1
|
Dong W, Yang X, Li X, Wei S, An C, Zhang J, Shi X, Dong S. Investigation of N-Glycan Functions in Receptor for Advanced Glycation End Products V Domain through Chemical Glycoprotein Synthesis. J Am Chem Soc 2024; 146:18270-18280. [PMID: 38917169 DOI: 10.1021/jacs.4c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The receptor for advanced glycation end products (RAGE) plays a crucial role in inflammation-related pathways and various chronic diseases. Despite the recognized significance of N-glycosylation in the ligand-binding V domain (VD) of RAGE, a comprehensive understanding of the site-activity and structure-activity relationships is lacking due to the challenges in obtaining homogeneous glycoprotein samples through biological expression. Here, we combined chemical and chemoenzymatic approaches to synthesize RAGE-VD and its congeners with Asn3-glycosylation by incorporating precise N-glycan structures. Evaluation of these samples revealed that, in comparison to other RAGE-VD forms, α2,6-sialylated N-glycosylation at the Asn3 site results in more potent inhibition of HMGB1-induced nuclear factor-κB (NF-κB) expression in RAGE-overexpressing cells. Hydrogen/deuterium exchange-mass spectrum analysis revealed a sialylated RAGE-VD-induced interaction region within HMGB1. Conversely, Asn3 N-glycosylation in VD has negligible effects on RAGE-VD/S100B interactions. This study established an approach for accessing homogeneously glycosylated RAGE-VD and explored the modulatory effects of N-glycosylation on the interactions between RAGE-VD and its ligand proteins.
Collapse
Affiliation(s)
- Weidong Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xingyue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyu Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Sheng Wei
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chuanjing An
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaomeng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and Department of Chemical Biology at School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Liao P, He C. Azole reagents enabled ligation of peptide acyl pyrazoles for chemical protein synthesis. Chem Sci 2024; 15:7965-7974. [PMID: 38817582 PMCID: PMC11134319 DOI: 10.1039/d3sc06697e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Native chemical ligation (NCL) has been playing an increasingly important role in chemical protein synthesis (CPS). More efficient ligation methods that circumvent the requirement of a peptidyl thioester and thiol additive-which allow the following desulfurization or refolding in one pot-are urgently needed for the synthesis of more complex protein targets and in large quantities. Herein, we discover that the weak acyl donor peptidyl N-acyl pyrazole can be activated by azole reagents like 3-methylpyrazole or imidazole to facilitate its ligation directly with an N-terminal cysteine peptide. As it requires no thioester or thiol additive, this ligation strategy can be conveniently combined with metal-free desulfurization (MFD) or oxidative protein folding to allow various one-pot protocols. The utility and generality of the strategy are showcased by the total synthesis of ubiquitin via an N-to-C sequential ligation-MFD strategy, the semi-synthesis of the copper protein azurin, and the efficient assembly of a sulfated hirudin variant and the cyclotide kalata B1, all in a one-pot fashion.
Collapse
Affiliation(s)
- Peisi Liao
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
3
|
Kar A, Jana M, Malik V, Sarkar A, Mandal K. Total Chemical Synthesis of the SARS-CoV-2 Spike Receptor-Binding Domain. Chemistry 2024; 30:e202302969. [PMID: 37815536 DOI: 10.1002/chem.202302969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
SARS-CoV-2 and its global spread have created an unprecedented public health crisis. The spike protein of SARS-CoV-2 has gained significant attention due to its crucial role in viral entry into host cells and its potential as both a prophylactic and a target for therapeutic interventions. Herein, we report the first successful total synthesis of the SARS-CoV-2 spike protein receptor binding domain (RBD), highlighting the key challenges and the strategies employed to overcome them. Appropriate utilization of advanced solid phase peptide synthesis and cutting-edge native chemical ligation methods have facilitated the synthesis of this moderately large protein molecule. We discuss the problems encountered during the chemical synthesis and approaches taken to optimize the yield and the purity of the synthetic protein molecule. Furthermore, we demonstrate that the chemically synthesized homogeneous spike RBD efficiently binds to the known mini-protein binder LCB1. The successful chemical synthesis of the spike RBD presented here can be utilized to gain valuable insights into SARS-CoV-2 spike RBD biology, advancing our understanding and aiding the development of intervention strategies to combat future coronavirus outbreaks. The modular synthetic approach described in this study can be effectively implemented in the synthesis of other mutated variants or enantiomer of the spike RBD for mirror-image drug discovery.
Collapse
Affiliation(s)
- Abhisek Kar
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Mrinmoy Jana
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Vishal Malik
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Arighna Sarkar
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Kalyaneswar Mandal
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| |
Collapse
|
4
|
Laps S, Satish G, Brik A. Harnessing the power of transition metals in solid-phase peptide synthesis and key steps in the (semi)synthesis of proteins. Chem Soc Rev 2021; 50:2367-2387. [PMID: 33432943 DOI: 10.1039/d0cs01156h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptides and proteins can be either synthesized using solid-phase peptide synthesis (SPPS) or by applying a combination of SPPS and ligation approaches to address fundamental questions related to human health and disease, among others. The demand for their production either by chemical or biological methods continues to raise significant interests from the synthetic community. In this context, transition metals such as Pd, Ag, Hg, Tl, Au, Zn, Ni, and Cu have also contributed to the field of peptide and protein synthesis such as in peptide conjugation, extending native chemical ligation (NCL), and for regioselective disulfide bonds formation. In this review, we highlight, summarize, and evaluate the use of various transition metals in the chemical synthesis of peptides and proteins with emphasis on recent developments in this exciting research area.
Collapse
Affiliation(s)
- Shay Laps
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel.
| | - Gandhesiri Satish
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel.
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel.
| |
Collapse
|
5
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
7
|
Isidro-Llobet A, Kenworthy MN, Mukherjee S, Kopach ME, Wegner K, Gallou F, Smith AG, Roschangar F. Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production. J Org Chem 2019; 84:4615-4628. [PMID: 30900880 DOI: 10.1021/acs.joc.8b03001] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, there has been a growing interest in therapeutic peptides within the pharmaceutical industry with more than 50 peptide drugs on the market, approximately 170 in clinical trials, and >200 in preclinical development. However, the current state of the art in peptide synthesis involves primarily legacy technologies with use of large amounts of highly hazardous reagents and solvents and little focus on green chemistry and engineering. In 2016, the ACS Green Chemistry Institute Pharmaceutical Roundtable identified development of greener processes for peptide API as a critical unmet need, and as a result, a new Roundtable team formed to address this important area. The initial focus of this new team is to highlight best practices in peptide synthesis and encourage much needed innovations. In this Perspective, we aim to summarize the current challenges of peptide synthesis and purification in terms of sustainability, highlight possible solutions, and encourage synergies between academia, the pharmaceutical industry, and contract research organizations/contract manufacturing organizations.
Collapse
Affiliation(s)
- Albert Isidro-Llobet
- Medicines Research Centre , GlaxoSmithKline , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Martin N Kenworthy
- Pharmaceutical Technology and Development , AstraZeneca , Silk Road Business Park, Charter Way , Macclesfield SK10 2NA , U.K
| | - Subha Mukherjee
- Chemical and Synthetic Development , Bristol-Myers Squibb Company , One Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Michael E Kopach
- Small Molecule Design and Development , Eli Lilly and Company , 1400 West Raymond Street , Indianapolis , Indiana , United States
| | - Katarzyna Wegner
- Active Pharmaceutical Ingredient Development , IPSEN Manufacturing Ireland, Ltd. , Blanchardstown Industrial Park , Dublin 15 , Ireland
| | - Fabrice Gallou
- Chemical & Analytical Development , Novartis , 4056 Basel , Switzerland
| | - Austin G Smith
- Drug Substance Process Development , Amgen, Inc. , 1 Amgen Center Drive , Thousand Oaks , California 91320 , United States
| | - Frank Roschangar
- Chemical Development , Boehringer Ingelheim Pharmaceuticals , Ridgefield , Connecticut 06877 , United States
| |
Collapse
|
8
|
Abstract
Heavy isotope labeling of enzymes slows protein motions without disturbing the electrostatics and can therefore be used to probe the role of dynamics in enzyme catalysis. To identify the structural elements responsible for dynamic effects, individual segments of an enzyme can be labeled and the resulting effect on the kinetics of the reaction can be measured. Such hybrid isotopomers can be constructed by expressed protein ligation, in which complementary labeled and unlabeled peptide segments are prepared by recombinant gene expression and linked by means of chemical ligation. The construction of such hybrid isotopomers is exemplified here with the paradigmatic enzyme dihydrofolate reductase (DHFR) from Escherichia coli.
Collapse
|
9
|
Tan XL, Pan M, Zheng Y, Gao S, Liang LJ, Li YM. Sortase-mediated chemical protein synthesis reveals the bidentate binding of bisphosphorylated p62 with K63 diubiquitin. Chem Sci 2017; 8:6881-6887. [PMID: 29147513 PMCID: PMC5636944 DOI: 10.1039/c7sc02937c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
Phosphorylation of S403 or S407 of the autophagic receptor protein p62 has recently been discovered to enhance the binding of p62 with ubiquitinated protein substrates to upregulate selective autophagy. To elucidate the molecular mechanism of how phosphorylation regulates the recruitment of ubiquitinated proteins, we report the first chemical synthesis of homogeneously phosphorylated p62, which enables the setting up of accurate in vitro systems for biochemical studies. Our synthesis employs the technology of sortase A-mediated protein hydrazide ligation, which successfully affords three types of phosphorylated p62 at the multi-milligram scale. Quantitative biochemical measurements show that the binding affinity of S403/S407-bisphosphorylated p62 to K63 diubiquitin is significantly higher than that of mono-phosphorylated p62. This finding suggests that phosphorylated S403 and S407 sites should bind to different epitopes on the ubiquitin chain. Furthermore, glutamate mutation is found to give a significantly impaired binding affinity, implying the necessity of using chemically synthesized phosphorylated p62 for the biochemical study of selective autophagy.
Collapse
Affiliation(s)
- Xiang-Long Tan
- Tsinghua-Peking Center for Life Sciences , Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , China.,School of Biological and Medical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China .
| | - Man Pan
- Tsinghua-Peking Center for Life Sciences , Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Yong Zheng
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China . .,High Magnetic Field Laboratory , Chinese Academy of Sciences , Hefei 230031 , China
| | - Shuai Gao
- Tsinghua-Peking Center for Life Sciences , Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Lu-Jun Liang
- Tsinghua-Peking Center for Life Sciences , Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Yi-Ming Li
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China .
| |
Collapse
|
10
|
Schmohl L, Bierlmeier J, Gerth F, Freund C, Schwarzer D. Engineering sortase A by screening a second-generation library using phage display. J Pept Sci 2017; 23:631-635. [PMID: 28185387 DOI: 10.1002/psc.2980] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 12/29/2022]
Abstract
Sortase-mediated ligation is one of the most commonly used chemo-enzymatic techniques for the site-specific modification of proteins. We have established a new library of sortase mutants for directed evolution of sortase substrate selectivity. Phage display screens of this second-generation library yielded sortase mutants that ligate substrate proteins containing an APxTG or FPxTG recognition sequence instead of the canonical LPxTG sorting motif. These findings indicate that the second-generation sortase library is well suited for sortase engineering in order to increase the versatility of sortase-mediated ligation. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lena Schmohl
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, D-72076, Tübingen, Germany
| | - Jan Bierlmeier
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, D-72076, Tübingen, Germany
| | - Fabian Gerth
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, D-14195, Berlin, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, D-14195, Berlin, Germany
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, D-72076, Tübingen, Germany
| |
Collapse
|
11
|
Bacchi M, Jullian M, Sirigu S, Fould B, Huet T, Bruyand L, Antoine M, Vuillard L, Ronga L, Chavas LMG, Nosjean O, Ferry G, Puget K, Boutin JA. Total chemical synthesis, refolding, and crystallographic structure of fully active immunophilin calstabin 2 (FKBP12.6). Protein Sci 2016; 25:2225-2242. [PMID: 27670942 DOI: 10.1002/pro.3051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 01/05/2023]
Abstract
Synthetic biology (or chemical biology) is a growing field to which the chemical synthesis of proteins, particularly enzymes, makes a fundamental contribution. However, the chemical synthesis of catalytically active proteins (enzymes) remains poorly documented because it is difficult to obtain enough material for biochemical experiments. We chose calstabin, a 107-amino-acid proline isomerase, as a model. We synthesized the enzyme using the native chemical ligation approach and obtained several tens of milligrams. The polypeptide was refolded properly, and we characterized its biophysical properties, measured its catalytic activity, and then crystallized it in order to obtain its tridimensional structure after X-ray diffraction. The refolded enzyme was compared to the recombinant, wild-type enzyme. In addition, as a first step of validating the whole process, we incorporated exotic amino acids into the N-terminus. Surprisingly, none of the changes altered the catalytic activities of the corresponding mutants. Using this body of techniques, avenues are now open to further obtain enzymes modified with exotic amino acids in a way that is only barely accessible by molecular biology, obtaining detailed information on the structure-function relationship of enzymes reachable by complete chemical synthesis.
Collapse
Affiliation(s)
- Marine Bacchi
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Magali Jullian
- Genepep, 12 Rue du Fer à Cheval, Saint-Jean-de-Védas, 34430, France
| | - Serena Sirigu
- PROXIMA-1, Division Expériences, Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin-BP48, Gif-sur-Yvette CEDEX, 91192, France
| | - Benjamin Fould
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Tiphaine Huet
- PROXIMA-1, Division Expériences, Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin-BP48, Gif-sur-Yvette CEDEX, 91192, France
| | - Lisa Bruyand
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Mathias Antoine
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Laurent Vuillard
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Luisa Ronga
- Genepep, 12 Rue du Fer à Cheval, Saint-Jean-de-Védas, 34430, France
| | - Leonard M G Chavas
- PROXIMA-1, Division Expériences, Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin-BP48, Gif-sur-Yvette CEDEX, 91192, France
| | - Olivier Nosjean
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Gilles Ferry
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Karine Puget
- Genepep, 12 Rue du Fer à Cheval, Saint-Jean-de-Védas, 34430, France
| | - Jean A Boutin
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| |
Collapse
|
12
|
Tsuda S, Mochizuki M, Nishio H, Yoshiya T, Nishiuchi Y. Development of a sufficiently reactive thioalkylester involving the side-chain thiol of cysteine applicable for kinetically controlled ligation. Biopolymers 2016; 106:503-11. [DOI: 10.1002/bip.22783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Shugo Tsuda
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| | | | - Hideki Nishio
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Toyonaka Osaka 560-0043 Japan
| | - Taku Yoshiya
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| | | |
Collapse
|
13
|
Zhuang PL, Yu LX, Tao Y, Zhou Y, Zhi QH, Lin HC. Effects of missense mutations in sortase A gene on enzyme activity in Streptococcus mutans. BMC Oral Health 2016; 16:47. [PMID: 27068451 PMCID: PMC4827206 DOI: 10.1186/s12903-016-0204-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 04/01/2016] [Indexed: 11/21/2022] Open
Abstract
Background Streptococcus mutans (S. mutans) is the major aetiological agent of dental caries, and the transpeptidase Sortase A (SrtA) plays a major role in cariogenicity. The T168G and G470A missense mutations in the srtA gene may be linked to caries susceptibility, as demonstrated in our previous studies. This study aimed to investigate the effects of these missense mutations of the srtA gene on SrtA enzyme activity in S. mutans. Methods The point mutated recombinant S.mutans T168G and G470A sortases were expressed in expression plasmid pET32a. S. mutans UA159 sortase coding gene srtA was used as the template for point mutation. Enzymatic activity was assessed by quantifying increases in the fluorescence intensity generated when a substrate Dabcyl-QALPNTGEE-Edans was cleaved by SrtA. The kinetic constants were calculated based on the curve fit for the Michaelis-Menten equation. Results SrtA△N40(UA159) and the mutant enzymes, SrtA△N40(D56E) and SrtA△N40(R157H), were expressed and purified. A kinetic analysis showed that the affinity of SrtA△N40(D56E) and SrtA△N40(R157H) remained approximately equal to the affinity of SrtA△N40(UA159), as determined by the Michaelis constant (Km). However, the catalytic rate constant (kcat) and catalytic efficiency (kcat/Km) of SrtA△N40(D56E) were reduced compared with those of SrtA△N40(R157H) and SrtA△N40(UA159), whereas the kcat and kcat/Km values of SrtA△N40(R157H) were slightly lower than those of SrtA△N40(UA159). Conclusions The findings of this study indicate that the T168G missense mutation of the srtA gene results in a significant reduction in enzymatic activity compared with S. mutans UA159, suggesting that the T168G missense mutation of the srtA gene may be related to low cariogenicity. Electronic supplementary material The online version of this article (doi:10.1186/s12903-016-0204-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P L Zhuang
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Road West, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Department of Stomatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Road West, Guangzhou, China
| | - L X Yu
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Road West, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Y Tao
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Road West, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Y Zhou
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Road West, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Q H Zhi
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Road West, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - H C Lin
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Road West, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
14
|
Cowper B, Shariff L, Chen W, Gibson SM, Di WL, Macmillan D. Expanding the scope of N → S acyl transfer in native peptide sequences. Org Biomol Chem 2016; 13:7469-76. [PMID: 26066020 DOI: 10.1039/c5ob01029b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the factors that influence N → S acyl transfer in native peptide sequences, and discovery of new reagents that facilitate it, will be key to expanding its scope and applicability. Here, through a study of short model peptides in thioester formation and cyclisation reactions, we demonstrate that a wider variety of Xaa-Cys motifs than originally envisaged are capable of undergoing efficient N → S acyl transfer. We present data for the relative rates of thioester formation and cyclisation for a representative set of amino acids, and show how this expanded scope can be applied to the production of the natural protease inhibitor Sunflower Trypsin Inhibitor-1 (SFTI-1).
Collapse
Affiliation(s)
- Ben Cowper
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Pardo A, Hogenauer TJ, Cai Z, Vellucci JA, Castillo EM, Dirk CW, Franz AH, Michael K. Efficient Photochemical Synthesis of Peptide-α-Phenylthioesters. Chembiochem 2015; 16:1884-1889. [DOI: 10.1002/cbic.201500266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Indexed: 01/16/2023]
|
16
|
Seenaiah M, Jbara M, Mali SM, Brik A. Convergent Versus Sequential Protein Synthesis: The Case of Ubiquitinated and Glycosylated H2B. Angew Chem Int Ed Engl 2015; 54:12374-8. [DOI: 10.1002/anie.201503309] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/13/2015] [Indexed: 11/11/2022]
|
17
|
Seenaiah M, Jbara M, Mali SM, Brik A. Convergent Versus Sequential Protein Synthesis: The Case of Ubiquitinated and Glycosylated H2B. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503309] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Bradshaw WJ, Davies AH, Chambers CJ, Roberts AK, Shone CC, Acharya KR. Molecular features of the sortase enzyme family. FEBS J 2015; 282:2097-114. [PMID: 25845800 DOI: 10.1111/febs.13288] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/28/2015] [Indexed: 01/31/2023]
Abstract
Bacteria possess complex and varying cell walls with many surface exposed proteins. Sortases are responsible for the covalent attachment of specific proteins to the peptidoglycan of the cell wall of Gram-positive bacteria. Sortase A of Staphylococcus aureus, which is seen as the archetypal sortase, has been shown to be essential for pathogenesis and has therefore received much attention as a potential target for novel therapeutics. Being widely present in Gram-positive bacteria, it is likely that other Gram-positive pathogens also require sortases for their pathogenesis. Sortases have also been shown to be of significant use in a range of industrial applications. We review current knowledge of the sortase family in terms of their structures, functions and mechanisms and summarize work towards their use as antibacterial targets and microbiological tools.
Collapse
Affiliation(s)
- William J Bradshaw
- Department of Biology and Biochemistry, University of Bath, UK.,Public Health England, Porton Down, Salisbury, UK
| | | | - Christopher J Chambers
- Department of Biology and Biochemistry, University of Bath, UK.,Public Health England, Porton Down, Salisbury, UK
| | | | | | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
19
|
Schmohl L, Wagner FR, Schümann M, Krause E, Schwarzer D. Semisynthesis and initial characterization of sortase A mutants containing selenocysteine and homocysteine. Bioorg Med Chem 2015; 23:2883-9. [PMID: 25900629 DOI: 10.1016/j.bmc.2015.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 12/14/2022]
Abstract
The bacterial transpeptidase sortase A is a well-established tool in protein chemistry and catalyzes the chemoselective ligation of peptides and proteins. During catalysis sortase A cleaves the conserved Leu-Pro-X-Thr-Gly sorting motif at the Thr residue under concomitant thioester formation at active site Cys184. We have used expressed protein ligation (EPL) to generate sortase mutants with Cys184 replaced by selenocysteine (Sec) and homocysteine (Hcy). Sec-sortase showed a moderate 2-3-fold reduction in catalytic activity in contrast to Hcy-sortase which is a poor catalyst with less than 1% of wild-type activity. The sensitivity of the active site nucleophiles towards an alkylation reagent correlated with the pKa values of the mutated residues. Furthermore, the pH-profile of Sec-sortase was shifted to more acidic conditions when compared to the wild-type enzyme. These observations provide information on sortase catalysis and the semisynthetic enzymes might represent useful tools for further biochemical investigations and engineering approaches of sortases A.
Collapse
Affiliation(s)
- Lena Schmohl
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, D-72076 Tuebingen, Germany
| | - Felix Roman Wagner
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, D-72076 Tuebingen, Germany
| | - Michael Schümann
- Laboratory of Mass Spectrometry, Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| | - Eberhard Krause
- Laboratory of Mass Spectrometry, Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, D-72076 Tuebingen, Germany.
| |
Collapse
|
20
|
Deng FK. Ultrafiltration, a useful method for isolation of intermediates in native chemical ligation exemplified with the total synthesis of Sortase AΔN59. J Pept Sci 2015; 21:257-64. [PMID: 25754699 DOI: 10.1002/psc.2745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/23/2014] [Accepted: 12/23/2014] [Indexed: 11/07/2022]
Abstract
In this paper, ultrafiltration was employed to facilitate the isolation of intermediates in native chemical ligation. Depending on the molecular weight cutoff of the membrane used, molecules with different sizes could be purified, separated, or concentrated by the ultrafiltration process. Total chemical synthesis of the polypeptide chain of the enzyme Sortase AΔN59 was used as an example of the application of ultrafiltration in chemical protein synthesis. Sortase A is a ligase that catalyzes transpeptidation reactions between proteins that have C-terminal LPXTG recognition sequence and Gly5- on the peptidoglycan of bacterial cell walls. Ultrafiltration technique facilitated synthesis of Sortase AΔN59 and was a promising tool in isolation of intermediates in native chemical ligation.
Collapse
Affiliation(s)
- Fang-kun Deng
- Department of Chemistry, The University of Chicago, 929 East 57th street, Chicago, IL, 60615, USA; Department of Biochemistry, School of Medicine Room1017, Jinan University, Huangpu West Road 601, Tianhe District, Guangzhou, Guangdong Province, 510000, China
| |
Collapse
|
21
|
Schmohl L, Schwarzer D. Sortase-mediated ligations for the site-specific modification of proteins. Curr Opin Chem Biol 2014; 22:122-8. [PMID: 25299574 DOI: 10.1016/j.cbpa.2014.09.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/12/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Sortase-mediated ligation (SML) is one of the most commonly used techniques for the site-specific modification of proteins. Here, a brief overview on advantages and limitations of this technology in comparison with other chemoselective protein modification techniques is provided and successful approaches that extend the application range of SML are discussed.
Collapse
Affiliation(s)
- Lena Schmohl
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, D-72076 Tuebingen, Germany
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, D-72076 Tuebingen, Germany.
| |
Collapse
|
22
|
Abstract
Bioorthogonal, chemoselective ligation methods are an essential part of the tools utilized to investigate biochemical pathways. Specifically enzymatic approaches are valuable methods in this context due to the inherent specificity of the deployed enzymes and the mild conditions of the modification reactions. One of the most common strategies is based on the transpeptidation catalyzed by sortase A derived from Staphylococcus aureus. The procedure is well established and a wide variety of applications have been published to date. Here, implementations of sortase A, which range from protein labeling using fluorescence dyes and the preparation of cyclic proteins to the modification of entire cells, are summarized. Furthermore, there is a focus on the optimization approaches established to solve the drawbacks of sortase-mediated transpeptidation.
Collapse
Affiliation(s)
- Markus Ritzefeld
- Bielefeld University, Department of Chemistry, Organic and Bioorganic Chemistry (OCIII), Universitätsstrasse 25, 33615 Bielefeld (Germany).
| |
Collapse
|
23
|
Ma J, Zeng J, Wan Q. Postligation-Desulfurization: A General Approach for Chemical Protein Synthesis. Top Curr Chem (Cham) 2014; 363:57-101. [DOI: 10.1007/128_2014_594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Chemical synthesis of proteins using N-sulfanylethylanilide peptides, based on N-S acyl transfer chemistry. Top Curr Chem (Cham) 2014; 363:33-56. [PMID: 25467538 DOI: 10.1007/128_2014_586] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Native chemical ligation (NCL), which features the use of peptide thioesters, is among the most reliable ligation protocols in chemical protein synthesis. Thioesters have conventionally been synthesized using tert-butyloxycarbonyl (Boc)-based solid-phase peptide synthesis (SPPS); however, the increasing use of 9-fluorenylmethyloxycarbonyl (Fmoc) SPPS requires an efficient preparative protocol for thioesters which is fully compatible with Fmoc chemistry. We have addressed this issue by mimicking the naturally occurring thioester-forming step seen in intein-mediated protein splicing of the intein-extein system, using an appropriate chemical device to induce N-S acyl transfer reaction, avoiding the problems associated with Fmoc strategies. We have developed N-sulfanylethylanilide (SEAlide) peptides, which can be synthesized by standard Fmoc SPPS and converted to the corresponding thioesters through treatment under acidic conditions. Extensive examination of SEAlide peptides showed that the amide-type SEAlide peptides can be directly and efficiently involved in NCL via thioester species in the presence of phosphate salts, even under neutral conditions. The presence or absence of phosphate salts provided kinetically controllable chemoselectivity in NCL for SEAlide peptides. This allowed SEAlide peptides to be used in both one-pot/N-to-C-directed sequential NCL under kinetically controlled conditions, and the convergent coupling of large peptide fragments, which facilitated the chemical synthesis of proteins over about 100 residues. The use of SEAlide peptides, enabling sequential NCL operated under kinetically controlled conditions, and the convergent coupling, were used for the total chemical synthesis of a 162-residue monoglycosylated GM2-activator protein (GM2AP) analog.
Collapse
|