1
|
Cui Q, Ding W, Luo B, Lu W, Huang P, Wen S. Novel gold-based complex GC7 suppresses cancer cell proliferation via impacting energy metabolism mediated by mitochondria. Bioorg Med Chem 2024; 112:117897. [PMID: 39216383 DOI: 10.1016/j.bmc.2024.117897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Due to their pivotal roles in regulating energy metabolism and apoptosis, mitochondria in cancer cells have been considered a vulnerable and feasible target. Many anticancer agents, e.g., metal-based compounds, are found to target and disturb mitochondria primarily, which may lead to the disturbance of energy metabolism and, more importantly, the initiation of apoptosis. In this work, a gold-based complex 7 (GC7) was synthesized and evaluated in a series of different cancer cell lines. The anticancer efficacies of GC7 on cell viability, apoptosis, and colony formation were determined. Cellular thioredoxin reductase (TrxR) activity, oxygen consumption rate (OCR), glucose uptake, and lactate production following GC7 treatment were evaluated and analyzed. The Jeko-1 and A549 xenograft models were used to assess GC7's tumor-suppressing effects. The results showed that GC7 possessed a broad-spectrum anticancer effect, with IC50 values ranging from 0.43 to 1.2 μM in multiple cancer cell lines, which was more potent than gold-based auranofin (∼2-6 folds). GC7 (0.3 and 1 μM) efficiently induced apoptosis of Jeko-1, A549, and HCT116 cells, and it suppressed the sphere formation of cancer stem cells GSC11 and GSC23 cells at 0.1 μM, and it completely eliminated colony at 0.3 μM. The preliminary mechanistic study showed that GC7 inhibited cellular TrxR activity, suppressed mitochondrial OCR, reduced mitochondrial membrane potential (MMP), decreased glucose uptake, and possibly suppressed glycolysis to reduce lactate production. GC7 was predicted to have a similar yet slightly different pharmacokinetic profile as auranofin. Finally, GC7 (20 mg/kg, oral, 5/week, or 3 mg/kg, IP, 3/week) significantly inhibited tumor growth. In conclusion, GC7 showed great potential in suppressing cancer cell proliferation, probably via inhibiting TrxR and impacting mitochondria-mediated energy metabolism.
Collapse
Affiliation(s)
- Qingbin Cui
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Wenwen Ding
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510006, China.
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510006, China.
| |
Collapse
|
2
|
Mahdavi SM, Bockfeld D, Esarev IV, Lippmann P, Frank R, Brönstrup M, Ott I, Tamm M. Gold(i) and gold(iii) carbene complexes from the marine betaine norzooanemonin: inhibition of thioredoxin reductase, antiproliferative and antimicrobial activity. RSC Med Chem 2024:d4md00358f. [PMID: 39185451 PMCID: PMC11342128 DOI: 10.1039/d4md00358f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024] Open
Abstract
The natural marine betaine norzooanemonin (1,3-dimethylimidazolim-4-carboxylate) and its methyl and ethyl esters were used as ligand precursors to prepare a systematic series (12 members) of neutral monocarbene gold(i/iii) and cationic dicarbene gold(i/iii) complexes. The complexes were evaluated as inhibitors of bacterial thioredoxin reductase and for their antiproliferative and antimicrobial activities. While gold complexes with the parent norzooanemonin scaffold resulted in overall poor performance, the more lipophilic esters proved to be highly bioactive agents, related to their higher cellular uptake. The monocarbene gold(i/iii) complexes showed significant potency as inhibitors of bacterial thioredoxin reductase. In most assays, the efficacy of both gold(i) and gold(iii) analogues was found to be comparable. The cytotoxicity of dicarbene gold(i/iii) complexes against cancer cells was strong, in some cases exceeding that of the standard reference auranofin.
Collapse
Affiliation(s)
- Seyedeh Mahbobeh Mahdavi
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig Hagenring30 38106 Braunschweig Germany
| | - Dirk Bockfeld
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig Hagenring30 38106 Braunschweig Germany
| | - Igor V Esarev
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstraße 55 38106 Braunschweig Germany
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstraße 55 38106 Braunschweig Germany
| | - René Frank
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig Hagenring30 38106 Braunschweig Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research GmbH Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstraße 55 38106 Braunschweig Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig Hagenring30 38106 Braunschweig Germany
| |
Collapse
|
3
|
Cui Z, Huang B, Zheng J, Tian J, Zhang W. A TME-enlightened protein-binding photodynamic nanoinhibitor for highly effective oncology treatment. Proc Natl Acad Sci U S A 2024; 121:e2321545121. [PMID: 38713621 PMCID: PMC11098098 DOI: 10.1073/pnas.2321545121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 05/09/2024] Open
Abstract
The efficiency of photodynamic therapy (PDT) is greatly dependent on intrinsic features of photosensitizers (PSs), but most PSs suffer from narrow diffusion distances and short life span of singlet oxygen (1O2). Here, to conquer this issue, we propose a strategy for in situ formation of complexes between PSs and proteins to deactivate proteins, leading to highly effective PDT. The tetrafluorophenyl bacteriochlorin (FBC), a strong near-infrared absorbing photosensitizer, can tightly bind to intracellular proteins to form stable complexes, which breaks through the space-time constraints of PSs and proteins. The generated singlet oxygen directly causes the protein dysfunction, leading to high efficiency of PSs. To enable efficient delivery of PSs, a charge-conversional and redox-responsive block copolymer POEGMA-b-(PAEMA/DMMA-co-BMA) (PB) was designed to construct a protein-binding photodynamic nanoinhibitor (FBC@PB), which not only prolongs blood circulation and enhances cellular uptake but also releases FBC on demand in tumor microenvironment (TME). Meanwhile, PDT-induced destruction of cancer cells could produce tumor-associated antigens which were capable to trigger robust antitumor immune responses, facilitating the eradication of residual cancer cells. A series of experiments in vitro and in vivo demonstrated that this multifunctional nanoinhibitor provides a promising strategy to extend photodynamic immunotherapy.
Collapse
Affiliation(s)
- Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Jiahao Zheng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| |
Collapse
|
4
|
Ma X, Zhao Y, Caligiuri I, Rizzolio F, Bracho Pozsoni N, Van Hecke K, Scattolin T, Nolan SP. Dinuclear NHC-gold(I)-thiolato and -alkynyl complexes: synthesis, anticancer activity, and catalytic activity in lactonization reactions. Dalton Trans 2024; 53:7939-7945. [PMID: 38646683 DOI: 10.1039/d4dt00890a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
A series of novel dinuclear NHC-gold-thiolato and -alkynyl complexes bearing aromatic linkers were successfully synthesized by an efficient and simple synthetic route. The catalytic activity of these complexes was tested in a lactonization reaction. The reaction proceeds in high efficiency, in short reaction time and under mild conditions, and is complementary to existing methods. Furthermore, the digold(I)-thiolato derivatives exhibit remarkable cytotoxicity towards several cancer cell lines.
Collapse
Affiliation(s)
- Xinyuan Ma
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S3, 9000 Ghent, Belgium.
- Chemical Science and Technology Research Institute, Sinochem Group, 20 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Yuan Zhao
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S3, 9000 Ghent, Belgium.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Nestor Bracho Pozsoni
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S3, 9000 Ghent, Belgium.
| | - Kristof Van Hecke
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S3, 9000 Ghent, Belgium.
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Steven P Nolan
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S3, 9000 Ghent, Belgium.
| |
Collapse
|
5
|
Khan HA, Isab AA, Alhomida AS, Gatasheh MK, Alhoshani AR, Aldhafeeri BA, Prasad NR. Synthesis of a Novel Gold(I) Complex and Evaluation of Its Anticancer Properties in Breast Cancer Cells. Anticancer Agents Med Chem 2024; 24:379-388. [PMID: 38305390 PMCID: PMC11092555 DOI: 10.2174/0118715206281182231127113608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Platinum complexes are commonly used for cancer chemotherapy; however, they are not only highly-priced but also have various side effects. It is, therefore, important to design affordable anticancer drugs with minimal side effects. METHODS We synthesized a new gold(I) complex, PF6{(BDPEA)(TPPMS) digold(I)} (abbreviated as PBTDG) and tested its cytotoxicity in MCF-7 breast cancer cells. We also evaluated the effects of PBTDG on mitochondrial membrane potential, generation of reactive oxygen species (ROS) and apoptosis in breast cancer cells. RESULTS The IC50 values for PBTDG and sorafenib were found to be 1.48 μM and 4.45 μM, respectively. Exposure to PBTDG caused significant and concentration-dependent depletion of ATP and disruption of mitochondrial membrane potential. PBTDG induced 2.6, 3.6, and 5.7-fold apoptosis for 1 μM, 3 μM, and 10 μM concentrations, respectively. The induction of apoptosis by the same concentrations of sorafenib was 1.2, 1.3, and 1.6-fold, respectively. The low concentration of PBTDG (1 μM) induced the generation of ROS by 99.83%, which was significantly higher than the ROS generation caused by the same concentration of sorafenib (73.76%). The ROS induction caused by higher concentrations (5 μM) of PBTDG and sorafenib were 104.95% and 122.11%, respectively. CONCLUSION The lower concentration of PBTDG produced similar cytotoxicity and apoptotic effects that were caused by a comparatively higher concentration of known anticancer drug (sorafenib). The anticancer effects of PBTDG are attributed to its tendency to disrupt mitochondrial membrane potential, induction of apoptosis and generation of ROS. Further studies are warranted to test the anticancer effects of PBTDG in animal models of cancer.
Collapse
Affiliation(s)
- Haseeb Ahmad Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Anvarhusein Abdulkadir Isab
- Department of Chemistry, College of Science, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Abdullah Saleh Alhomida
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mansour Khalil Gatasheh
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ali Rashid Alhoshani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Bashayr Ahmed Aldhafeeri
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Life Sciences, Annamalai University, Annamalai Nagar, India
| |
Collapse
|
6
|
Banti CN, Piperoudi AA, Raptopoulou CP, Psycharis V, Athanassopoulos CM, Hadjikakou SK. Mitochondriotropic agents conjugated with NSAIDs through metal ions against breast cancer cells. J Inorg Biochem 2024; 250:112420. [PMID: 37918185 DOI: 10.1016/j.jinorgbio.2023.112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023]
Abstract
Two copper(I) polymorphs of formula [Cu(SALH)(TPP)3] (1a and 1b) were prepared by the conjugation of the Non-Steroidal Anti-Inflammatory Drug (NSAID) salicylic acid (SALH2) with the mitochondriotropic agent triphenylphosphine (TPP) via metal ion. For comparison, the isomorph [Ag(SALH)(TPP)3] (2) was prepared. The conjugates 1a, 1b and 2 were characterized by melting point (m.p.), Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, Ultraviolet-Visible (UV-Vis) spectroscopy and nuclear magnetic resonance (1H NMR). The crystal structures of 1a, 1b and 2 were confirmed by X-ray diffraction crystallography (XRD). The ex vivo binding affinity of 1-2 towards CT (calf thymus)-DNA was studied by UV, fluorescence, viscosity and DNA Thermal Denaturation studies. Their inhibitory activity against lipoxygenase (LOX) (an enzyme which is mainly located in the mitochondrion) was determined. The in vitro activity of 1-2 was evaluated against human breast cancer cell lines MCF-7 (hormone depended (HD)) and MDA-MB 281 (hormone independent (HI)) cells. Compounds 1-2 inhibit stronger than cisplatin the cancerous cells. The molecular mechanism of action of 1-2 was suspected by the MCF-7 cells morphology and confirmed by DNA fragmentation, Acridine Orange/Ethidium Bromide (AO/EB) Staining and mitochondrial membrane permeabilization tests.
Collapse
Affiliation(s)
- Christina N Banti
- Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.
| | - Angeliki A Piperoudi
- Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Catherine P Raptopoulou
- NCSR "Demokritos", Institute of Nanoscience and Nanotechnology, A. Paraskevi Attikis, Greece
| | - Vassilis Psycharis
- NCSR "Demokritos", Institute of Nanoscience and Nanotechnology, A. Paraskevi Attikis, Greece
| | | | - Sotiris K Hadjikakou
- Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; University Research Centre of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece.
| |
Collapse
|
7
|
Yang Z, Bian M, Lv L, Chang X, Wen Z, Li F, Lu Y, Liu W. Tumor-Targeting NHC-Au(I) Complex Induces Immunogenic Cell Death in Hepatocellular Carcinoma. J Med Chem 2023; 66:3934-3952. [PMID: 36827091 DOI: 10.1021/acs.jmedchem.2c01798] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Immunogenic cell death (ICD) is a promising direction of cancer immunotherapy in hepatocellular carcinoma (HCC). A series of novel NHC-Au(I) complexes derived from 4,5-diarylimidazole, containing glycyrrhetinic acid (GA) as an efficient targeting ligand for HCC, were herein designed and synthesized. Among these, complex 4C exhibited excellent effectiveness for tumor targeting and antitumor activity, which induced the occurrence of ICD in HCC cells. Additionally, 4C can effectively inhibit TrxR enzyme activity, increase reactive oxygen species (ROS) expression, lead to redox homeostasis disorder, mediate mitochondrial dysfunction and endoplasmic reticulum stress (ERS), and cause the characteristic discharge of damage-associated molecular patterns (DAMPs) in HCC cells. More importantly, 4C showed a great ICD-inducing effect in a vaccination mouse model and activated antitumor immunity in a tumor-bearing C57BL/6 mouse model, which is consistent with the in vitro results. In conclusion, we found the potential of Au(I) complex with HCC-targeted capability for effective tumor immunotherapy.
Collapse
Affiliation(s)
- Zhibin Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali 671000, P. R. China
| | - Mianli Bian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Fuwei Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
8
|
Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 02/28/2023]
Abstract
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
9
|
Johnson A, Olelewe C, Kim JH, Northcote-Smith J, Mertens RT, Passeri G, Singh K, Awuah SG, Suntharalingam K. The anti-breast cancer stem cell properties of gold(i)-non-steroidal anti-inflammatory drug complexes. Chem Sci 2023; 14:557-565. [PMID: 36741517 PMCID: PMC9847679 DOI: 10.1039/d2sc04707a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
The anti-breast cancer stem cell (CSC) properties of a series of gold(i) complexes comprising various non-steroidal anti-inflammatory drugs (NSAIDs) and triphenylphosphine 1-8 are reported. The most effective gold(i)-NSAID complex 1, containing indomethacin, exhibits greater potency for breast CSCs than bulk breast cancer cells (up to 80-fold). Furthermore, 1 reduces mammosphere viability to a better extent than a panel of clinically used breast cancer drugs and salinomycin, an established anti-breast CSC agent. Mechanistic studies suggest 1-induced breast CSC death results from breast CSC entry, cytoplasm localisation, an increase in intracellular reactive oxygen species levels, cyclooxygenase-2 downregulation and inhibition, and apoptosis. Remarkably, 1 also significantly inhibits tumour growth in a murine metastatic triple-negative breast cancer model. To the best of our knowledge, 1 is the first gold complex of any geometry or oxidation state to demonstrate anti-breast CSC properties.
Collapse
Affiliation(s)
- Alice Johnson
- School of Chemistry, University of LeicesterLeicesterUK,Biomolecular Sciences Research Centre, Sheffield Hallam UniversitySheffieldUK
| | - Chibuzor Olelewe
- Department of Chemistry, University of KentuckyLexingtonKentuckyUSA
| | - Jong Hyun Kim
- Department of Chemistry, University of KentuckyLexingtonKentuckyUSA
| | | | - R. Tyler Mertens
- Department of Chemistry, University of KentuckyLexingtonKentuckyUSA
| | | | - Kuldip Singh
- School of Chemistry, University of LeicesterLeicesterUK
| | - Samuel G. Awuah
- Department of Chemistry, University of KentuckyLexingtonKentuckyUSA,Department of Pharmaceutical Sciences, University of KentuckyLexingtonKentuckyUSA
| | | |
Collapse
|
10
|
Wolfram A, Fuentes-Soriano P, Herold-Mende C, Romero-Nieto C. Boron- and phosphorus-containing molecular/nano platforms: exploiting pathological redox imbalance to fight cancer. NANOSCALE 2022; 14:17500-17513. [PMID: 36326151 DOI: 10.1039/d2nr03126d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer is currently the second leading cause of death globally. Despite multidisciplinary efforts, therapies to fight various types of cancer still remain inefficient. Reducing high recurrence rates and mortality is thus a major challenge to tackle. In this context, redox imbalance is an undervalued characteristic of cancer. However, it may be targeted by boron- and phosphorus-containing materials to selectively or systemically fight cancer. In particular, boron and phosphorus derivatives are attractive building blocks for rational drug discovery due to their unique and wide regioselective chemistry, high degree of tuneability and chemical stability. Thus, they can be meticulously employed to access tunable molecular platforms to selectively exploit the redox imbalance of cancer cells towards necrosis/apoptosis. This field of research holds a remarkable potential; nevertheless, it is still in its infancy. In this mini-review, we underline recent advances in the development of boron- or phosphorus-derivatives as molecular/nano platforms for rational anticancer drug design. Our goal is to provide comprehensive information on different methodologies that bear an outstanding potential to further develop this very promising field of research.
Collapse
Affiliation(s)
- Anna Wolfram
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Pablo Fuentes-Soriano
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Carlos Romero-Nieto
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Mármol I, Quero J, Azcárate P, Atrián-Blasco E, Ramos C, Santos J, Gimeno MC, Rodríguez-Yoldi MJ, Cerrada E. Biological Activity of NHC-Gold-Alkynyl Complexes Derived from 3-Hydroxyflavones. Pharmaceutics 2022; 14:pharmaceutics14102064. [PMID: 36297498 PMCID: PMC9612383 DOI: 10.3390/pharmaceutics14102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
In this paper we describe the synthesis of new N-heterocyclic carbene (NHC) gold(I) derivatives with flavone-derived ligands with a propargyl ether group. The compounds were screened for their antimicrobial and anticancer activities, showing greater activity against bacteria than against colon cancer cells (Caco-2). Complexes [Au(L2b)(IMe)] (1b) and [Au(L2b)(IPr)] (2b) were found to be active against both Gram-positive and Gram-negative strains. The mechanism of action of 1b was evaluated by measurement of thioredoxin reductase (TrxR) and dihydrofolate reductase (DHFR) activity, besides scanning electron microscopy (SEM). Inhibition of the enzyme thioredoxin reductase is not observed in either Escherichia Coli or Caco-2 cells; however, DHFR activity is compromised after incubation of E. coli cells with complex 1b. Moreover, loss of structural integrity and change in bacterial shape is observed in the images obtained from scanning electron microscopy (SEM) after treatment E. coli cells with complex 1b.
Collapse
Affiliation(s)
- Inés Mármol
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Universidad de Zaragoza, CIBERobn, IIS Aragón, IA2, 50013 Zaragoza, Spain
| | - Javier Quero
- Departamento de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Universidad de Zaragoza, CIBERobn, IIS Aragón, IA2, 50013 Zaragoza, Spain
| | - Paula Azcárate
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Elena Atrián-Blasco
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Carla Ramos
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Avenida do Atlântico No. 644, 4900-348 Viana do Castelo, Portugal
| | - Joana Santos
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Avenida do Atlântico No. 644, 4900-348 Viana do Castelo, Portugal
| | - María Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - María Jesús Rodríguez-Yoldi
- Departamento de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Universidad de Zaragoza, CIBERobn, IIS Aragón, IA2, 50013 Zaragoza, Spain
- Correspondence: (M.J.R.-Y.); (E.C.)
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Correspondence: (M.J.R.-Y.); (E.C.)
| |
Collapse
|
12
|
Quintana M, Rodriguez-Rius A, Vellé A, Vives S, Sanz Miguel PJ, Triola G. Dinuclear silver and gold bisNHC complexes as drug candidates for cancer therapy. Bioorg Med Chem 2022; 67:116814. [PMID: 35598528 DOI: 10.1016/j.bmc.2022.116814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/02/2022]
Abstract
We report four dinuclear silver(I) and gold(I) complexes containing two different bidentate N-heterocyclic carbene ligands (bisNHC). One of these complexes 4, shows strong and selective anticancer activity against the human ovarian cancer cell line A2780. Mechanistically, 4 enhances the oxidative stress by stimulating reactive oxygen species production and inhibiting the scavenging activity of thioredoxin reductase. Our findings provide evidence that tuning ligand and electronic properties of metal-NHC complexes can modulate their reactivity and selectivity and it may result in potential novel anticancer drugs.
Collapse
Affiliation(s)
- Mireia Quintana
- Departamento de Química Biológica, Instituto de Química Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Alba Rodriguez-Rius
- Departamento de Química Biológica, Instituto de Química Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Alba Vellé
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Sonia Vives
- Departamento de Química Biológica, Instituto de Química Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Pablo J Sanz Miguel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain.
| | - Gemma Triola
- Departamento de Química Biológica, Instituto de Química Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
13
|
|
14
|
Lu Y, Ma X, Chang X, Liang Z, Lv L, Shan M, Lu Q, Wen Z, Gust R, Liu W. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem Soc Rev 2022; 51:5518-5556. [PMID: 35699475 DOI: 10.1039/d1cs00933h] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metal complexes have demonstrated significant antitumor activities and platinum complexes are well established in the clinical application of cancer chemotherapy. However, the platinum-based treatment of different types of cancers is massively hampered by severe side effects and resistance development. Consequently, the development of novel metal-based drugs with different mechanism of action and pharmaceutical profile attracts modern medicinal chemists to design and synthesize novel metal-based agents. Among non-platinum anticancer drugs, gold complexes have gained considerable attention due to their significant antiproliferative potency and efficacy. In most situations, the gold complexes exhibit anticancer activities by targeting thioredoxin reductase (TrxR) or other thiol-rich proteins and enzymes and trigger cell death via reactive oxygen species (ROS). Interestingly, gold complexes were recently reported to elicit biochemical hallmarks of immunogenic cell death (ICD) as an ICD inducer. In this review, the recent progress of gold(I) and gold(III) complexes is comprehensively summarized, and their activities and mechanism of action are documented.
Collapse
Affiliation(s)
- Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiuyue Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ronald Gust
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innsbruck, Austria.
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
15
|
Abstract
Formazans have attracted a lot of attention in coordination chemistry since the early 1940s because of their unique properties engendered by the nitrogen-rich conjugated backbone. Although many studies have been done using formazanates to chelate transition metals, research using formazanates as building blocks for polynuclear compounds and supramolecular chemistry remains rare. In this paper, we describe a synthetic strategy that uses a pyridyl-substituted bis(formazanato)nickel complex as a metalloligand to further assemble with two [Ir(C^N)2]+ centers (C^N is the cyclometalating ligand). The trimetallic complexes represent a new binding mode for flexidentate pyridyl-substituted formazanates and a new structural class of polynuclear formazanate complexes. This work expands the chemistry of polynuclear formazanate complexes, for the first time pairing 3d and 5d metals in the same assembly. The redox chemistry of these trimetallic complexes, evaluated via cyclic voltammetry, is described. The compounds described in this work are luminescent, and studies of bis-cyclometalated iridium model complexes lacking the formazanate bridge confirm that the phosphorescence arises from the iridium center.
Collapse
Affiliation(s)
- Chenggang Jiang
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Room 112, Houston, Texas 77204-5003, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
16
|
Wang J, Sun X, Xie Y, Long Y, Chen H, He X, Zou T, Mao ZW, Xia W. Identification of an Au(I) N-Heterocyclic Carbene Compound as a Bactericidal Agent Against Pseudomonas aeruginosa. Front Chem 2022; 10:895159. [PMID: 35572114 PMCID: PMC9096233 DOI: 10.3389/fchem.2022.895159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) causes infections that are difficult to treat, which is due to the bacterial resistance to antibiotics. We herein identify a gold(I) N-heterocyclic carbene compound as a highly potent antibacterial agent towards P. aeruginosa. The compound significantly attenuates P. aeruginosa virulence and leads to low tendency to develop bacterial resistance. The antibacterial mechanism studies show that the compound abrogates bacterial membrane integrity, exhibiting a high bactericidal activity toward P. aeruginosa. The relatively low cytotoxic compound has excellent therapeutic effects on both the eukaryotic cell co-culture and murine wound infection experiments, suggesting its potential application as a bactericidal agent to combat P. aeruginosa infection.
Collapse
Affiliation(s)
- Jinhui Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Xiaoshuai Sun
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yanxuan Xie
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yan Long
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huowen Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaojun He
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Taotao Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zong-Wan Mao
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Wei Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Jiang J, Cao B, Chen Y, Luo H, Xue J, Xiong X, Zou T. Alkylgold(III) Complexes Undergo Unprecedented Photo-Induced β-Hydride Elimination and Reduction for Targeted Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202201103. [PMID: 35165986 DOI: 10.1002/anie.202201103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/07/2022]
Abstract
Spatiotemporally controllable activation of prodrugs within tumors is highly desirable for cancer therapy to minimize toxic side effects. Herein we report that stable alkylgold(III) complexes can undergo unprecedented photo-induced β-hydride elimination, releasing alkyl ligands and forming gold(III)-hydride intermediates that could be quickly converted into bioactive [AuIII -S] adducts; meanwhile, the remaining alkylgold(III) complexes can photo-catalytically reduce [AuIII -S] into more bioactive AuI species. Such photo-reactivities make it possible to functionalize gold complexes on the auxiliary alkyl ligands without attenuating the metal-biomacromolecule interactions. As a result, the gold(III) complexes containing glucose-functionalized alkyl ligands displayed efficient and tumor-selective uptake; notably, after one- or two-photon activation, the complexes exhibited high thioredoxin reductase (TrxR) inhibition, potent cytotoxicity, and strong antiangiogenesis and antitumor activities in vivo.
Collapse
Affiliation(s)
- Jia Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Yuting Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jiaying Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
18
|
Jiang J, Cao B, Chen Y, Luo H, Xue J, Xiong X, Zou T. Alkylgold(III) Complexes Undergo Unprecedented Photo‐Induced β‐Hydride Elimination and Reduction for Targeted Cancer Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology and General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Yuting Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Jiaying Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| |
Collapse
|
19
|
Galassi R, Luciani L, Wang J, Vincenzetti S, Cui L, Amici A, Pucciarelli S, Marchini C. Breast Cancer Treatment: The Case of Gold(I)-Based Compounds as a Promising Class of Bioactive Molecules. Biomolecules 2022; 12:biom12010080. [PMID: 35053228 PMCID: PMC8774004 DOI: 10.3390/biom12010080] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Breast cancers (BCs) may present dramatic diagnoses, both for ineffective therapies and for the limited outcomes in terms of lifespan. For these types of tumors, the search for new drugs is a primary necessity. It is widely recognized that gold compounds are highly active and extremely potent as anticancer agents against many cancer cell lines. The presence of the metal plays an essential role in the activation of the cytotoxicity of these coordination compounds, whose activity, if restricted to the ligands alone, would be non-existent. On the other hand, gold exhibits a complex biochemistry, substantially variable depending on the chemical environments around the central metal. In this review, the scientific findings of the last 6–7 years on two classes of gold(I) compounds, containing phosphane or carbene ligands, are reviewed. In addition to this class of Au(I) compounds, the recent developments in the application of Auranofin in regards to BCs are reported. Auranofin is a triethylphosphine-thiosugar compound that, being a drug approved by the FDA—therefore extensively studied—is an interesting lead gold compound and a good comparison to understand the activities of structurally related Au(I) compounds.
Collapse
Affiliation(s)
- Rossana Galassi
- Chemistry Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy;
- Correspondence: (R.G.); (C.M.)
| | - Lorenzo Luciani
- Chemistry Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy;
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Lishan Cui
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
- Correspondence: (R.G.); (C.M.)
| |
Collapse
|
20
|
Annunziata A, Ferraro G, Cucciolito ME, Imbimbo P, Tuzi A, Monti DM, Merlino A, Ruffo F. Halo complexes of gold( i) containing glycoconjugate carbene ligands: synthesis, characterization, cytotoxicity and interaction with proteins and DNA model systems. Dalton Trans 2022; 51:10475-10485. [DOI: 10.1039/d2dt00423b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New neutral Au(i) glycoconjugate carbene complexes show stability in aqueous solutions and interact with both DNA and protein model systems. Cytotoxicity studies demonstrate that the activity depends on the halide ancillary ligand.
Collapse
Affiliation(s)
- Alfonso Annunziata
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| | - Giarita Ferraro
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Maria Elena Cucciolito
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| | - Paola Imbimbo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Angela Tuzi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Daria Maria Monti
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Antonello Merlino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Francesco Ruffo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| |
Collapse
|
21
|
Tao X, Zhang L, Du L, Liao R, Cai H, Lu K, Zhao Z, Xie Y, Wang PH, Pan JA, Zhang Y, Li G, Dai J, Mao ZW, Xia W. Allosteric inhibition of SARS-CoV-2 3CL protease by colloidal bismuth subcitrate. Chem Sci 2021; 12:14098-14102. [PMID: 34760193 PMCID: PMC8565384 DOI: 10.1039/d1sc03526f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
The SARS-CoV-2 3-chymotrypsin-like protease (3CLpro or Mpro) is a key cysteine protease for viral replication and transcription, making it an attractive target for antiviral therapies to combat the COVID-19 disease. Here, we demonstrate that bismuth drug colloidal bismuth subcitrate (CBS) is a potent inhibitor for 3CLpro in vitro and in cellulo. Rather than targeting the cysteine residue at the catalytic site, CBS binds to an allosteric site and results in dissociation of the 3CLpro dimer and proteolytic dysfunction. Our work provides direct evidence that CBS is an allosteric inhibitor of SARS-CoV-2 3CLpro. Colloidal bismuth subcitrate (CBS) is an allosteric inhibitor of 3-chymotrypsin-like protease (3CLpro) in SARS-CoV-2. CBS binding causes dimeric 3CLpro dissociation and proteolytic dysfunction, leading to the suppression of SARS-CoV-2 replication.![]()
Collapse
Affiliation(s)
- Xuan Tao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Lu Zhang
- Guangzhou Customs District Technology Center No. 66 Huacheng Avenue, Zhujiang New Town, Tianhe District Guangzhou 510700 China
| | - Liubing Du
- The Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University Guangming Science City Shenzhen 518107 China
| | - Ruyan Liao
- Guangzhou Customs District Technology Center No. 66 Huacheng Avenue, Zhujiang New Town, Tianhe District Guangzhou 510700 China
| | - Huiling Cai
- Guangzhou Customs District Technology Center No. 66 Huacheng Avenue, Zhujiang New Town, Tianhe District Guangzhou 510700 China
| | - Kai Lu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Zhennan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Yanxuan Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Pei-Hui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University Jinan 250012 China
| | - Ji-An Pan
- The Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University Guangming Science City Shenzhen 518107 China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Jun Dai
- Guangzhou Customs District Technology Center No. 66 Huacheng Avenue, Zhujiang New Town, Tianhe District Guangzhou 510700 China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
22
|
van der Westhuizen D, Bezuidenhout DI, Munro OQ. Cancer molecular biology and strategies for the design of cytotoxic gold(I) and gold(III) complexes: a tutorial review. Dalton Trans 2021; 50:17413-17437. [PMID: 34693422 DOI: 10.1039/d1dt02783b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This tutorial review highlights key principles underpinning the design of selected metallodrugs to target specific biological macromolecules (DNA and proteins). The review commences with a descriptive overview of the eukaryotic cell cycle and the molecular biology of cancer, particularly apoptosis, which is provided as a necessary foundation for the discovery, design, and targeting of metal-based anticancer agents. Drugs which target DNA have been highlighted and clinically approved metallodrugs discussed. A brief history of the development of mainly gold-based metallodrugs is presented prior to addressing ligand systems for stabilizing and adding functionality to bio-active gold(I) and gold(III) complexes, particularly in the burgeoning field of anticancer metallodrugs. Concepts such as multi-modal and selective cytotoxic agents are covered where necessary for selected compounds. The emerging role of carbenes as the ligand system of choice to achieve these goals for gold-based metallodrug candidates is highlighted prior to closing the review with comments on some future directions that this research field might follow. The latter section ultimately emphasizes the importance of understanding the fate of metal complexes in cells to garner key mechanistic insights.
Collapse
Affiliation(s)
- Danielle van der Westhuizen
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Daniela I Bezuidenhout
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P. O. Box 3000, 90014 Oulu, Finland.
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
23
|
Trevisan G, Vitali V, Tubaro C, Graiff C, Marchenko A, Koidan G, Hurieva AN, Kostyuk A, Mauceri M, Rizzolio F, Accorsi G, Biffis A. Dinuclear gold(I) complexes with N-phosphanyl, N-heterocyclic carbene ligands: synthetic strategies, luminescence properties and anticancer activity. Dalton Trans 2021; 50:13554-13560. [PMID: 34505859 DOI: 10.1039/d1dt02444b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A small library of dinuclear gold(I) complexes with the title ligands has been prepared, encompassing neutral, mono- and dicationic complexes. The luminescence properties of the complexes in the solid state have been evaluated, and it turns out that neutral and monocationic complexes not presenting a rigid metallamacrocyclic structure can exhibit rather strong emissions that extend towards the red region of the visible spectrum. The in vitro anticancer activity of the complexes has been also preliminarly evaluated; cytotoxicity seems to correlate with complex lipophilicity, whereas selectivity towards cancer cells can be apparently enhanced upon a judicious choice of the ligands.
Collapse
Affiliation(s)
- Gianmarco Trevisan
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy. .,CIRCC-Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Valentina Vitali
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy. .,CIRCC-Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Cristina Tubaro
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy. .,CIRCC-Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Claudia Graiff
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Anatoliy Marchenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, Kyiv-94, 02660, Ukraine
| | - Georgyi Koidan
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, Kyiv-94, 02660, Ukraine
| | - Anastasiia N Hurieva
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, Kyiv-94, 02660, Ukraine
| | - Aleksandr Kostyuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, Kyiv-94, 02660, Ukraine
| | - Matteo Mauceri
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.,Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano 33081, Italy
| | - Gianluca Accorsi
- CNR NANOTEC, Institute of Nanotechnology, c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Andrea Biffis
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy. .,CIRCC-Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
24
|
Faizullin BA, Strelnik ID, Dayanova IR, Gerasimova TP, Kholin KV, Nizameev IR, Voloshina AD, Gubaidullin AT, Fedosimova SV, Mikhailov MA, Sokolov MN, Sibgatullina GV, Samigullin DV, Petrov KA, Karasik AA, Mustafina AR. Structure impact on photodynamic therapy and cellular contrasting functions of colloids constructed from dimeric Au(I) complex and hexamolybdenum clusters. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112355. [PMID: 34474903 DOI: 10.1016/j.msec.2021.112355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 01/11/2023]
Abstract
Electrostatically driven self-assembly of [Au2L2]2+ (L is cyclic PNNP ligand) with [{Mo6I8}(L')6]2- (L' = I-, CH3COO-) in aqueous solutions is introduced as facile route for combination of therapeutic and cellular contrasting functions within heterometallic colloids (Mo6-Au2). The nature of L' affects the size and aggregation behavior of crystalline Mo6-Au2 aggregates, which in turn affect the luminescence of the cluster units incorporated into Mo6-Au2 colloids. The spin trap facilitated electron spin resonance spectroscopy technique indicates that the level of ROS generated by Mo6-Au2 colloids is also affected by their size. Both (L' = I-, CH3COO-) Mo6-Au2 colloids undergo cell internalization, which is enhanced by their assembly with poly-DL-lysine (PL) for L' = CH3COO-, but remains unchanged for L' = I-. The colloids PL-Mo6-Au2 (L' = CH3COO-) are visualized as huge crystalline aggregates both outside and inside the cell cytoplasm by confocal microscopy imaging of the incubated cells, while the smaller sized (30-50 nm) PL-Mo6-Au2 (L' = I-) efficiently stain the cell nuclei. Quantitative colocalization analysis of PL-Mo6-Au2 (L' = CH3COO-) in lysosomal compartments points to the fast endo-lysosomal escape of the colloids followed by their intracellular aggregation. The cytotoxicity of PL-Mo6-Au2 differs from that of Mo6 and Au2 blocks, predominantly acting through apoptotic pathway. The photodynamic therapeutic effect of the PL-Mo6-Au2 colloids on the cancer cells correlates with their intracellular trafficking and aggregation.
Collapse
Affiliation(s)
- Bulat A Faizullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation; Kazan (Volga region) Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russian Federation.
| | - Igor D Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Irina R Dayanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Tatyana P Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Kirill V Kholin
- Kazan National Research Technical University named after A.N. Tupolev - KAI, 10 K. Marx str., 420111 Kazan, Russian Federation
| | - Irek R Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Aidar T Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Svetlana V Fedosimova
- Kazan (Volga region) Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russian Federation
| | - Maxim A Mikhailov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation
| | - Guzel V Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski str., 420111 Kazan, Russian Federation
| | - Dmitry V Samigullin
- Kazan National Research Technical University named after A.N. Tupolev - KAI, 10 K. Marx str., 420111 Kazan, Russian Federation; Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski str., 420111 Kazan, Russian Federation
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Andrey A Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Asiya R Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| |
Collapse
|
25
|
|
26
|
Guarra F, Pratesi A, Gabbiani C, Biver T. A focus on the biological targets for coinage metal-NHCs as potential anticancer complexes. J Inorg Biochem 2021; 217:111355. [PMID: 33596529 DOI: 10.1016/j.jinorgbio.2021.111355] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
Metal complexes of N-heterocyclic carbene (NHC) ligands are the object of increasing attention for therapeutic purposes. Among the different metal centres, interest on Au-based compounds started with the application as anti-arthritis drugs. On the other hand, Ag(I) antimicrobial properties have been known for a long time. For Au(I)/Au(III)-NHC and Ag(I)-NHC anti-tumour and anti-proliferative properties have been quite recently demonstrated. In addition to these and as for Group 11, copper is a much less investigated metal centre, but a few papers underline its pharmacological potential. This review wants to focus on the different biological targets for these metal-based compounds. It is divided into chapters which are respectively devoted on: i) mitochondria and thiol oxidoreductase systems; ii) other relevant enzymes; iii) nucleic acids. Examples of representative coinage NHCs for each of the targets are provided together with significant references on recent advances on the topic. Moreover, a final comment summarises the aspects enlightened by each chapter and provides some hints to better understand the metal-NHCs mechanistic behaviour based on structure-activity relationships.
Collapse
Affiliation(s)
- Federica Guarra
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| |
Collapse
|
27
|
Sánchez Delgado GY, Arvellos JFA, Paschoal DFS, Dos Santos HF. Role of the Enzymatic Environment in the Reactivity of the Au III-C^N^C Anticancer Complexes. Inorg Chem 2021; 60:3181-3195. [PMID: 33600154 DOI: 10.1021/acs.inorgchem.0c03521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The action mechanism of anticancer gold(III) complexes is a multi-step process and depends on their redox stability. First, the gold(III) complex undergoes a ligand exchange reaction in the presence of cellular thiols, such as those available in the active site of the enzyme TrxR, and then, the AuIII → AuI reduction occurs. Most experimental and theoretical studies describe these processes under chemical conditions without considering the enzyme structure effect. In the present study, molecular models are proposed for the [AuIII(C^N^C)(SHCys-R)]+ adduct, with the [AuIII(C^N^C)]+ moiety bonded to the Cys498 residue in the C-terminal arm of the TrxR. This one represents the product of the first ligand exchange reaction. Overall, our results suggest that the exchange of the auxiliary ligand (for instance, Cl- to S-R) plays a primary role in increasing the reduction potential, with the enzyme structure having a small effect. The parent compound [AuIII(C^N^C)Cl] has E° = -1.20 V, which enlarges to -0.72 V for [AuIII(C^N^C)CH3SH]+ and to -0.65 V for the largest model studied, Au-trx. In addition to the effect of the enzyme structure on the redox stability, we also analyze the Au transfer to the enzyme using a small peptide model (a tetramer). This reaction is dependent on the Cys497 protonation state. Thermodynamics and kinetic analysis suggests that the C^N^C ligand substitution by Cys497 is an exergonic process, with an energy barrier estimated at 20.2 kcal mol-1. The complete transfer of the Au ion to the enzyme's active site would lead to a total loss of enzyme activity, generating oxidative damage and, consequently, cancer cell death.
Collapse
Affiliation(s)
- Giset Y Sánchez Delgado
- NEQC: Núcleo de Estudos em Química Computacional, Department of Chemistry, Federal University of Juiz de Fora, Campus Universitário Martelos, 36.036-900 Juiz de Fora, Minas Gerais, Brazil
| | - Júlio F A Arvellos
- NEQC: Núcleo de Estudos em Química Computacional, Department of Chemistry, Federal University of Juiz de Fora, Campus Universitário Martelos, 36.036-900 Juiz de Fora, Minas Gerais, Brazil
| | - Diego F S Paschoal
- NQTCM: Núcleo de Química Teórica e Computacional de Macaé, Polo Ajuda, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, 27.971-525 Macaé, Rio de Janeiro, Brazil
| | - Hélio F Dos Santos
- NEQC: Núcleo de Estudos em Química Computacional, Department of Chemistry, Federal University of Juiz de Fora, Campus Universitário Martelos, 36.036-900 Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
28
|
Le HV, Babak MV, Ehsan MA, Altaf M, Reichert L, Gushchin AL, Ang WH, Isab AA. Highly cytotoxic gold(i)-phosphane dithiocarbamate complexes trigger an ER stress-dependent immune response in ovarian cancer cells. Dalton Trans 2021; 49:7355-7363. [PMID: 32432621 DOI: 10.1039/d0dt01411g] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ovarian cancer is a highly aggressive disease which is treated by surgery and platinum chemotherapy. However, a significant proportion of treated patients develop resistance to platinum treatment resulting in tumor relapse. Acquired platinum resistance has been recently correlated with activation of pro-survival endoplasmic reticulum (ER) stress responses. We hypothesized that Au complexes that induce severe ER stress might counteract pro-survival cellular attempts leading to the ER stress-mediated apoptosis and reduced platinum resistance. In this work, we prepared a series of highly cytotoxic AuI-dialkyldithiocarbamate complexes and investigated their anticancer potential in ovarian cancer cells. Complexes demonstrated surprisingly low stability in chloroform, resulting in the formation of an Au chain polymer, which also displayed excellent cytotoxicity. Lead complex 2 induced oxidative stress and ER stress-mediated p53-independent apoptosis associated with PARP cleavage and cell cycle arrest at G2/M phase. Importantly, 2 caused the surface exposure of calreticulin (CRT), which is the first step in the activation of cellular immunogenic response.
Collapse
Affiliation(s)
- Hai Van Le
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore.
| | - Maria V Babak
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore.
| | - Muhammad Ali Ehsan
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Altaf
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia and Department of Chemistry, Government College University Lahore, 54000 Lahore, Pakistan
| | - Lisa Reichert
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore.
| | - Artem L Gushchin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia and Novosibirsk State University, 2 Pirogov Street, 630090 Novosibirsk, Russia
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore. and NUS Graduate School for Integrative Sciences and Engineering, Singapore
| | - Anvarhusein A Isab
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
29
|
Anticancer and antibacterial properties of trinuclear Cu(I), Ag(I) and Au(I) macrocyclic NHC/urea complexes. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121643] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Long Y, Cao B, Xiong X, Chan ASC, Sun RW, Zou T. Bioorthogonal Activation of Dual Catalytic and Anti‐Cancer Activities of Organogold(I) Complexes in Living Systems. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yan Long
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210093 P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
31
|
Long Y, Cao B, Xiong X, Chan ASC, Sun RW, Zou T. Bioorthogonal Activation of Dual Catalytic and Anti‐Cancer Activities of Organogold(I) Complexes in Living Systems. Angew Chem Int Ed Engl 2020; 60:4133-4141. [DOI: 10.1002/anie.202013366] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/03/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Long
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210093 P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
32
|
Jakob CHG, Dominelli B, Schlagintweit JF, Fischer PJ, Schuderer F, Reich RM, Marques F, Correia JDG, Kühn FE. Improved Antiproliferative Activity and Fluorescence of a Dinuclear Gold(I) Bisimidazolylidene Complex via Anthracene-Modification. Chem Asian J 2020; 15:4275-4279. [PMID: 33405335 PMCID: PMC7756789 DOI: 10.1002/asia.202001104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Indexed: 12/26/2022]
Abstract
A straightforward modification route to obtain mono- and di-substituted anthroyl ester bridge functionalized dinuclear Au(I) bis-N-heterocyclic carbene complexes is presented. The functionalization can be achieved starting from a hydroxyl-functionalized ligand precursor followed by transmetallation of the corresponding Ag complex or via esterification of the hydroxyl-functionalized gold complex. The compounds are characterized by NMR-spectroscopy, ESI-MS, elemental analysis and SC-XRD. The mono-ester Au complex shows quantum yields around 18%. In contrast, the corresponding syn-di-ester Au complex, exhibits significantly lower quantum yields of around 8%. Due to insufficient water solubility of the di-ester, only the mono-ester complex has been tested regarding its antiproliferative activity against HeLa- (cervix) and MCF-7- (breast) cancer cell lines and a healthy fibroblast cell line (V79). IC50 values of 7.26 μM in the HeLa cell line and 7.92 μM in the MCF-7 cell line along with selectivity indices of 8.8 (HeLa) and 8.0 (MCF-7) are obtained. These selectivity indices are significantly higher than those obtained for the reference drugs cisplatin or auranofin.
Collapse
Affiliation(s)
- Christian H. G. Jakob
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Bruno Dominelli
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Jonas F. Schlagintweit
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Pauline J. Fischer
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Franziska Schuderer
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Robert M. Reich
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior TécnicoUniversidade de LisboaCampus Tecnológico e Nuclear, Estrada Nacional N° 10 (km 139,7)2695-066Bobadela LRSPortugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior TécnicoUniversidade de LisboaCampus Tecnológico e Nuclear, Estrada Nacional N° 10 (km 139,7)2695-066Bobadela LRSPortugal
| | - Fritz E. Kühn
- Department of Chemistry and Catalysis Research Center, Molecular CatalysisTechnische Universität MünchenLichtenbergstraße 485748Garching bei MünchenGermany
| |
Collapse
|
33
|
|
34
|
Suman P, Bhat HR, Janardan S, Bortamuli SP, Jha PC, Sivaramakrishna A. New Hydrazide based Tricyclic Pentacoordinate Siliconium Ions –A Facile Route to the Synthesis of Spherical Shaped Sr
5
(PO
4
)
2
SiO
4. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Pothini Suman
- Department of Chemistry, School of Advanced Sciences Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| | - Haamid R. Bhat
- School of Chemical Sciences Central University of Gujarat Gandhinagar Gujarat Sector‐30 India
| | - Sannapaneni Janardan
- Department of Chemistry, School of Advanced Sciences Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
- Department of Chemistry GITAM University Nagadenehalli Bengaluru Karnataka 562163 India
| | - Sidhartha Protim Bortamuli
- Department of Chemistry, School of Advanced Sciences Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| | - Prakash C. Jha
- Centre for Applied Chemistry Central University of Gujarat Gandhinagar Gujarat 382030 India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| |
Collapse
|
35
|
Stenger‐Smith JR, Mascharak PK. Gold Drugs with {Au(PPh
3
)}
+
Moiety: Advantages and Medicinal Applications. ChemMedChem 2020; 15:2136-2145. [DOI: 10.1002/cmdc.202000608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/21/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Jenny R. Stenger‐Smith
- Department of Chemistry and Biochemistry University of California, Santa Cruz 1156 High Street Santa Cruz CA 95064 USA
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry University of California, Santa Cruz 1156 High Street Santa Cruz CA 95064 USA
| |
Collapse
|
36
|
Dominelli B, Jakob CH, Oberkofler J, Fischer PJ, Esslinger EM, Reich RM, Marques F, Pinheiro T, Correia JD, Kühn FE. Mechanisms underlying the cytotoxic activity of syn/anti-isomers of dinuclear Au(I) NHC complexes. Eur J Med Chem 2020; 203:112576. [DOI: 10.1016/j.ejmech.2020.112576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/09/2023]
|
37
|
Guarra F, Terenzi A, Pirker C, Passannante R, Baier D, Zangrando E, Gómez‐Vallejo V, Biver T, Gabbiani C, Berger W, Llop J, Salassa L. 124 I Radiolabeling of a Au III -NHC Complex for In Vivo Biodistribution Studies. Angew Chem Int Ed Engl 2020; 59:17130-17136. [PMID: 32633820 PMCID: PMC7540067 DOI: 10.1002/anie.202008046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 12/02/2022]
Abstract
AuIII complexes with N-heterocyclic carbene (NHC) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Reported herein is the synthesis of new AuIII -NHC complexes by direct oxidation with radioactive [124 I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET). While in vitro analyses provide direct evidence for the importance of AuIII -to-AuI reduction to achieve full anticancer activity, in vivo studies reveal that a fraction of the AuIII -NHC prodrug is not immediately reduced after administration but able to reach the major organs before metabolic activation.
Collapse
Affiliation(s)
- Federica Guarra
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 1356124PisaItaly
| | - Alessio Terenzi
- Donostia International Physics CenterPaseo M. Lardizabal 420018DonostiaSpain
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of PalermoViale delle Scienze, Ed. 1790128PalermoItaly
| | - Christine Pirker
- Department of Medicine IInstitute of Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8a1090ViennaAustria
| | - Rossana Passannante
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 18220014DonostiaSpain
| | - Dina Baier
- Department of Medicine IInstitute of Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8a1090ViennaAustria
- Institute of Inorganic ChemistryFaculty of Chemistry University of ViennaWaehringerstrasse 421090ViennaAustria
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical SciencesUniversity of Triestevia Giorgieri 134127TriesteItaly
| | - Vanessa Gómez‐Vallejo
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 18220014DonostiaSpain
| | - Tarita Biver
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 1356124PisaItaly
- Department of PharmacyUniversity of Pisavia Bonanno 656126PisaItaly
| | - Chiara Gabbiani
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 1356124PisaItaly
| | - Walter Berger
- Department of Medicine IInstitute of Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8a1090ViennaAustria
| | - Jordi Llop
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 18220014DonostiaSpain
| | - Luca Salassa
- Donostia International Physics CenterPaseo M. Lardizabal 420018DonostiaSpain
- Kimika FakultateaEuskal Herriko UnibertsitateaUPV/EHU20080DonostiaSpain
- IkerbasqueBasque Foundation for Science48013BilbaoSpain
| |
Collapse
|
38
|
Jakob CHG, Dominelli B, Hahn EM, Berghausen TO, Pinheiro T, Marques F, Reich RM, Correia JDG, Kühn FE. Antiproliferative Activity of Functionalized Histidine-derived Au(I) bis-NHC Complexes for Bioconjugation. Chem Asian J 2020; 15:2754-2762. [PMID: 32592289 PMCID: PMC7689731 DOI: 10.1002/asia.202000620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/20/2020] [Indexed: 12/23/2022]
Abstract
A series of histidine derived Au(I) bis-NHC complexes bearing different ester, amide and carboxylic acid functionalities as well as wingtip substituents is synthesized and characterized. The stability in aqueous media, in vitro cytotoxicity in a set of cancer cell lines (MCF7, PC3 and A2780/A2780cisR) along with the cellular uptake are evaluated. Stability tests suggest hydrolysis of the ester within 8 h, which might lead to deactivation. Furthermore, the bis-NHC system shows a sufficient stability against cysteine and the thiol containing peptide GSH. The benzyl ester and amide show the highest activity comparable to the benchmark compound cisplatin, with the ester only displaying a slightly lower cytotoxicity than the amide. A cellular uptake study revealed that the benzyl ester and the amide could have different intracellular distribution profiles but both complexes induce perturbations of the cellular physiological processes. The simple modifiability and high stability of the complexes provides a promising system for upcoming post modifications to enable targeted cancer therapy.
Collapse
Affiliation(s)
- Christian H. G. Jakob
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| | - Bruno Dominelli
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| | - Eva M. Hahn
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| | - Tobias O. Berghausen
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| | - Teresa Pinheiro
- Institute for Bioengineering and BiosciencesDepartamento de Engenharia e Ciências NuclearesInstituto Superior TécnicoUniversidade de LisboaAv. Rovisco Pais 11049-001LisboaPortugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias NuclearesDepartamento de Engenharia e Ciências NuclearesInstituto Superior TécnicoUniversidade de LisboaCTN, Estrada Nacional 10 (km 139,7)2695-066Bobadela LRSPortugal
| | - Robert M. Reich
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| | - João D. G. Correia
- Centro de Ciências e Tecnologias NuclearesDepartamento de Engenharia e Ciências NuclearesInstituto Superior TécnicoUniversidade de LisboaCTN, Estrada Nacional 10 (km 139,7)2695-066Bobadela LRSPortugal
| | - Fritz E. Kühn
- Molecular CatalysisCatalysis Research Center and Department of Chemistry Department Technische Universität MünchenLichtenbergstrasse 4D-85748Garching bei MünchenGermany
| |
Collapse
|
39
|
Stout MJ, Skelton BW, Sobolev AN, Raiteri P, Massi M, Simpson PV. Synthesis and Photochemical Properties of Re(I) Tricarbonyl Complexes Bound to Thione and Thiazol-2-ylidene Ligands. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew J. Stout
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley 6102, Perth, Western Australia, Australia
| | - Brian W. Skelton
- School of Molecular Sciences and CMCA, the University of Western Australia, 35 Stirling Highway, 6009 Perth, Western Australia, Australia
| | - Alexandre N. Sobolev
- School of Molecular Sciences and CMCA, the University of Western Australia, 35 Stirling Highway, 6009 Perth, Western Australia, Australia
| | - Paolo Raiteri
- Curtin Institute for Computation and School of Life and Molecular Sciences, Curtin University, Kent Street, Bentley 6102, Perth, Western Australia, Australia
| | - Massimiliano Massi
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley 6102, Perth, Western Australia, Australia
| | - Peter V. Simpson
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley 6102, Perth, Western Australia, Australia
| |
Collapse
|
40
|
Synthesis and Biological Studies on Dinuclear Gold(I) Complexes with Di-( N-Heterocyclic Carbene) Ligands Functionalized with Carbohydrates. Molecules 2020; 25:molecules25173850. [PMID: 32847116 PMCID: PMC7503629 DOI: 10.3390/molecules25173850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
The design of novel metal complexes with N-heterocyclic carbene (NHC) ligands that display biological activity is an active research field in organometallic chemistry. One of the possible approaches consists of the use of NHC ligands functionalized with a carbohydrate moiety. Two novel Au(I)–Au(I) dinuclear complexes were synthesized; they present a neutral structure with one bridging diNHC ligand, having one or both heterocyclic rings decorated with a carbohydrate functionality. With the symmetric diNHC ligand, the dicationic dinuclear complex bearing two bridging diNHC ligands was also synthesized. The study was completed by analyzing the antiproliferative properties of these complexes, which were compared to the activity displayed by similar mononuclear Au(I) complexes and by the analogous bimetallic Au(I)–Au(I) complex not functionalized with carbohydrates.
Collapse
|
41
|
Guarra F, Terenzi A, Pirker C, Passannante R, Baier D, Zangrando E, Gómez‐Vallejo V, Biver T, Gabbiani C, Berger W, Llop J, Salassa L. 124
I Radiolabeling of a Au
III
‐NHC Complex for In Vivo Biodistribution Studies. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Federica Guarra
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Alessio Terenzi
- Donostia International Physics Center Paseo M. Lardizabal 4 20018 Donostia Spain
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies University of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Christine Pirker
- Department of Medicine I Institute of Cancer Research and Comprehensive Cancer Center Medical University Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Rossana Passannante
- CIC biomaGUNE Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia Spain
| | - Dina Baier
- Department of Medicine I Institute of Cancer Research and Comprehensive Cancer Center Medical University Vienna Borschkegasse 8a 1090 Vienna Austria
- Institute of Inorganic Chemistry Faculty of Chemistry University of Vienna Waehringerstrasse 42 1090 Vienna Austria
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences University of Trieste via Giorgieri 1 34127 Trieste Italy
| | - Vanessa Gómez‐Vallejo
- CIC biomaGUNE Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia Spain
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
- Department of Pharmacy University of Pisa via Bonanno 6 56126 Pisa Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Walter Berger
- Department of Medicine I Institute of Cancer Research and Comprehensive Cancer Center Medical University Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Jordi Llop
- CIC biomaGUNE Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia Spain
| | - Luca Salassa
- Donostia International Physics Center Paseo M. Lardizabal 4 20018 Donostia Spain
- Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU 20080 Donostia Spain
- Ikerbasque Basque Foundation for Science 48013 Bilbao Spain
| |
Collapse
|
42
|
Sen S, Perrin MW, Sedgwick AC, Dunsky EY, Lynch VM, He XP, Sessler JL, Arambula JF. Toward multifunctional anticancer therapeutics: post-synthetic carbonate functionalisation of asymmetric Au(i) bis-N-heterocyclic carbenes. Chem Commun (Camb) 2020; 56:7877-7880. [PMID: 32520019 PMCID: PMC7368814 DOI: 10.1039/d0cc03339a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A post-synthetic strategy is reported that allows for functionalisation of Au(i)-bis NHCs via carbonate formation. The scope of this methodology was explored using both aromatic and aliphatic alcohols. As a demonstration of potential utility, the fluorescent Au(i)-bis NHC conjugate 5 was prepared; it was found to have enhanced stability when formulated with bovine serum albumin, localise within the mitochondria of A549 cells and do so without compromising the high cytotoxicity seen for the parent Au(i)-bis NHC system.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Chemistry, University of Texas at Austin, 105 E 24th street A5300, Austin, TX 78712-1224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Jakob CHG, Dominelli B, Rieb J, Jandl C, Pöthig A, Reich RM, Correia JDG, Kühn FE. Dinuclear Gold(I) Complexes Bearing N,N'-Allyl-Bridged Bisimidazolylidene Ligands. Chem Asian J 2020; 15:1848-1851. [PMID: 32348033 PMCID: PMC7687270 DOI: 10.1002/asia.202000453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Indexed: 11/30/2022]
Abstract
A novel N,N'-allyl-bridged bisimidazolium salt and a novel dinuclear Ag(I) and a Au(I) NHC complex are reported. Both metallacyclic complexes have a twisted structural shape due to the rigid allylic system and form two different isomers relating to the position of the double bonds. The allyl-group shows photoisomerisation, but no reactivity towards bases for the additional coordination of Pd(II).
Collapse
Affiliation(s)
- Christian H. G. Jakob
- Catalysis Research CenterMolecular CatalysisTechnische Universität MünchenErnst-Otto-Fischer-Straße 1D-85748Garching bei MünchenGermany
| | - Bruno Dominelli
- Catalysis Research CenterMolecular CatalysisTechnische Universität MünchenErnst-Otto-Fischer-Straße 1D-85748Garching bei MünchenGermany
| | - Julia Rieb
- Catalysis Research CenterMolecular CatalysisTechnische Universität MünchenErnst-Otto-Fischer-Straße 1D-85748Garching bei MünchenGermany
| | - Christian Jandl
- Catalysis Research CenterMolecular CatalysisTechnische Universität MünchenErnst-Otto-Fischer-Straße 1D-85748Garching bei MünchenGermany
| | - Alexander Pöthig
- Catalysis Research CenterMolecular CatalysisTechnische Universität MünchenErnst-Otto-Fischer-Straße 1D-85748Garching bei MünchenGermany
| | - Robert M. Reich
- Catalysis Research CenterMolecular CatalysisTechnische Universität MünchenErnst-Otto-Fischer-Straße 1D-85748Garching bei MünchenGermany
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências NuclearesInstituto Superior TécnicoUniversidade de LisboaCampus Tecnológico e NuclearEstrada Nacional N° 10 (km 139,7)2695-066Bobadela LRSPortugal
| | - Fritz E. Kühn
- Catalysis Research CenterMolecular CatalysisTechnische Universität MünchenErnst-Otto-Fischer-Straße 1D-85748Garching bei MünchenGermany
| |
Collapse
|
44
|
Luo H, Cao B, Chan ASC, Sun RW, Zou T. Cyclometalated Gold(III)‐Hydride Complexes Exhibit Visible Light‐Induced Thiol Reactivity and Act as Potent Photo‐Activated Anti‐Cancer Agents. Angew Chem Int Ed Engl 2020; 59:11046-11052. [DOI: 10.1002/anie.202000528] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/14/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education DivisionThe Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Albert S. C. Chan
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination ChemistryNanjing University Nanjing 210093 P. R. China
| |
Collapse
|
45
|
Luo H, Cao B, Chan ASC, Sun RW, Zou T. Cyclometalated Gold(III)‐Hydride Complexes Exhibit Visible Light‐Induced Thiol Reactivity and Act as Potent Photo‐Activated Anti‐Cancer Agents. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education DivisionThe Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Albert S. C. Chan
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination ChemistryNanjing University Nanjing 210093 P. R. China
| |
Collapse
|
46
|
Ingner FJL, Schmitt A, Orthaber A, Gates PJ, Pilarski LT. Mild and Efficient Synthesis of Diverse Organo-Au I -L Complexes in Green Solvents. CHEMSUSCHEM 2020; 13:2032-2037. [PMID: 31951303 PMCID: PMC7277043 DOI: 10.1002/cssc.201903415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/15/2020] [Indexed: 06/10/2023]
Abstract
An exceptionally mild and efficient method was developed for the preparation of (hetero)aryl-AuI -L complexes using ethanol or water as the reaction medium at room temperature and Ar-B(triol)K boronates as the transmetalation partner. The reaction does not need an exogeneous base or other additives, and quantitative yields can be achieved through a simple filtration as the only required purification method, which obviates considerable waste associated with alternative workup methods. A broad reaction scope was demonstrated with respect to both the L and (hetero)aryl ligands on product Au complexes. Despite the polar reaction medium, large polycyclic aromatic hydrocarbon units can be incorporated on the Au complexes in very good to excellent yields. The approach was demonstrated for the chemoselective manipulation of orthogonally protected aryl boronates to afford a new class of N-heterocyclic carbene-Au-aryl complexes. A mechanistic rationale was proposed.
Collapse
Affiliation(s)
| | | | - Andreas Orthaber
- Department of Chemistry—ÅngströmUppsala UniversityBOX 52375-120UppsalaSweden
| | - Paul J. Gates
- School of ChemistryUniversity of BristolCantock's Close, CliftonBristolBS8 1TSUK
| | | |
Collapse
|
47
|
Gallati CM, Goetzfried SK, Ausserer M, Sagasser J, Plangger M, Wurst K, Hermann M, Baecker D, Kircher B, Gust R. Synthesis, characterization and biological activity of bromido[3-ethyl-4-aryl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(i) complexes. Dalton Trans 2020; 49:5471-5481. [PMID: 32255443 DOI: 10.1039/c9dt04824c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bromido[3-ethyl-4-aryl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(i) complexes (8a-h) with methoxy, methyl and fluorine substituents at different positions of the 4-aryl ring were synthesized and characterized. The relevance of the 2-methoxypyridin-5-yl residue and the substituents at the 4-aryl ring with regard to the activity against a series of cell lines was determined. Particularly against the Cisplatin-resistant ovarian cancer cell line A2780cis, the most active bromido[3-ethyl-4-(4-methoxyphenyl)-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(i) complex 8c was more active than Auranofin. It also inhibited thioredoxin reductase more effectively and induced high amounts of reactive oxygen species in A2780cis cells. Furthermore, its influence on non-cancerous SV 80 lung fibroblasts was lower than that of Auranofin. This fact, together with a high accumulation rate in tumor cells, determined on the example of MCF-7 cells, makes this complex an interesting candidate for further extensive studies.
Collapse
Affiliation(s)
- Caroline M Gallati
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bian M, Wang X, Sun Y, Liu W. Synthesis and biological evaluation of gold(III) Schiff base complexes for the treatment of hepatocellular carcinoma through attenuating TrxR activity. Eur J Med Chem 2020; 193:112234. [PMID: 32213395 DOI: 10.1016/j.ejmech.2020.112234] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and a leading cause of death worldwide. Increased thioredoxin reductase (TrxR) levels were recently identified as possible prognostic markers for HCC. Here, four gold(III) complexes 1b-4b bearing Schiff base ligands were synthesized, characterized, and screened for antitumor activity against HCC. All complexes triggered significant antiproliferative effects against HCC cells, especially the most active complex 1b induced HepG2 cells apoptosis by activating the endoplasmic reticulum stress (ERS). 1b could clearly inhibit the TrxR activity to elevate reactive oxygen species (ROS), mediate ERS and lead to mitochondrial dysfunction. Notably, treatment of 1b improved the CCl4-induced liver damage in vivo by down-regulation of TrxR expression and inflammation level.
Collapse
Affiliation(s)
- Mianli Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xin Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Ying Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Wukun Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
49
|
Chiu CKC, Lam YPY, Wootton CA, Barrow MP, Sadler PJ, O'Connor PB. Metallocomplex-Peptide Interactions Studied by Ultrahigh Resolution Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:594-601. [PMID: 31967804 DOI: 10.1021/jasms.9b00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The OsII arene anticancer complex [(η6-bip)Os(en)Cl]+ (Os1-Cl; where bip = biphenyl and en = ethylenediamine) binds strongly to DNA1 and biomolecules. Here we investigate the interaction between Os1-Cl and the model protein, BSA, using ultrahigh resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). The specific binding location of Os1 on BSA was investigated with the use of collisionally activated dissociation (CAD) and electron capture dissociation (ECD). CAD MS/MS was found to dissociate the osmium complex from the metallo-peptide complex readily producing unmodified fragments and losing location information. ECD MS/MS, however, successfully retains the osmium modification on the peptides upon fragmentation allowing localization of metallocomplex binding. This study reveals that lysine is a possible binding location for Os1-Cl, apart from the expected binding sites at methionine, histidine, and cysteine. Using a nano liquid chromatography (nLC)-FT-ICR ECD MS/MS study, multiple binding locations, including the N-terminus and C-terminus of digested peptides, glutamic acid, and lysine were also revealed. These results show the multitargeting binding ability of the organo-osmium compound and can be used as a standard workflow for more complex systems, e.g., metallocomplex-cell MS analysis, to evaluate their behavior toward commonly encountered biomolecules.
Collapse
Affiliation(s)
- Cookson K C Chiu
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Yuko P Y Lam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Christopher A Wootton
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
50
|
|