Qiao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wenxin Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Miao Yang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong You
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
24
|
Zeng N, Long Z, Wang Y, Sun J, Ouyang J, Na N. An Acetone Sensor Based on Plasma-Assisted Cataluminescence and Mechanism Studies by Online Ionizations. Anal Chem 2019; 91:15763-15768. [DOI: 10.1021/acs.analchem.9b04023] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ni Zeng
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zi Long
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yan Wang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jianghui Sun
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
25
|
Nilsson SME, Henschel H, Scotti G, Haapala M, Kiriazis A, Boije Af Gennäs G, Kotiaho T, Yli-Kauhaluoma J. Mechanism of the Oxidation of Heptafulvenes to Tropones Studied by Online Mass Spectrometry and Density Functional Theory Calculations. J Org Chem 2019; 84:13975-13982. [PMID: 31560537 PMCID: PMC7076690 DOI: 10.1021/acs.joc.9b02078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We
have identified the most likely reaction mechanism for oxidizing
heptafulvenes to the corresponding tropones by experimental and theoretical
investigations. The experimental studies were done by coupling a three-dimensional
printed miniaturized reactor with an integrated electrospray ionization
needle to a mass spectrometer. Using the experimentally observed ions
as a basis, nine alternative reaction pathways were investigated with
density functional theory calculations. The lowest energy reaction
pathway starts with the formation of an epoxide that is opened upon
the addition of a second equivalent of the oxidizing species meta-chloroperoxybenzoic acid. The adduct formed then undergoes
a Criegee-like rearrangement to yield a positively charged hemiketal,
which on deprotonation dissociates into acetone and tropone. Overall,
the reaction mechanism resembles a Hock-like rearrangement.
Collapse
Affiliation(s)
- Sofia M E Nilsson
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E) , FI-00014 University of Helsinki , Helsinki , Finland
| | - Henning Henschel
- Research Unit of Medical Imaging, Physics and Technology , University of Oulu , P.O. Box 5000 (Aapistie 5 A), FI-90220 Oulu , Finland.,Medical Research Center , University of Oulu and Oulu University Hospital , P.O. Box 5000 (Aapistie 5 A), FI-90220 Oulu , Finland
| | - Gianmario Scotti
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E) , FI-00014 University of Helsinki , Helsinki , Finland
| | - Markus Haapala
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E) , FI-00014 University of Helsinki , Helsinki , Finland
| | - Alexandros Kiriazis
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E) , FI-00014 University of Helsinki , Helsinki , Finland
| | - Gustav Boije Af Gennäs
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E) , FI-00014 University of Helsinki , Helsinki , Finland
| | - Tapio Kotiaho
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E) , FI-00014 University of Helsinki , Helsinki , Finland.,Department of Chemistry, Faculty of Science, P.O. Box 55 (A.I. Virtasen Aukio 1) , FI-00014 University of Helsinki , Helsinki , Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E) , FI-00014 University of Helsinki , Helsinki , Finland
| |
Collapse
|
26
|
Thomas GT, Janusson E, Zijlstra HS, McIndoe JS. Step-by-step real time monitoring of a catalytic amination reaction. Chem Commun (Camb) 2019; 55:11727-11730. [PMID: 31512685 DOI: 10.1039/c9cc05076k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The multiple reaction monitoring mode of a triple quadrupole mass spectrometer is used to examine the Buchwald-Hartwig amination reaction at 0.1% catalyst loading in real-time using sequential addition of reagents to probe the individual steps in the cycle. This is a powerful new method for probing reactions under realistic conditions.
Collapse
Affiliation(s)
- Gilian T Thomas
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada. E-mail:
| | - Eric Janusson
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada. E-mail:
| | - Harmen S Zijlstra
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada. E-mail:
| | - J Scott McIndoe
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada. E-mail:
| |
Collapse
|
27
|
Termopoli V, Torrisi E, Famiglini G, Palma P, Zappia G, Cappiello A, Vandergrift GW, Zvekic M, Krogh ET, Gill CG. Mass Spectrometry Based Approach for Organic Synthesis Monitoring. Anal Chem 2019; 91:11916-11922. [PMID: 31403767 DOI: 10.1021/acs.analchem.9b02681] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Current mass spectrometry-based methodologies for synthetic organic reaction monitoring largely use electrospray ionization (ESI), or other related atmospheric pressure ionization-based approaches. Monitoring of complex, heterogeneous systems may be problematic because of sampling hardware limitations, and many relevant analytes (neutrals) exhibit poor ESI performance. An alternative monitoring strategy addressing this significant impasse is condensed phase membrane introduction mass spectrometry using liquid electron ionization (CP-MIMS-LEI). In CP-MIMS, a semipermeable silicone membrane selects hydrophobic neutral analytes, rejecting particulates and charged chemical components. Analytes partition through the membrane, and are then transported to the LEI interface for sequential nebulization, vaporization, and ionization. CP-MIMS and LEI are both ideal for continuous monitoring applications of hydrophobic neutral molecules. We demonstrate quantitative reaction monitoring of harsh, complex reaction mixtures (alkaline, acidic, heterogeneous) in protic and aprotic organic solvents. Also presented are solvent-membrane compatibility investigations and, in situ quantitative monitoring of catalytic oxidation and alkylation reactions.
Collapse
Affiliation(s)
- Veronica Termopoli
- LC-MS Laboratory, Department of Pure and Applied Sciences , University of Urbino Carlo Bo , Urbino 61029 , Italy
| | - Elena Torrisi
- Biomolecular Sciences Department , University of Urbino Carlo Bo , Urbino 61029 , Italy
| | - Giorgio Famiglini
- LC-MS Laboratory, Department of Pure and Applied Sciences , University of Urbino Carlo Bo , Urbino 61029 , Italy
| | - Pierangela Palma
- LC-MS Laboratory, Department of Pure and Applied Sciences , University of Urbino Carlo Bo , Urbino 61029 , Italy.,Applied Environmental Research Laboratories (AERL), Chemistry Department , Vancouver Island University , Nanaimo , British Columbia V9R 5S5 , Canada
| | - Giovanni Zappia
- Biomolecular Sciences Department , University of Urbino Carlo Bo , Urbino 61029 , Italy
| | - Achille Cappiello
- LC-MS Laboratory, Department of Pure and Applied Sciences , University of Urbino Carlo Bo , Urbino 61029 , Italy.,Applied Environmental Research Laboratories (AERL), Chemistry Department , Vancouver Island University , Nanaimo , British Columbia V9R 5S5 , Canada
| | - Gregory W Vandergrift
- Applied Environmental Research Laboratories (AERL), Chemistry Department , Vancouver Island University , Nanaimo , British Columbia V9R 5S5 , Canada.,Chemistry Department , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Misha Zvekic
- Applied Environmental Research Laboratories (AERL), Chemistry Department , Vancouver Island University , Nanaimo , British Columbia V9R 5S5 , Canada
| | - Erik T Krogh
- Applied Environmental Research Laboratories (AERL), Chemistry Department , Vancouver Island University , Nanaimo , British Columbia V9R 5S5 , Canada.,Chemistry Department , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Chris G Gill
- Applied Environmental Research Laboratories (AERL), Chemistry Department , Vancouver Island University , Nanaimo , British Columbia V9R 5S5 , Canada.,Chemistry Department , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada.,Chemistry Department , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada.,Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
28
|
Omari I, Randhawa P, Randhawa J, Yu J, McIndoe JS. Structure, Anion, and Solvent Effects on Cation Response in ESI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1750-1757. [PMID: 31218572 DOI: 10.1007/s13361-019-02252-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
The abundance of an ion in an electrospray ionization mass spectrum is dependent on many factors beyond just solution concentration. Even in cases where the analytes of interest are permanently charged (under study here are ammonium and phosphonium ions) and do not rely on protonation or other chemical processes to acquire the necessary charge, factors such as cation structure, molecular weight, solvent, and the identity of the anion can affect results. Screening of a variety of combinations of cations, anions, and solvents provided insight into some of the more important factors. Rigid cations and anions that conferred high conductivity tended to provide the highest responses. The solvent that most closely reflected actual solution composition was acetonitrile, while methanol, acetonitrile/water, and dichloromethane produced a higher degree of discrimination between different ions. Functional groups that had affinity for the solvent tended to depress response. These observations will provide predictive power when accounting for analytes that for reasons of high reactivity can not be isolated.
Collapse
Affiliation(s)
- Isaac Omari
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Parmissa Randhawa
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Jaiya Randhawa
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Jenny Yu
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - J Scott McIndoe
- Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada.
| |
Collapse
|
29
|
Tripodi GL, Correra TC, Angolini CFF, Ferreira BRV, Maître P, Eberlin MN, Roithová J. The Intermediates in Lewis Acid Catalysis with Lanthanide Triflates. European J Org Chem 2019; 2019:3560-3566. [PMID: 31680777 PMCID: PMC6813638 DOI: 10.1002/ejoc.201900171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Indexed: 01/27/2023]
Abstract
Lanthanide triflates are effective Lewis acid catalysts in reactions involving carbonyl compounds due to their high oxophilicity and water stability. Despite the growing interest, the identity of the catalytic species formed in lanthanide catalysed reactions is still unknown. We have therefore used mass spectrometry and ion spectroscopy to intercept and characterize the intermediates in a reaction catalysed by ytterbium and dysprosium triflates. We were able to identify a number of lanthanide intermediates formed in a simple condensation reaction between a C-acid and an aldehyde. Results show correlation between the reactivity of lanthanide complexes and their charge state and suggest that the triply charged complexes play a key role in lanthanide catalysed reactions. Spectroscopic data of the gaseous ions accompanied by theoretical calculations reveal that the difference between catalytic efficiencies of ytterbium and dysprosium ions can be explained by their different electrophilicity.
Collapse
Affiliation(s)
- Guilherme L. Tripodi
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJ NijmegenThe Netherlands
| | - Thiago C. Correra
- Departament of Organic ChemistryInstitute of ChemistryUniversity of São Paulo05508–000São Paulo‐SPBrazil
| | - Célio F. F. Angolini
- Center for Natural and Human SciencesFederal University of ABC (UFABC)09210–580Santo André ‐SPBrazil
| | - Bruno R. V. Ferreira
- Instituto Federal do Norte de Minas GeraisCampus Salinas39560–000Salinas‐MGBrazil
| | - Philippe Maître
- Laboratoire de Chimie Physique, URM8000, CNRS, Univ. Paris‐SudUniversité Paris‐Saclay91405OrsayFrance
| | - Marcos N. Eberlin
- ThoMSon Mass Spectrometry Laboratory, Institute of ChemistryState University of Campinas13084–971Campinas‐SPBrazil
- School of EngeneeringMackenzie Presbiterian University01302907São Paulo‐SPBrazil
| | - Jana Roithová
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJ NijmegenThe Netherlands
| |
Collapse
|
30
|
Schnell A, Willms JA, Nozinovic S, Engeser M. Mechanistic studies of an L-proline-catalyzed pyridazine formation involving a Diels-Alder reaction with inverse electron demand. Beilstein J Org Chem 2019; 15:30-43. [PMID: 30680036 PMCID: PMC6334817 DOI: 10.3762/bjoc.15.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022] Open
Abstract
The mechanism of an L-proline-catalyzed pyridazine formation from acetone and aryl-substituted tetrazines via a Diels-Alder reaction with inverse electron demand has been studied with NMR and with electrospray ionization mass spectrometry. A catalytic cycle with three intermediates has been proposed. An enamine derived from L-proline and acetone acts as an electron-rich dienophile in a [4 + 2] cycloaddition with the electron-poor tetrazine forming a tetraazabicyclo[2.2.2]octadiene derivative which then eliminates N2 in a retro-Diels-Alder reaction to yield a 4,5-dihydropyridazine species. The reaction was studied in three variants: unmodified, with a charge-tagged substrate, and with a charge-tagged proline catalyst. The charge-tagging technique strongly increases the ESI response of the respective species and therefore enables to capture otherwise undetected reaction components. With the first two reaction variants, only small intensities of intermediates were found, but the temporal progress of reactants and products could be monitored very well. In experiments with the charge-tagged L-proline-derived catalyst, all three intermediates of the proposed catalytic cycle were detected and characterized by collision-induced dissociation (CID) experiments. Some of the CID pathways of intermediates mimic single steps of the proposed catalytic cycle in the gas phase. Thus, the charge-tagged catalyst proved one more time its superior effectiveness for the detection and study of reactive intermediates at low concentrations.
Collapse
Affiliation(s)
- Anne Schnell
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - J Alexander Willms
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - S Nozinovic
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Marianne Engeser
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| |
Collapse
|
31
|
Gao D, Jin F, Yan X, Zare RN. Selective Synthesis in Microdroplets of 2-Phenyl-2,3-dihydrophthalazine-1,4-dione from Phenyl Hydrazine with Phthalic Anhydride or Phthalic Acid. Chemistry 2018; 25:1466-1471. [PMID: 30417449 DOI: 10.1002/chem.201805585] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 01/10/2023]
Abstract
Pyridazine derivatives are privileged structures because of their potential biological and optical properties. Traditional synthetic methods usually require acid or base as a catalyst under reflux conditions with reaction times ranging from hours to a few days or require microwave assistance to induce the reaction. Herein, this work presents the accelerated synthesis of a pyridazine derivative, 2-phenyl-2,3-dihydrophthalazine-1,4-dione (PDHP), in electrosprayed microdroplets containing an equimolar mixture of phenyl hydrazine and phthalic anhydride or phthalic acid. This reaction occurred on the submillisecond timescale with good yield (over 90 % with the choice of solvent) without using an external catalyst at room temperature. In sharp contrast to the bulk reaction of obtaining a mixture of two products, the reaction in confined microdroplets yields only the important six-membered heterocyclic product PDHP. Results indicated that surface reactions in microdroplets with low pH values cause selectivity, acceleration, and high yields.
Collapse
Affiliation(s)
- Dan Gao
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305-5080, USA.,State Key Laboratory of Chemical Oncogenomics the Graduate School at, Shenzhen, Tsinghua University, Tsinghua Campus, The University Town, Shenzhen, 518055, P. R. China
| | - Feng Jin
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305-5080, USA
| | - Xin Yan
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305-5080, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305-5080, USA
| |
Collapse
|
32
|
Yunker LPE, Ahmadi Z, Logan JR, Wu W, Li T, Martindale A, Oliver AG, McIndoe JS. Real-Time Mass Spectrometric Investigations into the Mechanism of the Suzuki–Miyaura Reaction. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00705] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lars P. E. Yunker
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada
| | - Zohrab Ahmadi
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada
| | - Jessamyn R. Logan
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada
| | - Wenzhao Wu
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada
| | - Tengfei Li
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada
| | - A. Martindale
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - J. Scott McIndoe
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada
| |
Collapse
|
33
|
Profiling the short-lived cationic species generated during catalytic dehydration of short-chain alcohols. Commun Chem 2018. [DOI: 10.1038/s42004-018-0053-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
34
|
Rodrigues-Oliveira AF, M. Ribeiro FW, Cervi G, C. Correra T. Evaluation of Common Theoretical Methods for Predicting Infrared Multiphotonic Dissociation Vibrational Spectra of Intramolecular Hydrogen-Bonded Ions. ACS OMEGA 2018; 3:9075-9085. [PMID: 31459042 PMCID: PMC6644661 DOI: 10.1021/acsomega.8b00815] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/25/2018] [Indexed: 05/25/2023]
Abstract
Infrared photodissociation analyses are supported by theoretical calculations that allow a trustworthy interpretation of experimental spectra of gaseous ions. B3LYP calculations are the most prominent method used to model IR spectra, as detailed in our bibliographic survey. However, this and other commonly used methods are known to provide inaccurate energy values and geometries, especially when it comes to long-range interactions, such as intramolecular H-bonds, which show increased anharmonicity. Therefore, we evaluated some of the most commonly used density functional theory methods (B3LYP, CAM-B3LYP, and M06-2X) and basis sets (6-31+G(d,p), 6-311++G(d,p), 6-311++G(3df,2pd), aug-cc-pVDZ, and aug-cc-pVTZ), including anharmonicity and dispersion corrections. The results were compared to MP2 calculations and to experimental high-frequency (2000-4000 cm-1) IR multiphotonic dissociation (IRMPD) spectra of two protonated model molecules containing intramolecular hydrogen bonds: biotin and tryptophan. M06-2X/6-31+G(d,p) was shown to be the most cost-effective level of theory, whereas CAM-B3LYP was the most efficient method to describe the van der Waals interactions. The use of the dispersion correction D3, proposed by Grimme, improved the description of O-H vibrations involved in H-bonding but worsened the description of N-H stretches. Anharmonic calculations were shown to be extremely expensive when compared to other approaches. The efficiencies of well-established scaling factors (SFs) in opposition to sample-dependent SFs were also discussed and the use of fitted SFs were shown to be the most cost-effective approach to predict IRMPD spectra. M06-2X/6-31+G(d,p) and CAM-B3LYP/aug-cc-pVDZ were also tested against the fingerprint region. Our results suggest that these methods can also be used for analysis in this lower frequency range and should be regarded as the methods of choice for cost-effective IRMPD simulations rather than the ubiquitous B3LYP method, especially when further molecular properties are needed.
Collapse
Affiliation(s)
- André F. Rodrigues-Oliveira
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenue Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Francisco W. M. Ribeiro
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenue Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Gustavo Cervi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenue Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Thiago C. Correra
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenue Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| |
Collapse
|
35
|
Yan X, Bain RM, Cooks RG. Organic Reactions in Microdroplets: Reaction Acceleration Revealed by Mass Spectrometry. Angew Chem Int Ed Engl 2018; 55:12960-12972. [PMID: 27530279 DOI: 10.1002/anie.201602270] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 11/10/2022]
Abstract
The striking finding that reaction acceleration occurs in confined-volume solutions sets up an apparent conundrum: Microdroplets formed by spray ionization can be used to monitor the course of bulk-phase reactions and also to accelerate reactions between the reagents in such a reaction. This Minireview introduces droplet and thin-film acceleration phenomena and summarizes recent methods applied to study accelerated reactions in confined-volume, high-surface-area solutions. Conditions that dictate either simple monitoring or acceleration are reconciled in the occurrence of discontinuous and complete desolvation as the endpoint of droplet evolution. The contrasting features of microdroplet and bulk-solution reactions are described together with possible mechanisms that drive reaction acceleration in microdroplets. Current applications of droplet microreactors are noted as is reaction acceleration in confined volumes and possible future scale-up.
Collapse
Affiliation(s)
- Xin Yan
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Ryan M Bain
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
36
|
Falcone CE, Jaman Z, Wleklinski M, Koswara A, Thompson DH, Cooks RG. Reaction screening and optimization of continuous-flow atropine synthesis by preparative electrospray mass spectrometry. Analyst 2018; 142:2836-2845. [PMID: 28703239 DOI: 10.1039/c7an00622e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Preparative electrospray (ES) exploits the acceleration of reactions in charged microdroplets to perform a small scale chemical synthesis. In combination with on-line mass spectrometric (MS) analysis, it constitutes a rapid screening tool to select reagents to generate specific products. A successful reaction in preparative ES triggers a refined microfluidic reaction screening procedure which includes the optimization for stoichiometry, temperature and residence time. We apply this combined approach for refining a flow synthesis of atropine. A successful preparative ES pathway for the synthesis of the phenylacetyl ester intermediate, using tropine/HCl/phenylacetyl chloride, was optimized for solvent in both the preparative ES and microfluidics flow systems and a base screening was conducted by both methods to increase atropine yield, increase percentage conversion and reduce byproducts. In preparative ES, the first step yielded 55% conversion (judged using MS) to intermediate and the second step yielded 47% conversion to atropine. When combined in two discrete steps in continuous-flow microfluidics, a 44% conversion of the starting material and a 30% actual yield of atropine were achieved. When the reactions were continuously telescoped in a new form of preparative reactive extractive electrospray (EES), atropine was synthesized with a 24% conversion. The corresponding continuous-flow microfluidics experiment gave a 55% conversion with an average of 34% yield in 8 min residence time. This is the first in depth study to utilize telescoped preparative ES and the first use of dual ESI emitters for multistep synthesis.
Collapse
Affiliation(s)
- Caitlin E Falcone
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | - Zinia Jaman
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | - Michael Wleklinski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | - Andy Koswara
- Chemical Engineering, Purdue University, 480 W Stadium Ave., West Lafayette, IN 47907, USA
| | - David H Thompson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | - R Graham Cooks
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
37
|
Zhang H, Li X, Yu K, Li N, He J, You H, Jiang J. On-line monitoring of photolysis reactions using electrospray ionization mass spectrometry coupled with pressurized photoreactor. Anal Chim Acta 2018; 1013:36-42. [DOI: 10.1016/j.aca.2018.01.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/30/2017] [Accepted: 01/20/2018] [Indexed: 11/30/2022]
|
38
|
Cooks RG, Yan X. Mass Spectrometry for Synthesis and Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:1-28. [PMID: 29894228 DOI: 10.1146/annurev-anchem-061417-125820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mass spectrometry is the science and technology of ions. As such, it is concerned with generating ions, measuring their properties, following their reactions, isolating them, and using them to build and transform materials. Instrumentation is an essential element of these activities, and analytical applications are one driving force. Work from the Aston Laboratories at Purdue University's Department of Chemistry is described here, with an emphasis on accelerated reactions of ions in solution and small-scale synthesis; ion/surface collision processes, including surface-induced dissociation (SID) and ion soft landing; and applications to tissue imaging. Our special interest in chirality and the chemistry behind the origins of life is also featured together with the exciting area of tissue diagnostics.
Collapse
Affiliation(s)
- R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA;
| | - Xin Yan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA;
- Current affiliation: Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
39
|
Iacobucci C, Reale S, Aschi M, Oomens J, Berden G, De Angelis F. An Unprecedented Retro-Mumm Rearrangement Revealed by ESI-MS/MS, IRMPD Spectroscopy, and DFT Calculations. Chemistry 2018. [DOI: 10.1002/chem.201800347] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Claudio Iacobucci
- Current address: Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Wolfgang-Langenbeck-Strasse 4 06120 Halle (Saale) Germany
- Dipartimento di Scienze Fisiche e Chimiche; Università degli Studi dell'Aquila; Via Vetoio, Coppito 67100 L'Aquila Italy
| | - Samantha Reale
- Dipartimento di Scienze Fisiche e Chimiche; Università degli Studi dell'Aquila; Via Vetoio, Coppito 67100 L'Aquila Italy
| | - Massimiliano Aschi
- Dipartimento di Scienze Fisiche e Chimiche; Università degli Studi dell'Aquila; Via Vetoio, Coppito 67100 L'Aquila Italy
| | - Jos Oomens
- Radboud University Nijmegen; Institute for Molecules and Materials, FELIX Laboratory; Toernooiveld 7c 6525 ED Nijmegen The Netherlands
| | - Giel Berden
- Radboud University Nijmegen; Institute for Molecules and Materials, FELIX Laboratory; Toernooiveld 7c 6525 ED Nijmegen The Netherlands
| | - Francesco De Angelis
- Dipartimento di Scienze Fisiche e Chimiche; Università degli Studi dell'Aquila; Via Vetoio, Coppito 67100 L'Aquila Italy
| |
Collapse
|
40
|
Sathyamoorthi S, Lai YH, Bain RM, Zare RN. Mechanistic Analysis of the C–H Amination Reaction of Menthol by CuBr2 and Selectfluor. J Org Chem 2018; 83:5681-5687. [DOI: 10.1021/acs.joc.8b00690] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shyam Sathyamoorthi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yin-Hung Lai
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ryan M. Bain
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
41
|
Khazipov OV, Shevchenko MA, Chernenko AY, Astakhov AV, Pasyukov DV, Eremin DB, Zubavichus YV, Khrustalev VN, Chernyshev VM, Ananikov VP. Fast and Slow Release of Catalytically Active Species in Metal/NHC Systems Induced by Aliphatic Amines. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00124] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oleg V. Khazipov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk, 346428, Russia
| | - Maxim A. Shevchenko
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk, 346428, Russia
| | - Andrey Yu. Chernenko
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk, 346428, Russia
| | - Alexander V. Astakhov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk, 346428, Russia
| | - Dmitry V. Pasyukov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk, 346428, Russia
| | - Dmitry B. Eremin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Yan V. Zubavichus
- National Research Center, “Kurchatov Institute”, Acad. Kurchatov Sq. 1, Moscow, 123182, Russia
| | - Victor N. Khrustalev
- National Research Center, “Kurchatov Institute”, Acad. Kurchatov Sq. 1, Moscow, 123182, Russia
- Peoples’ Friendship University of Russia, Miklukho-Maklay St. 6, Moscow, 117198, Russia
| | - Victor M. Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk, 346428, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
42
|
Mosely JA, Stokes P, Parker D, Dyer PW, Messinis AM. Analysis of air-, moisture- and solvent-sensitive chemical compounds by mass spectrometry using an inert atmospheric pressure solids analysis probe. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2018; 24:74-80. [PMID: 29233000 DOI: 10.1177/1469066717732286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel method has been developed that enables chemical compounds to be transferred from an inert atmosphere glove box and into the atmospheric pressure ion source of a mass spectrometer whilst retaining a controlled chemical environment. This innovative method is simple and cheap to implement on some commercially available mass spectrometers. We have termed this approach inert atmospheric pressure solids analysis probe ( iASAP) and demonstrate the benefit of this methodology for two air-/moisture-sensitive chemical compounds whose characterisation by mass spectrometry is now possible and easily achieved. The simplicity of the design means that moving between iASAP and standard ASAP is straightforward and quick, providing a highly flexible platform with rapid sample turnaround.
Collapse
Affiliation(s)
- Jackie A Mosely
- 151523 Department of Chemistry, Durham University , Durham, UK
| | - Peter Stokes
- 151523 Department of Chemistry, Durham University , Durham, UK
| | - David Parker
- 151523 Department of Chemistry, Durham University , Durham, UK
| | - Philip W Dyer
- 151523 Department of Chemistry, Durham University , Durham, UK
| | | |
Collapse
|
43
|
Wang Y, Sun M, Qiao J, Ouyang J, Na N. FAD roles in glucose catalytic oxidation studied by multiphase flow of extractive electrospray ionization (MF-EESI) mass spectrometry. Chem Sci 2017; 9:594-599. [PMID: 29629123 PMCID: PMC5869319 DOI: 10.1039/c7sc04259k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/27/2017] [Indexed: 01/08/2023] Open
Abstract
The role of the coenzyme flavin adenine dinucleotide (FAD) in the catalytic oxidation of glucose was elucidated by MS using a new extraction and ionization method.
The role of the coenzyme flavin adenine dinucleotide (FAD) in the catalytic oxidation of glucose was elucidated by MS using a new extraction and ionization method. By a multiphase flow of liquid–gas, extractive electrospray ionization was achieved, and this technique (MF-EESI) decreased the salt-matrix interference effectively, avoided salt crystallizations at the capillary tip and increased ionization efficiency by a concentric-sprayed solvent. Notably, two intermediate complexes of FAD–glucose have been observed and differentiated for the first time using this MF-EESI technique. These intermediate complexes were demonstrated to be responsible for the hydride abstraction from glucose, as well as the cyclic coenzyme conversion of FAD during glucose oxidation. Online monitoring was also employed in MF-EESI, thereby providing a potential and informative tool to scrutinize enzymatic catalytic reactions.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Theoretical and Computational Photochemistry , College of Chemistry , Beijing Normal University , Beijing 100875 , China .
| | - Min Sun
- Key Laboratory of Theoretical and Computational Photochemistry , College of Chemistry , Beijing Normal University , Beijing 100875 , China .
| | - Jinping Qiao
- Key Laboratory of Theoretical and Computational Photochemistry , College of Chemistry , Beijing Normal University , Beijing 100875 , China .
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry , College of Chemistry , Beijing Normal University , Beijing 100875 , China .
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry , College of Chemistry , Beijing Normal University , Beijing 100875 , China .
| |
Collapse
|
44
|
|
45
|
Bain RM, Ayrton ST, Cooks RG. Fischer Indole Synthesis in the Gas Phase, the Solution Phase, and at the Electrospray Droplet Interface. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1359-1364. [PMID: 28194736 DOI: 10.1007/s13361-017-1597-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 06/06/2023]
Abstract
Previous reports have shown that reactions occurring in the microdroplets formed during electrospray ionization can, under the right conditions, exhibit significantly greater rates than the corresponding bulk solution-phase reactions. The observed acceleration under electrospray ionization could result from a solution-phase, a gas-phase, or an interfacial reaction. This study shows that a gas-phase ion/molecule (or ion/ion) reaction is not responsible for the observed rate enhancement in the particular case of the Fischer indole synthesis. The results show that the accelerated reaction proceeds in the microdroplets, and evidence is provided that an interfacial process is involved. Graphical Abstract <!-- [INSERT GRAPHICAL ABSTRACT TEXT HERE] -->.
Collapse
Affiliation(s)
- Ryan M Bain
- 560 Oval Drive Department of Chemistry and the Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, 47907, USA
| | - Stephen T Ayrton
- 560 Oval Drive Department of Chemistry and the Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, 47907, USA
| | - R Graham Cooks
- 560 Oval Drive Department of Chemistry and the Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
46
|
Pulliam CJ, Bain RM, Osswald HL, Snyder DT, Fedick PW, Ayrton ST, Flick TG, Cooks RG. Simultaneous Online Monitoring of Multiple Reactions Using a Miniature Mass Spectrometer. Anal Chem 2017; 89:6969-6975. [PMID: 28520396 DOI: 10.1021/acs.analchem.7b00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Christopher J. Pulliam
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Ryan M. Bain
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Heather L. Osswald
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Dalton T. Snyder
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Patrick W. Fedick
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Stephen T. Ayrton
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Tawnya G. Flick
- Department
of Attribute Sciences, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - R. Graham Cooks
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Center for Analytical Instrumentation Development, West Lafayette, Indiana 47907, United States
| |
Collapse
|
47
|
Iacobucci C, Jouini N, Massi L, Olivero S, De Angelis F, Duñach E, Gal JF. Quantitative Ligand Affinity Scales for Metal Triflate Salts: Application to Isomer Differentiation. Chempluschem 2017; 82:498-506. [DOI: 10.1002/cplu.201700124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Claudio Iacobucci
- Dipartimento di Scienze Fisiche e Chimiche; Università dell'Aquila; Via Vetoio, Coppito 67100 L'Aquila Italy
| | - Nédra Jouini
- Université Côte d'Azur, CNRS; Institut de Chimie de Nice, UMR 7272; 06108 Nice France
| | - Lionel Massi
- Université Côte d'Azur, CNRS; Institut de Chimie de Nice, UMR 7272; 06108 Nice France
| | - Sandra Olivero
- Université Côte d'Azur, CNRS; Institut de Chimie de Nice, UMR 7272; 06108 Nice France
| | - Francesco De Angelis
- Dipartimento di Scienze Fisiche e Chimiche; Università dell'Aquila; Via Vetoio, Coppito 67100 L'Aquila Italy
| | - Elisabet Duñach
- Université Côte d'Azur, CNRS; Institut de Chimie de Nice, UMR 7272; 06108 Nice France
| | - Jean-François Gal
- Université Côte d'Azur, CNRS; Institut de Chimie de Nice, UMR 7272; 06108 Nice France
| |
Collapse
|
48
|
Moskovets AP, Usanov DL, Afanasyev OI, Fastovskiy VA, Molotkov AP, Muratov KM, Denisov GL, Zlotskii SS, Smol'yakov AF, Loginov DA, Chusov D. Reductive amination catalyzed by iridium complexes using carbon monoxide as a reducing agent. Org Biomol Chem 2017; 15:6384-6387. [DOI: 10.1039/c7ob01005b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
N-benzyl, dioxalane, halo-, cyclopropanes tolerates.
Collapse
Affiliation(s)
- Alexey P. Moskovets
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Dmitry L. Usanov
- Department of Chemistry and Chemical Biology
- Harvard University
- 12 Oxford Street
- Cambridge
- USA
| | - Oleg I. Afanasyev
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Vasilii A. Fastovskiy
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Alexander P. Molotkov
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Karim M. Muratov
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Gleb L. Denisov
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Moscow
- Russian Federation
| | | | - Alexander F. Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Moscow
- Russian Federation
- Faculty of Science
- RUDN University
| | - Dmitry A. Loginov
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Denis Chusov
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Moscow
- Russian Federation
- Faculty of Science
- RUDN University
| |
Collapse
|
49
|
Abstract
The identification of endogenous proteins as well as their binding to metal ions in living cells is determined by combining pulsed electrophoretic separations with nanoelectrospray ionization followed by mass spectrometric detection. This approach avoids problems resulting from the complicated cellular environment. In this manner, we demonstrate the rapid identification (300 ms or less) of intact proteins from living E. coli cells including the complexation of calmodulin with calcium ion. The latter showed different binding states from those observed in in vitro studies. These observations also reveal in vitro measurements do not necessarily represent the actual situation in living cells. We conclude that the attempted in situ measurement of intracellular proteins with minimal sampling processes should be preferred.
Collapse
Affiliation(s)
- Gongyu Li
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, P. R. China
| | - Siming Yuan
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, P. R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China , Hefei, Anhui 230029, P. R. China
| | - Yangzhong Liu
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, P. R. China
| | - Guangming Huang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, P. R. China
| |
Collapse
|
50
|
Yan X, Bain RM, Cooks RG. Organische Reaktionen in Mikrotröpfchen: Analyse von Reaktionsbeschleunigungen durch Massenspektrometrie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602270] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xin Yan
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Ryan M. Bain
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - R. Graham Cooks
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| |
Collapse
|