1
|
Kurfiřt M, Hamala V, Beránek J, Červenková Šťastná L, Červený J, Dračínský M, Bernášková J, Spiwok V, Bosáková Z, Bojarová P, Karban J. Synthesis and unexpected binding of monofluorinated N,N'-diacetylchitobiose and LacdiNAc to wheat germ agglutinin. Bioorg Chem 2024; 147:107395. [PMID: 38705105 DOI: 10.1016/j.bioorg.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Fluorination of carbohydrate ligands of lectins is a useful approach to examine their binding profile, improve their metabolic stability and lipophilicity, and convert them into 19F NMR-active probes. However, monofluorination of monovalent carbohydrate ligands often leads to a decreased or completely lost affinity. By chemical glycosylation, we synthesized the full series of methyl β-glycosides of N,N'-diacetylchitobiose (GlcNAcβ(1-4)GlcNAcβ1-OMe) and LacdiNAc (GalNAcβ(1-4)GlcNAcβ1-OMe) systematically monofluorinated at all hydroxyl positions. A competitive enzyme-linked lectin assay revealed that the fluorination at the 6'-position of chitobioside resulted in an unprecedented increase in affinity to wheat germ agglutinin (WGA) by one order of magnitude. For the first time, we have characterized the binding profile of a previously underexplored WGA ligand LacdiNAc. Surprisingly, 4'-fluoro-LacdiNAc bound WGA even stronger than unmodified LacdiNAc. These observations were interpreted using molecular dynamic calculations along with STD and transferred NOESY NMR techniques, which gave evidence for the strengthening of CH/π interactions after deoxyfluorination of the side chain of the non-reducing GlcNAc. These results highlight the potential of fluorinated glycomimetics as high-affinity ligands of lectins and 19F NMR-active probes.
Collapse
Affiliation(s)
- Martin Kurfiřt
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic; University of Chemistry and Technology, Technická 5, CZ-166 28 Praha 6, Czech Republic
| | - Vojtěch Hamala
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic; University of Chemistry and Technology, Technická 5, CZ-166 28 Praha 6, Czech Republic
| | - Jan Beránek
- University of Chemistry and Technology, Technická 5, CZ-166 28 Praha 6, Czech Republic
| | - Lucie Červenková Šťastná
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic
| | - Jakub Červený
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00 Praha 4, Czech Republic; Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-128 43 Praha 2, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, CZ-160 00 Praha 6, Czech Republic
| | - Jana Bernášková
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic
| | - Vojtěch Spiwok
- University of Chemistry and Technology, Technická 5, CZ-166 28 Praha 6, Czech Republic
| | - Zuzana Bosáková
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-128 43 Praha 2, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00 Praha 4, Czech Republic
| | - Jindřich Karban
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic.
| |
Collapse
|
2
|
Wei X, Zeng M, Li Y, Wang D, Wang J, Liu H. Palladium(II)-Catalyzed Heck Coupling: Direct Stereoselective Synthesis of C-Aryl Glycosides from Nonactivated Glycals and Thianthrenium Salts. Org Lett 2024. [PMID: 38498594 DOI: 10.1021/acs.orglett.4c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Here, we report an efficient Pd(II)-catalyzed Heck coupling reaction utilizing modular and readily available thianthrenium salts. The tunability and ease of thianthrenium salts facilitated the integration of glycals with drugs, natural products, and peptides. This method allows the incorporation of diverse glycals into structurally varied aglycon components without directing groups or prefunctionalization and provides a practical method for synthesizing C-aryl glycosides, offering a new avenue for the production of complex glycosides with potential applications.
Collapse
Affiliation(s)
- Xinxin Wei
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingjie Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yazhou Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dechuan Wang
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
3
|
Li L, Yin XC, Jiang YY, Xia YF, Wang X, Li J, Li H, Qin Y, Yang JS. Chemical Synthesis of a Branched Nonasaccharide Fragment from Helicobacter pylori Lipopolysaccharide. Org Lett 2024; 26:2103-2107. [PMID: 38443201 DOI: 10.1021/acs.orglett.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A chemical synthesis of a unique nanosaccharide fragment from Helicobacter pylori lipopolysaccharide was achieved via a convergent glycosylation method. Challenges involved in the synthesis include the highly stereoselective construction of β-3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) and two 1,2-cis-glycosidic linkages, as well as the formation of a branched 2,7-disubstituted heptose subunit. Hydrogen-bond mediated aglycone delivery strategy and benzoyl-directing remote participation effect were employed, respectively, for the efficient generation of the desired β-Kdo glycoside and 1,2-cis-α-l-fucoside/d-glucoside. Moreover, the key branched framework was successfully established through a [(7 + 1) + 1] assembly approach involving the stepwise glycosylation of the heptasaccharide alcohol with two monosaccharide donors. The synthesized 1 containing a propylamine linker at the reducing end can be covalently bound to a carrier protein for further immunological studies.
Collapse
Affiliation(s)
- Ling Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiao-Chen Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan-Yuan Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi-Fei Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xia Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiao Li
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Li
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jin-Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Jiao Q, Guo Z, Zheng M, Lin W, Liao Y, Yan W, Liu T, Xu C. Anion-Bridged Dual Hydrogen Bond Enabled Concerted Addition of Phenol to Glycal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308513. [PMID: 38225720 PMCID: PMC10953558 DOI: 10.1002/advs.202308513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Indexed: 01/17/2024]
Abstract
A noncovalent organocatalytic concerted addition of phenol to glycal is developed for the stereoselective and regioselective construction of biologically important phenolic 2-deoxyglycosides, featuring wide substrate tolerance. The method relies on an anion-bridged dual hydrogen bond interaction which is experimentally proved by Nuclear Magnetic Resonance (NMR), Ultraviolet and visible (UV-vis), and fluorescence analysis. Experimental evidence including kinetic analysis, Kinetic Isotope Effect (KIE) studies, linear free energy relationship, Hammett plot, and density functional theory (DFT) calculations is provided for a concerted mechanism where a high-energy oxocarbenium ion is not formed. In addition, the potential utility of this method is further demonstrated by the synthesis of biologically active glycosylated flavones. The benchmarking studies demonstrate significant advances in this newly developed method compared to previous approaches.
Collapse
Affiliation(s)
- Qinbo Jiao
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Zhenbo Guo
- State Key Laboratory of Elemento‐organic ChemistryCollege of ChemistryNankai UniversityWeijin Road No. 94Tianjin300071China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Mingwen Zheng
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Wentao Lin
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Yujie Liao
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Weitao Yan
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Tianfei Liu
- State Key Laboratory of Elemento‐organic ChemistryCollege of ChemistryNankai UniversityWeijin Road No. 94Tianjin300071China
| | - Chunfa Xu
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
- Key Laboratory of Organofluorine ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai200032China
| |
Collapse
|
5
|
Zhao X, Zhang Z, Xu J, Wang N, Huang N, Yao H. Stereoselective Synthesis of O-Glycosides with Borate Acceptors. J Org Chem 2023; 88:11735-11747. [PMID: 37525574 DOI: 10.1021/acs.joc.3c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Borate esters have been applied widely as coupling partners in organic synthesis. However, the direct utilization of borate acceptors in O-glycosylation with glycal donors remains underexplored. Herein, we describe a novel O-glycosylation resulting in the formation of 2,3-unsaturated O-glycosides and 2-deoxy O-glycosides mediated by palladium and copper catalysis, respectively. This O-glycosylation method tolerated a broad scope of trialkyl/triaryl borates and various glycals with exclusive stereoselectivities in high yields. All the desired aliphatic/aromatic O-glycosides and 2-deoxy O-glycosides were generated successfully, without the hemiacetal byproducts and O→C rearrangement because of the nature of borate esters. The utility of this strategy was demonstrated by functionalizing the 2,3-unsaturated glycoside products to form saturated β-O-glycosides, 2,3-deoxy O-glycosides, and 2,3-epoxy O-glycosides.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhentao Zhang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Jing Xu
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| |
Collapse
|
6
|
Li D, Wang J, Wang X, Qiao Z, Wang L, Wang P, Song N, Li M. β-Glycosylations with 2-Deoxy-2-(2,4-dinitrobenzenesulfonyl)-amino-glucosyl/galactosyl Selenoglycosides: Assembly of Partially N-Acetylated β-(1 → 6)-Oligoglucosaminosides. J Org Chem 2023; 88:9004-9025. [PMID: 37306475 DOI: 10.1021/acs.joc.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An efficient protocol has been established for β-glycosylations with 2-deoxy-2-(2,4-dinitrobenzenesulfonyl)amino (2dDNsNH)-glucopyranosyl/galactopyranosyl selenoglycosides using PhSeCl/AgOTf as an activating system. The reaction features highly β-selective glycosylation with a wide range of alcohol acceptors that are either sterically hindered or poorly nucleophilic. Thioglycoside- and selenoglycoside-based alcohols prove to be viable nucleophiles, opening up new opportunities for one-pot construction of oligosaccharides. The power of this approach is highlighted by the efficient assembly of tri-, hexa-, and nonasaccharides composed of β-(1 → 6)-glucosaminosyl residues based on one-pot preparation of a triglucosaminosyl thioglycoside with DNs, phthaloyl, and 2,2,2-trichloroethoxycarbonyl as the protecting groups of amino groups. These glycans are potential antigens for developing glycoconjugate vaccines against microbial infections.
Collapse
Affiliation(s)
- Dongwei Li
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianjun Wang
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xianyang Wang
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhi Qiao
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Lingjun Wang
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ni Song
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ming Li
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
7
|
Geulin A, Bourne-Branchu Y, Ben Ayed K, Lecourt T, Joosten A. Ferrier/Aza-Wacker/Epoxidation/Glycosylation (FAWEG) Sequence to Access 1,2-Trans 3-Amino-3-deoxyglycosides. Chemistry 2023; 29:e202203987. [PMID: 36793144 DOI: 10.1002/chem.202203987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 02/17/2023]
Abstract
3-Amino-3-deoxyglycosides constitute an essential class of nitrogen-containing sugars. Among them, many important 3-amino-3-deoxyglycosides possess a 1,2-trans relationship. In view of their numerous biological applications, the synthesis of 3-amino-3-deoxyglycosyl donors giving rise to a 1,2-trans glycosidic linkage is thus an important challenge. Even though glycals are highly polyvalent donors, the synthesis and reactivity of 3-amino-3-deoxyglycals have been little studied. In this work, we describe a new sequence, involving a Ferrier rearrangement and subsequent aza-Wacker cyclization that allows the rapid synthesis of orthogonally protected 3-amino-3-deoxyglycals. Finally a 3-amino-3-deoxygalactal derivative was submitted for the first time to an epoxidation/glycosylation with high yield and great diastereoselectivity, highlighting FAWEG (Ferrier/Aza-Wacker/Epoxidation/Glycosylation) as a new approach to access 1,2-trans 3-amino-3-deoxyglycosides.
Collapse
Affiliation(s)
- Anselme Geulin
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Yann Bourne-Branchu
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Kawther Ben Ayed
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Thomas Lecourt
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Antoine Joosten
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| |
Collapse
|
8
|
Mukherji A, Rotta MKV, Sarmah BK, Kancharla PK. Influence of Various Silyl Protecting Groups on Stereoselective 2-Deoxyrhamnosylation. J Org Chem 2023; 88:245-260. [PMID: 36524596 DOI: 10.1021/acs.joc.2c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The influence of various silyl protecting groups on 2-deoxyrhamnosylation using 2-deoxyrhamnosyl acetates, thioglycosides, and (p-methoxyphenyl)vinylbenzoate (PMPVB) donors has been presented. C-Glycosylation reactions reveal that tert-butyldimethylsilyl (TBDMS), triisopropylsilyl (TIPS), and tert-butyldiphenylsilyl (TBDPS) silyl protected rhamnosyl oxocarbenium ions have no facial selectivity except for the conformationally (4H3) locked tetraisopropyldisiloxane (TIPDS) protected rhamnose donor, which provides complete α-selectivity. However, TBDPS protected rhamnosyl donors are found to be superior protecting groups for α-stereoselective O-glycosylation reactions with various acceptors. The observed results are found consistent across donors and donor activation conditions. Most importantly, the study was conducted at room temperature unlike the other energy-intensive low-temperature studies and was bound to have more practical utility. The outcomes have been explained using kinetic and thermodynamic analyses.
Collapse
Affiliation(s)
- Ananya Mukherji
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mahendra K V Rotta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bikash K Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pavan K Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
9
|
Sasaki K, Uesaki N. Conformationally restricted donors for stereoselective glycosylation. Adv Carbohydr Chem Biochem 2022; 82:107-155. [PMID: 36470647 DOI: 10.1016/bs.accb.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In nucleophilic reactions using sugars as electrophiles, i.e., glycosyl donors, their conformation affects the generation rate or stability of the glycosyl cation intermediates and determines at which side of the SN2-SN1 borderline and at what rate the reaction occurs. In addition, changes in the conformation create the steric or stereoelectronic effects of the substituents, which also change the reaction rate and stereoselectivity. Bulky silyl protecting groups, uronic acid esters, and transannular structures have been utilized to change the conformation. Consequently, reactions with unique reactivities and stereoselectivities have been developed. In this chapter, a discussion of the reaction mechanisms relating stereoselectivity to conformation is provided.
Collapse
Affiliation(s)
- Kaname Sasaki
- Department of Chemistry, Toho University, Funabashi, Japan.
| | - Nanako Uesaki
- Department of Chemistry, Toho University, Funabashi, Japan
| |
Collapse
|
10
|
Kondo T, Yasui C, Miyajima I, Banno T, Asakura K, Fukuoka T, Ushimaru K, Koga M, Saika A, Morita T, Takahashi Y, Hayashi C, Igarashi M, Takahashi D, Toshima K. Synthesis of Mannosylerythritol Lipid Analogues and their Self‐Assembling Properties, Recovery Effects on Damaged Skin Cells, and Antibacterial Activity. Chemistry 2022; 28:e202201733. [DOI: 10.1002/chem.202201733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Takanori Kondo
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Chihiro Yasui
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Ikkei Miyajima
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Taisuke Banno
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kouichi Asakura
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Tokuma Fukuoka
- Research Institute for Sustainable Chemistry National Institute of Advanced Industrial Science and Technology (AIST) 5-2 Tsukuba Central 1-1 Higashi Tsukuba, Ibaraki 305-8565 Japan
| | - Kazunori Ushimaru
- Research Institute for Sustainable Chemistry National Institute of Advanced Industrial Science and Technology (AIST) 5-2 Tsukuba Central 1-1 Higashi Tsukuba, Ibaraki 305-8565 Japan
| | - Maito Koga
- Research Institute for Sustainable Chemistry National Institute of Advanced Industrial Science and Technology (AIST) 5-2 Tsukuba Central 1-1 Higashi Tsukuba, Ibaraki 305-8565 Japan
| | - Azusa Saika
- Research Institute for Sustainable Chemistry National Institute of Advanced Industrial Science and Technology (AIST) 5-2 Tsukuba Central 1-1 Higashi Tsukuba, Ibaraki 305-8565 Japan
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry National Institute of Advanced Industrial Science and Technology (AIST) 5-2 Tsukuba Central 1-1 Higashi Tsukuba, Ibaraki 305-8565 Japan
| | - Yoshiaki Takahashi
- Institute of Microbial Chemistry (BIKAKEN) 3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| | - Chigusa Hayashi
- Institute of Microbial Chemistry (BIKAKEN) 3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| | - Masayuki Igarashi
- Institute of Microbial Chemistry (BIKAKEN) 3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| | - Daisuke Takahashi
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kazunobu Toshima
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
11
|
Luo T, Zhang Q, Guo YF, Pei ZC, Dong H. Efficient Preparation of 2‐SAc‐Glycosyl Donors and Investigation of Their Application in Synthesis of 2‐Deoxyglycosides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tao Luo
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering Luoyu Road 1037 430074 Wuhan CHINA
| | - Qiang Zhang
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering CHINA
| | - Yang-Fan Guo
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering CHINA
| | - Zhi-Chao Pei
- Northwest Agriculture and Forestry University College of Chemistry and Pharmacy CHINA
| | - Hai Dong
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering Luoyu Road 1037 430074 Wuhan CHINA
| |
Collapse
|
12
|
Liu KM, Wang PY, Guo ZY, Xiong DC, Qin XJ, Liu M, Liu M, Xue WY, Ye XS. Iterative Synthesis of 2-Deoxyoligosaccharides Enabled by Stereoselective Visible-Light-Promoted Glycosylation. Angew Chem Int Ed Engl 2022; 61:e202114726. [PMID: 35133053 DOI: 10.1002/anie.202114726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 01/02/2023]
Abstract
The photoinitiated intramolecular hydroetherification of alkenols has been used to form C-O bonds, but the intermolecular hydroetherification of alkenes with alcohols remains an unsolved challenge. We herein report the visible-light-promoted 2-deoxyglycosylation of alcohols with glycals. The glycosylation reaction was completed within 2 min in a high quantum yield (ϕ=28.6). This method was suitable for a wide array of substrates and displayed good reaction yields and excellent stereoselectivity. The value of this protocol was further demonstrated by the iterative synthesis of 2-deoxyglycans with α-2-deoxyglycosidic linkages up to a 20-mer in length and digoxin with β-2-deoxyglycosidic linkages. Mechanistic studies indicated that this reaction involved a glycosyl radical cation intermediate and a photoinitiated chain process.
Collapse
Affiliation(s)
- Kai-Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Peng-Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Zhen-Yan Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xian-Jin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Wan-Ying Xue
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
13
|
Javed, Khanam A, Mandal PK. Glycosyl 3-Phenyl-4-pentenoates as Versatile Glycosyl Donors: Reactivity and Their Application in One-Pot Oligosaccharide Assemblies. J Org Chem 2022; 87:6710-6729. [PMID: 35522927 DOI: 10.1021/acs.joc.2c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both glycoconjugates and oligosaccharides are important biomolecules having significant roles in several biological processes, and a new strategy for their synthesis is crucial. Here, we report a versatile N-iodosuccinimide/trimethylsilyl triflate (NIS/TMSOTf) promoted glycosidation approach with shelf-stable 3-phenyl-4-pentenoate glycosyl as a donor for the efficient synthesis of O/C-glycosides with free alcohols, silylated alcohols, and C-type nucleophile acceptors in good to excellent yields. The mild activation conditions and outstanding reactivity of phenyl substituted pentenoate donors analogous to 4-pentenoate glycosyl donors enhance their applicability to various one-pot strategies for the synthesis of oligosaccharides, such as single-catalyst one-pot and acceptor reactivity-controlled one-pot strategies.
Collapse
Affiliation(s)
- Javed
- Medicinal and Process Chemistry Division, CSIR─Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Ariza Khanam
- Medicinal and Process Chemistry Division, CSIR─Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR─Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Affiliation(s)
- Giulio Goti
- Università degli Studi di Padova Dipartimento di Scienze Chimiche via Francesco Marzolo, 1 35131 Padova ITALY
| |
Collapse
|
15
|
Johnson SE, Galan MC. Synthesis of 2-deoxy mucin-type O-glycan analogues as biological probes. Carbohydr Res 2022; 514:108542. [DOI: 10.1016/j.carres.2022.108542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
|
16
|
Liu K, Wang P, Guo Z, Xiong D, Qin X, Liu M, Liu M, Xue W, Ye X. Iterative Synthesis of 2‐Deoxyoligosaccharides Enabled by Stereoselective Visible‐Light‐Promoted Glycosylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kai‐Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Peng‐Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Zhen‐Yan Guo
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - De‐Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University Nanjing 210023 Jiangsu China
| | - Xian‐Jin Qin
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Wan‐Ying Xue
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Xin‐Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| |
Collapse
|
17
|
Javed, Tiwari A, Azeem Z, Mandal PK. 4,5-Dioxo-imidazolinium Cation-Promoted α-Selective Dehydrative Glycosylation of 2-Deoxy- and 2,6-Dideoxy Sugars. J Org Chem 2022; 87:3718-3729. [DOI: 10.1021/acs.joc.1c02650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Javed
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
| | - Ashwani Tiwari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
| | - Zanjila Azeem
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Yao W, Wang H, Zeng J, Wan Q. Practical synthesis of 2-deoxy sugars via metal free deiodination reactions. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2021.2015365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wang Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Wan Y, Wu X, Xue Y, Lin XE, Wang L, Sun JS, Zhang Q. Stereoselective glycosylation with conformation-constrained 2-Nitroglycals as donors and bifunctional thiourea as catalyst. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2021.2023560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yongyong Wan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Xiaopei Wu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Yunxia Xue
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Xi-E Lin
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Jian-Song Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
- Key laboratory of Functional Small Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
20
|
Marino C, Bordoni AV. Deoxy sugars. General methods for carbohydrate deoxygenation and glycosidation. Org Biomol Chem 2022; 20:934-962. [PMID: 35014646 DOI: 10.1039/d1ob02001c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Deoxy sugars represent an important class of carbohydrates, present in a large number of biomolecules involved in multiple biological processes. In various antibiotics, antimicrobials, and therapeutic agents the presence of deoxygenated units has been recognized as responsible for biological roles, such as adhesion or great affinity to receptors, or improved efficacy. The characterization of glycosidases and glycosyltranferases requires substrates, inhibitors and analogous compounds. Deoxygenated sugars are useful for carrying out specific studies for these enzymes. Deoxy sugars, analogs of natural substrates, may behave as substrates or inhibitors, or may not interact with the enzyme. They are also important for glycodiversification studies of bioactive natural products and glycobiological processes, which could contribute to discovering new therapeutic agents with greater efficacy by modification or replacement of sugar units. Deoxygenation of carbohydrates is, thus, of great interest and numerous efforts have been dedicated to the development of methods for the reduction of sugar hydroxyl groups. Given that carbohydrates are the most important renewable chemicals and are more oxidized than fossil raw materials, it is also important to have methods to selectively remove oxygen from certain atoms of these renewable raw materials. The different methods for removal of OH groups of carbohydrates and representative or recent applications of them are presented in this chapter. Glycosidic bonds in general, and 2-deoxy glycosidic linkages, are included. It is not the scope of this survey to cover all reports for each specific technique.
Collapse
Affiliation(s)
- Carla Marino
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
| | - Andrea V Bordoni
- Gerencia Química & Instituto de Nanociencia y Nanotecnología - Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina
| |
Collapse
|
21
|
Zhao G, Li J, Wang T. Visible-light-induced photoacid catalysis: application in glycosylation with O-glycosyl trichloroacetimidates. Chem Commun (Camb) 2021; 57:12659-12662. [PMID: 34768281 DOI: 10.1039/d1cc04887b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of visible-light-induced photoacid catalyzed glycosylation is reported. The eosin Y and PhSSPh catalyst system is applied to realize glycosylation with different glycosyl donors upon light irradiation. The reaction shows a broad substrate scope, including both glycosyl donors and acceptors, and highlights the mild nature of the reaction conditions.
Collapse
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Juncheng Li
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Ting Wang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| |
Collapse
|
22
|
Bols M, Frihed TG, Pedersen MJ, Pedersen CM. Silylated Sugars – Synthesis and Properties. Synlett 2021. [DOI: 10.1055/s-0040-1719854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractSilicon has been used in carbohydrate chemistry for half a century, but mostly as a protective group for sugar alcohols. Recently, the use of silicon has expanded to functionalization via C–H activation, conformational arming of glycosyl donors, and conformational alteration of carbohydrates. Silicon has proven useful as more than a protective group and during the last one and a half decades we have demonstrated how it influences both the reactivity of glycosyl donors and stereochemical outcome of glycosylations. Silicon can also be attached directly to the sugar C-backbone, which has even more pronounced effects on the chemistry and properties of the molecules. In this Account, we will give a tour through our work involving silicon and carbohydrates.1 Introduction2 Conformational Arming of Glycosyl Donors with Silyl Groups3 Silyl Protective Groups for Tethering Glycosyl Donors4. Si–C Glycosides via C–H Activation4.1 C–H Activation and Oxidation of Methyl 6-Deoxy-l-glycosides4.2 Synthesis of All Eight 6-Deoxy-l-sugars4.3 Synthesis of All Eight l-Sugars by C–H Activation4.4 Modification of the Oxasilolane Ring5 C–Si in Glycosyl Donors – Activating or Not?6 Si–C-Substituted Pyranosides7 Perspective
Collapse
Affiliation(s)
- Mikael Bols
- University of Copenhagen, Department of Chemistry
| | | | | | | |
Collapse
|
23
|
Exploiting non-covalent interactions in selective carbohydrate synthesis. Nat Rev Chem 2021; 5:792-815. [PMID: 37117666 DOI: 10.1038/s41570-021-00324-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Non-covalent interactions (NCIs) are a vital component of biological bond-forming events, and have found important applications in multiple branches of chemistry. In recent years, the biomimetic exploitation of NCIs in challenging glycosidic bond formation and glycofunctionalizations has attracted significant interest across diverse communities of organic and carbohydrate chemists. This emerging theme is a major new direction in contemporary carbohydrate chemistry, and is rapidly gaining traction as a robust strategy to tackle long-standing issues such as anomeric and site selectivity. This Review thus seeks to provide a bird's-eye view of wide-ranging advances in harnessing NCIs within the broad field of synthetic carbohydrate chemistry. These include the exploitation of NCIs in non-covalent catalysed glycosylations, in non-covalent catalysed glycofunctionalizations, in aglycone delivery, in stabilization of intermediates and transition states, in the existence of intramolecular hydrogen bonding networks and in aggregation by hydrogen bonds. In addition, recent emerging opportunities in exploiting halogen bonding and other unconventional NCIs, such as CH-π, cation-π and cation-n interactions, in various aspects of carbohydrate chemistry are also examined.
Collapse
|
24
|
Zhao X, Wu B, Shu P, Meng L, Zeng J, Wan Q. Rhenium(V)-catalyzed synthesis of 1,1'-2-deoxy thioglycosides. Carbohydr Res 2021; 508:108415. [PMID: 34358864 DOI: 10.1016/j.carres.2021.108415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
As stable glycomimetics, thioglycosides are important tools for the investigation of biological processes and discovery of new drugs. In this note, we report a ReOCl3(SMe2)(OPPh3) catalyzed coupling reaction between β-glycosyl thiols (1-thio sugars) and glycals for the preparation of 1,1'-α,β-2-deoxy thioglycosides, which are glycomimetics of natural trehalose and 2-deoxy glycosides. Furthermore, an S-linked trisaccharide was successfully obtained by successive employment of the Re(V) catalyzed thioglycosylation protocol.
Collapse
Affiliation(s)
- Xiang Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Bin Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Penghua Shu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
25
|
Meng S, Li X, Zhu J. Recent advances in direct synthesis of 2-deoxy glycosides and thioglycosides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132140] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Shang W, Zhu C, Peng F, Pan Z, Ding Y, Xia C. Nitrogen-Centered Radical-Mediated Cascade Amidoglycosylation of Glycals. Org Lett 2021; 23:1222-1227. [PMID: 33560134 DOI: 10.1021/acs.orglett.0c04178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A nitrogen-centered radical-mediated strategy for preparing 1,2-trans-2-amino-2-deoxyglycosides in one step was established. The cascade amidoglycosylation was initiated by a benzenesulfonimide radical generated from NFSI under the catalytic reduction of TEMPO. The benzenesulfonimide radical was electrophilically added to the glycals, and then the resulting glycosidic radical was converted to oxocarbenium upon oxidation by TEMPO+, which enabled the following anomeric specific glycosylation.
Collapse
Affiliation(s)
- Wenbin Shang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chunyu Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Fengyuan Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuzhen Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
27
|
Pal KB, Guo A, Das M, Lee J, Báti G, Yip BRP, Loh TP, Liu XW. Iridium-promoted deoxyglycoside synthesis: stereoselectivity and mechanistic insight. Chem Sci 2020; 12:2209-2216. [PMID: 34163986 PMCID: PMC8179265 DOI: 10.1039/d0sc06529c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Herein, we devised a method for stereoselective O-glycosylation using an Ir(i)-catalyst which enables both hydroalkoxylation and nucleophilic substitution of glycals with varying substituents at the C3 position. In this transformation, 2-deoxy-α-O-glycosides were acquired when glycals equipped with a notoriously poor leaving group at C3 were used; in contrast 2,3-unsaturated-α-O-glycosides were produced from glycals that bear a good leaving group at C3. Mechanistic studies indicate that both reactions proceed via the directing mechanism, through which the acceptor coordinates to the Ir(i) metal in the α-face-coordinated Ir(i)-glycal π-complex and then attacks the glycal that contains the O-glycosidic bond in a syn-addition manner. This protocol exhibits good functional group tolerance and is exemplified with the preparation of a library of oligosaccharides in moderate to high yields and with excellent stereoselectivities. Ir(i)-catalyzed α-selective O-glycosylation of glycals provided an access to both 2-deoxyglycosides and 2,3-unsaturated glycosides with a broad substrate scope. The underlying rationale of α-selectivity has been illustrated by the DFT study.![]()
Collapse
Affiliation(s)
- Kumar Bhaskar Pal
- Institute of Advanced Synthesis, Northwestern Polytechnical University Xi'an 710072 China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Aoxin Guo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Mrinmoy Das
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Jiande Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371 .,Nanyang Environment and Water Research Institute, Nanyang Technological University 1 Cleantech Loop Singapore 637141
| | - Gábor Báti
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Benjamin Rui Peng Yip
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, Northwestern Polytechnical University Xi'an 710072 China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371 .,Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang Jiangsu 215400 China
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| |
Collapse
|
28
|
Wang C, Liang H, Hang Z, Wang ZY, Xie Q, Xue W. Lewis acid/base pair as a catalytic system for α-stereoselective synthesis of 2-deoxyglycosides through the addition of alcohols to glycals. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Jeanneret RA, Johnson SE, Galan MC. Conformationally Constrained Glycosyl Donors as Tools to Control Glycosylation Outcomes. J Org Chem 2020; 85:15801-15826. [DOI: 10.1021/acs.joc.0c02045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robin A. Jeanneret
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| | - Simon E. Johnson
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
30
|
A robust and tunable halogen bond organocatalyzed 2-deoxyglycosylation involving quantum tunneling. Nat Commun 2020; 11:4911. [PMID: 32999276 PMCID: PMC7527348 DOI: 10.1038/s41467-020-18595-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/26/2020] [Indexed: 11/10/2022] Open
Abstract
The development of noncovalent halogen bonding (XB) catalysis is rapidly gaining traction, as isolated reports documented better performance than the well-established hydrogen bonding thiourea catalysis. However, convincing cases allowing XB activation to be competitive in challenging bond formations are lacking. Herein, we report a robust XB catalyzed 2-deoxyglycosylation, featuring a biomimetic reaction network indicative of dynamic XB activation. Benchmarking studies uncovered an improved substrate tolerance compared to thiourea-catalyzed protocols. Kinetic investigations reveal an autoinductive sigmoidal kinetic profile, supporting an in situ amplification of a XB dependent active catalytic species. Kinetic isotopic effect measurements further support quantum tunneling in the rate determining step. Furthermore, we demonstrate XB catalysis tunability via a halogen swapping strategy, facilitating 2-deoxyribosylations of D-ribals. This protocol showcases the clear emergence of XB catalysis as a versatile activation mode in noncovalent organocatalysis, and as an important addition to the catalytic toolbox of chemical glycosylations. Halogen bonding (HB) catalysis is rapidly gaining momentum, however, cases of XB activation for challenging bonds formation are rare. Here, the authors show a robust XB catalyzed 2-deoxyglycosylation with broad scope and featuring a quantum tunneling phenomenon in the proton transfer rate determining step.
Collapse
|
31
|
Liu M, Liu K, Xiong D, Zhang H, Li T, Li B, Qin X, Bai J, Ye X. Stereoselective Electro‐2‐deoxyglycosylation from Glycals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Kai‐Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - De‐Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 27 Shanda Nanlu Jinan Shandong 250100 China
| | - Hanyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Tian Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Bohan Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Jinhe Bai
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Xin‐Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| |
Collapse
|
32
|
Han PR, Liu J, Liao JX, Tu YH, Sun JS. Reagent-Controlled Divergent Synthesis of C-Glycosides. J Org Chem 2020; 85:11449-11464. [DOI: 10.1021/acs.joc.0c01544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Pu-Ren Han
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jianchao Liu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jin-Xi Liao
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yuan-Hong Tu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jian-Song Sun
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
33
|
Kumar M, Reddy TR, Gurawa A, Kashyap S. Copper(ii)-catalyzed stereoselective 1,2-addition vs. Ferrier glycosylation of "armed" and "disarmed" glycal donors. Org Biomol Chem 2020; 18:4848-4862. [PMID: 32608448 DOI: 10.1039/d0ob01042a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Selective activation of "armed' and ''disarmed" glycal donors enabling the stereo-controlled glycosylations by employing Cu(ii)-catalyst as the promoter has been realized. The distinctive stereochemical outcome in the process is mainly influenced by the presence of diverse protecting groups on the donor and the solvent system employed. The protocol is compatible with a variety of aglycones including carbohydrates, amino acids, and natural products to access deoxy-glycosides and glycoconjugates with high α-anomeric selectivity. Notably, the synthetic practicality of the method is amply verified for the stereoselective assembling of trisaccharides comprising 2-deoxy components. Mechanistic studies involving deuterated experiments validate the syn-diastereoselective 1,2-addition of acceptors on the double bond of armed donors.
Collapse
Affiliation(s)
- Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Thurpu Raghavender Reddy
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| |
Collapse
|
34
|
Liu M, Liu KM, Xiong DC, Zhang H, Li T, Li B, Qin X, Bai J, Ye XS. Stereoselective Electro-2-deoxyglycosylation from Glycals. Angew Chem Int Ed Engl 2020; 59:15204-15208. [PMID: 32394599 DOI: 10.1002/anie.202006115] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 11/09/2022]
Abstract
We report a novel and highly stereoselective electro-2-deoxyglycosylation from glycals. This method features excellent stereoselectivity, scope, and functional-group tolerance. This process can also be applied to the modification of a wide range of natural products and drugs. Furthermore, a scalable synthesis of glycosylated podophyllotoxin and a one-pot trisaccharide synthesis through iterative electroglycosylations were achieved.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Kai-Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nanlu, Jinan, Shandong, 250100, China
| | - Hanyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Tian Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Bohan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Jinhe Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
35
|
Pal KB, Guo A, Das M, Báti G, Liu XW. Superbase-Catalyzed Stereo- and Regioselective Glycosylation with 2-Nitroglycals: Facile Access to 2-Amino-2-deoxy-O-glycosides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kumar Bhaskar Pal
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Aoxin Guo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Mrinmoy Das
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gábor Báti
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
36
|
Luo T, Zhang Y, Xi J, Lu Y, Dong H. Improved Synthesis of Sulfur-Containing Glycosides by Suppressing Thioacetyl Migration. Front Chem 2020; 8:319. [PMID: 32391332 PMCID: PMC7191076 DOI: 10.3389/fchem.2020.00319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
Complex mixtures were often observed when we attempted to synthesize 4-thio- and 2,4-dithio-glycoside derivatives by double parallel and double serial inversion, thus leading to no or low yields of target products. The reason was later found to be that many unexpected side products were produced when a nucleophile substituted the leaving group on the substrate containing the thioacetate group. We hypothesized that thioacetyl migration is prone to occur due to the labile thioacetate group even under weak basic conditions caused by the nucleophile, leading to this result. Therefore, we managed to inhibit the generation of thiol groups from thioacetate groups by the addition of an appropriate amount of conjugate acid/anhydride, successfully improving the synthesis of 4-thio- and 2,4-dithio-glycoside derivatives. The target products which were previously difficult to synthesize, were herein obtained in relatively high yields. Finally, 4-deoxy- and 2,4-dideoxy-glycoside derivatives were efficiently synthesized through the removal of thioacetate groups under UV light, starting from 4-thio- and 2,4-dithio-glycoside derivatives.
Collapse
Affiliation(s)
- Tao Luo
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhang
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jiafeng Xi
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, China
| | - Yuchao Lu
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, China
| | - Hai Dong
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Romeo JR, McDermott L, Bennett CS. Reagent-Controlled α-Selective Dehydrative Glycosylation of 2,6-Dideoxy Sugars: Construction of the Arugomycin Tetrasaccharide. Org Lett 2020; 22:3649-3654. [PMID: 32281384 PMCID: PMC7239334 DOI: 10.1021/acs.orglett.0c01153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The first synthesis of the tetrasaccharide fragment of the anthracycline natural product Arugomycin is described. A reagent controlled dehydrative glycosylation method involving cyclopropenium activation was utilized to synthesize the α-linkages with complete anomeric selectivity. The synthesis was completed in 20 total steps, and in 2.5% overall yield with a longest linear sequence of 15 steps.
Collapse
Affiliation(s)
- Joseph R Romeo
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Luca McDermott
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Clay S Bennett
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
38
|
Palo-Nieto C, Sau A, Jeanneret R, Payard PA, Salamé A, Martins-Teixeira MB, Carvalho I, Grimaud L, Galan MC. Copper Reactivity Can Be Tuned to Catalyze the Stereoselective Synthesis of 2-Deoxyglycosides from Glycals. Org Lett 2020; 22:1991-1996. [DOI: 10.1021/acs.orglett.9b04525] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlos Palo-Nieto
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Abhijit Sau
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Robin Jeanneret
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Pierre-Adrien Payard
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Aude Salamé
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Maristela Braga Martins-Teixeira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Monte Alegre CEP 14040-903, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Monte Alegre CEP 14040-903, Brazil
| | - Laurence Grimaud
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| |
Collapse
|
39
|
Tatina MB, Moussa Z, Xia M, Judeh ZMA. Perfluorophenylboronic acid-catalyzed direct α-stereoselective synthesis of 2-deoxygalactosides from deactivated peracetylated d-galactal. Chem Commun (Camb) 2019; 55:12204-12207. [PMID: 31549691 DOI: 10.1039/c9cc06151g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Perfluorophenylboronic acid 1c catalyzes the direct stereoselective addition of alcohol nucleophiles to deactivated peracetylated d-galactal to give 2-deoxygalactosides in 55-88% yield with complete α-selectivity. The unprecedented results reported here also enable the synthesis of disaccharides containing the 2-deoxygalactose moiety directly from the deactivated peracetylated d-galactal. This convenient and metal-free glycosylation method works well with a wide range of alcohol nucleophiles as acceptors and tolerates a range of functional groups without the formation of the Ferrier byproduct and without the need for a large excess of nucleophiles or additives. The method is potentially useful for the synthesis of a variety of α-2-deoxygalactosides.
Collapse
Affiliation(s)
- Madhu Babu Tatina
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore.
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, 15551, United Arab Emirates
| | - Mengxin Xia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore.
| | - Zaher M A Judeh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore.
| |
Collapse
|
40
|
Direct Addition of Amides to Glycals Enabled by Solvation‐Insusceptible 2‐Haloazolium Salt Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Nakatsuji Y, Kobayashi Y, Takemoto Y. Direct Addition of Amides to Glycals Enabled by Solvation-Insusceptible 2-Haloazolium Salt Catalysis. Angew Chem Int Ed Engl 2019; 58:14115-14119. [PMID: 31392793 DOI: 10.1002/anie.201907129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/24/2019] [Indexed: 01/12/2023]
Abstract
The direct 2-deoxyglycosylation of nucleophiles with glycals leads to biologically and pharmacologically important 2-deoxysugar compounds. Although the direct addition of hydroxyl and sulfonamide groups have been well developed, the direct 2-deoxyglycosylation of amide groups has not been reported to date. Herein, we show the first direct 2-deoxyglycosylation of amide groups using a newly designed Brønsted acid catalyst under mild conditions. Through mechanistic investigations, we discovered that the amide group can inhibit acid catalysts, and the inhibition has made the 2-deoxyglycosylation reaction difficult. Diffusion-ordered two-dimensional NMR spectroscopy analysis implied that the 2-chloroazolium salt catalyst was less likely to form aggregates with amides in comparison to other acid catalysts. The chlorine atom and the extended π-scaffold of the catalyst played a crucial role for this phenomenon. This relative insusceptibility to inhibition by amides is more responsible for the catalytic activity than the strength of the acidity.
Collapse
Affiliation(s)
- Yuya Nakatsuji
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yusuke Kobayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
42
|
Shaw M, Kumar A. Additive‐Free Gold(III)‐Catalyzed Stereoselective Synthesis of 2‐Deoxyglycosides Using Phenylpropiolate Glycosides as Donors. Chem Asian J 2019; 14:4651-4658. [DOI: 10.1002/asia.201900888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/05/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Mukta Shaw
- Department of ChemistryIndian Institute of Technology Patna, Bihta 801106 Bihar India
| | - Amit Kumar
- Department of ChemistryIndian Institute of Technology Patna, Bihta 801106 Bihar India
| |
Collapse
|
43
|
Ge JT, Zhou L, Luo T, Lv J, Dong H. A One-Pot Method for Removal of Thioacetyl Group via Desulfurization under Ultraviolet Light To Synthesize Deoxyglycosides. Org Lett 2019; 21:5903-5906. [PMID: 31310551 DOI: 10.1021/acs.orglett.9b02033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We herein developed an efficient method for removing thioacetyl to synthesize acylated deoxy glycosides in a one-pot reaction, where the thioacetyl was selectively deacetylated by hydrazine hydrate in DMF within 2-5 min at room temperature, followed by desulfurization under UV light for 1-2 h in the presence of TCEP·HCl. The method was then used to synthesize 2-deoxy glycosides with absolute α/β-configuration via stereoselective control of C-2 thioacetate in glycosylation.
Collapse
Affiliation(s)
- Jian-Tao Ge
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry & Chemical Engineering , Huazhong University of Science & Technology , Luoyu Road 1037 , Wuhan , 430074 , P. R. China.,School of Chemistry and Chemical Engineering , Hubei Polytechnic University , Guilinbei Road 16 , Huangshi , 435003 , P. R. China
| | - Lang Zhou
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry & Chemical Engineering , Huazhong University of Science & Technology , Luoyu Road 1037 , Wuhan , 430074 , P. R. China
| | - Tao Luo
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry & Chemical Engineering , Huazhong University of Science & Technology , Luoyu Road 1037 , Wuhan , 430074 , P. R. China
| | - Jian Lv
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry & Chemical Engineering , Huazhong University of Science & Technology , Luoyu Road 1037 , Wuhan , 430074 , P. R. China
| | - Hai Dong
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry & Chemical Engineering , Huazhong University of Science & Technology , Luoyu Road 1037 , Wuhan , 430074 , P. R. China
| |
Collapse
|
44
|
Abstract
The translation of biological glycosylation in humans to the clinical applications involves systematic studies using homogeneous samples of oligosaccharides and glycoconjugates, which could be accessed by chemical, enzymatic or other biological methods. However, the structural complexity and wide-range variations of glycans and their conjugates represent a major challenge in the synthesis of this class of biomolecules. To help navigate within many methods of oligosaccharide synthesis, this Perspective offers a critical assessment of the most promising synthetic strategies with an eye on the therapeutically relevant targets.
Collapse
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Chi-Huey Wong
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States.,Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
45
|
Sau A, Palo-Nieto C, Galan MC. Substrate-Controlled Direct α-Stereoselective Synthesis of Deoxyglycosides from Glycals Using B(C 6F 5) 3 as Catalyst. J Org Chem 2019; 84:2415-2424. [PMID: 30706711 PMCID: PMC6466476 DOI: 10.1021/acs.joc.8b02613] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
B(C6F5)3 enables the metal-free
unprecedented substrate-controlled direct α-stereoselective
synthesis of deoxyglycosides from glycals. 2,3-Unsaturated α-O-glycoside products are obtained with deactivated glycals
at 75 °C in the presence of the catalyst, while 2-deoxyglycosides
are formed using activated glycals that bear no leaving group at C-3
at lower temperatures. The reaction proceeds in good to excellent
yields via concomitant borane activation of glycal donor and nucleophile
acceptor. The method is exemplified with the synthesis of a series
of rare and biologically relevant glycoside analogues.
Collapse
Affiliation(s)
- Abhijit Sau
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - Carlos Palo-Nieto
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - M Carmen Galan
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| |
Collapse
|
46
|
Wang J, Deng C, Zhang Q, Chai Y. Tuning the Chemoselectivity of Silyl Protected Rhamnals by Temperature and Brønsted Acidity: Kinetically Controlled 1,2-Addition vs Thermodynamically Controlled Ferrier Rearrangement. Org Lett 2019; 21:1103-1107. [PMID: 30714737 DOI: 10.1021/acs.orglett.9b00009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An acidity- and temperature-dependent chemoselective glycosylation of silyl-protected rhamnals with alcohols has been revealed. The reaction undergoes a 1,2-addition pathway with (±)-CSA as the catalyst at rt, affording kinetically controlled 2-deoxyl rhamnosides. In contrast, only thermodynamically controlled 2,3-unsaturated rhamnosides are formed via Ferrier rearrangement when elevating reaction temperature to 85 °C or using CF3SO3H instead. This tunable glycosylation allows facile and practical access to both 2-deoxyl and 2,3-unsaturated rhamnosides with excellent yields and high α-stereoselectivity.
Collapse
Affiliation(s)
- Jincai Wang
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Xi'an , Shaanxi 710119 , P. R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P. R. China
| | - Chuqiao Deng
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Xi'an , Shaanxi 710119 , P. R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P. R. China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P. R. China
| | - Yonghai Chai
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Xi'an , Shaanxi 710119 , P. R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P. R. China
| |
Collapse
|
47
|
Ghosh T, Mukherji A, Srivastava HK, Kancharla PK. Secondary amine salt catalyzed controlled activation of 2-deoxy sugar lactols towards alpha-selective dehydrative glycosylation. Org Biomol Chem 2019; 16:2870-2875. [PMID: 29633773 DOI: 10.1039/c8ob00423d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new organocatalytic glycosylation method exploiting the lactol functionality has been disclosed. The catalytic generation of glycosyl oxacarbenium ions from lactols under forcible conditions via weakly Brønsted-acidic, readily available secondary amine salts affects the diastereoselective glycosylation of 2-deoxypyranoses and furanoses. This operationally simple iminium catalyzed activation of 2-deoxy hemi-acetals is a potential alternative to the existing cumbersome methods that need specialized handling. The mechanisms for this unique transformation and kinetic/thermodynamic effects have been discussed based on both experimental evidence and theoretical studies.
Collapse
Affiliation(s)
- Titli Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | | | | | | |
Collapse
|
48
|
Bradshaw GA, Colgan AC, Allen NP, Pongener I, Boland MB, Ortin Y, McGarrigle EM. Stereoselective organocatalyzed glycosylations - thiouracil, thioureas and monothiophthalimide act as Brønsted acid catalysts at low loadings. Chem Sci 2019; 10:508-514. [PMID: 30713648 PMCID: PMC6334493 DOI: 10.1039/c8sc02788a] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/15/2018] [Indexed: 01/21/2023] Open
Abstract
Thiouracil catalyzes stereoselective glycosylations with galactals in loadings as low as 0.1 mol%. It is proposed that in these glycosylations thiouracil, monothiophthalimide, and the previously reported catalyst, Schreiner's thiourea, do not operate via a double H-bonding mechanism but rather by Brønsted acid/base catalysis. In addition to the synthesis of 2-deoxyglycosides and glycoconjugates, we report the first organocatalytic synthesis of 1,1'-linked trehalose-type sugars.
Collapse
Affiliation(s)
- G A Bradshaw
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - A C Colgan
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - N P Allen
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - I Pongener
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - M B Boland
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - Y Ortin
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - E M McGarrigle
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| |
Collapse
|
49
|
Yao H, Vu MD, Liu XW. Recent advances in reagent-controlled stereoselective/stereospecific glycosylation. Carbohydr Res 2018; 473:72-81. [PMID: 30641292 DOI: 10.1016/j.carres.2018.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
The formation of O-glycosidic linkage is arguably one of the most important topics in glycoscience due to the prevalence of O-glycosides in nature. Great efforts have been devoted to this field by many carbohydrate chemists to develop stereoselective/stereospecific glycosylation methodologies. Although glycosyl donor- and acceptor-controlled strategies have significantly progressed, the tedious design and pre-synthesis of substrates could not be avoided. On the other hand, reagent-controlled glycosylation can overcome these challenges and produce the desired selectivity by only altering external factors such as concentration, reagents or other reaction conditions. This mini-review discusses selected recent novel methodologies on reagent-mediated stereo-controlled glycosylation in the last decade, classified by the types of glycosyl donors.
Collapse
Affiliation(s)
- Hui Yao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Minh Duy Vu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| |
Collapse
|
50
|
Xu C, Loh CCJ. An ultra-low thiourea catalyzed strain-release glycosylation and a multicatalytic diversification strategy. Nat Commun 2018; 9:4057. [PMID: 30282986 PMCID: PMC6170412 DOI: 10.1038/s41467-018-06329-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/30/2018] [Indexed: 11/09/2022] Open
Abstract
The utility of thiourea catalysis in selective glycosylation strategies has gained significant momentum lately due to its versatility in hydrogen bonding or anionic recognition activation modes. The use of these non-covalent interactions constitute a powerful means to construct glycosidic linkages as it mimics physiologically occurring glycosyltransferases. However, glycosyl donor activation through the currently employed catalysts is moderate such that, in general, catalyst loadings are rather high in these transformations. In addition, thiourea catalysis has not been well explored for the synthesis of furanosides. Herein, we demonstrate an ultra-low loadings stereoselective and stereospecific thiourea catalyzed strain-release furanosylation and pyranosylation strategy. Our ultra-low organocatalyzed furanosylation enables a multicatalytic strategy, which opens up a unique avenue towards rapid diversification of synthetic glycosides. In-situ NMR monitoring unravel insights into unknown reaction intermediates and initial rate kinetic studies reveal a plausible synergistic hydrogen bonding/Brønsted acid activation mode. Non-covalent glycosyl donor activation often requires high organocatalyst loadings. Here, the authors demonstrate that strain-release glycosylations can take place at very low thiourea catalyst loadings. In addition, the authors developed a one-pot multicatalytic strategy that can diversify glycosides rapidly.
Collapse
Affiliation(s)
- Chunfa Xu
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund,, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany.,Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Charles C J Loh
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund,, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany. .,Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany.
| |
Collapse
|